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Abstract

We obtain low complexity tail-biting trellises for some extremal self-dual codes
for various lengths and fields such as the [12,6,6] ternary Golay code and a [24,12,8]
Hermitian self-dual code over GF(4). These codes are obtained from a particular family
of cyclic Tanner graphs called necklace factor graphs.
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1 Introduction

The representation of linear block codes by trellises is a very powerful description which
allows an efficient soft decision decoding. We consider a family of codes introduced in [2]
based on the use of short length codes and interleavers. From this family it is possible to
extract a sub-family of codes adapted to iterative decoding. Indeed every code of this sub-
family is associated with a necklace factor from which a tail-biting trellis can be deduced.
Among this family, it is interesting to find codes with the best minimal distance as in [3].
Herein, we obtained some extremal self-dual codes over GF (2) and Z4.

In this paper, we extend the construction [2] to several fields and we formalize the con-
straints on the necklace graph given in [3] to get codes with the best minimum distances.
By this way, we have low complexity tail-biting trellises for several codes like the [12,6,6]
ternary Golay code and a [24,12,8] Hermitian self-dual code over GF(4).

2 Necklace Factor Graph

For an introduction to factor graphs we refer the reader to [4]. We recall that a factor
graph of a code C over GF (q) consists of check nodes representing local constraints of C,
and variable nodes which take values in an alphabet. We distinguish between two types
of variable nodes: symbol nodes which are associated with the symbol of the codewords of
C and state nodes which are used for computing the codewords of C but which are not
transmitted. A variable node is adjacent to a check node if the corresponding variable is
involved in the corresponding local constraint.
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We consider [N,K,D] linear codes C over GF (q) obtained from a [n, k, d] linear base
code B over GF (q) (see [3]). We focus on codes having a cyclic factor graph Nt(C) with t
necklaces like the one given in Figure 1.
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Figure 1: A necklace factor graph of order t.

Each check node represents the base code B. Symbol nodes take values in GF (q)k. State

nodes take values in GF (q)
k

2 if k is even and in GF (q)⌊
k

2
⌋ or GF (q)⌊

k

2
⌋+1 if not. All the

variable nodes adjacent to a check node form a codeword of B and all the symbol nodes of
the Nt(C) form a codeword of C.

Proposition 1 If all the local constraints of a necklace factor graph representing a code C
are self-dual codes over GF (q) then C is also a linear self-dual code.

Proof It is an application of Theorem 7.3 given in [4] since any necklace graph is a normal
factor graph.

�

3 Constraints on the Necklace Graph

Among all the codes that have necklace graphs described in the Section 2, we are particu-
larly interested in those that have the best minimum distances. We meet this requirement
firstly by defining the properties that should satisfy a necklace graph, and then by searching
exhaustively interleavers that check them.

Property of diffusion: for any check node which has degree four, if one of its adjacent
state node has non-zero (Hamming) weight, then at least three of them has non-zero weights.

Property of expansion: for any check node which has degree three, if exactly one state
node has non-zero weight, then the symbol node has always a weight greater than a certain
constant b ≥ d− k/2.



4 Low Complexity Tail-Biting Trellises

lemma 1 Any necklace factor graph Nt(C) of a code C can be put into the form of a t-section
tail-biting trellis Tt(C).

Proof It is sufficient to group together variable nodes and check nodes of the same level
(see Figure 2) to obtain a new factor graph which is basically a tail-biting trellis.
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Figure 2: Transformation of a necklace graph into a tail-biting trellis.

There exist several types of complexity for a tail-biting trellis ([1]). We are only interested
in the maximum state complexity.

Definition 1 Let T be a t-section tail-biting trellis with state spaces S0, . . . , St−1. The max-
imum state complexity Smax of T is defined as

Smax = max{|S0|, . . . , |St−1|}.

lemma 2 Let C be a [N,K,D] linear code over GF (q) with necklace graph Nt(C) obtained
from a [n, k, d] linear code B. Each states space of the tail-biting trellis Tt(C) deduced from

Nt(C) is of size qk and therefore Smax is equal to qk states.

The following table gathers the parameters of the obtained codes along with the com-
plexities of their associated tail-biting trellises.

q B C t Smax(Tt(C))
3 [4,2,3] [8,4,3] 2 32

3 [4,2,3] [12,6,6] 3 32

3 [4,2,3] [16,8,6] 4 32

3 [4,2,3] [20,10,6] 4 32

3 [12,6,6] [24,12,9] 2 36

4 Euclidean [4,2,3] [8,4,3] 2 42

4 Euclidean [4,2,3] [12,6,6] 3 42

4 Euclidean [4,2,3] [16,8,6] 4 42

4 Hermitian [6,3,4] [12,6,4] 2 43

4 Hermitian [8,4,4] [24,12,8] 3 44

5 [6,3,4] [18,9,6] 3 53

5 [8,4,4] [24,12,8] 3 54
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