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On the complexity of determining the irregular chromatic index of a graph

An undirected simple graph G is locally irregular if adjacent vertices of G have different degrees. An edge-colouring φ of G is locally irregular if each colour class of φ induces a locally irregular subgraph of G. The irregular chromatic index χ irr (G) of G is the least number of colours used by a locally irregular edge-colouring of G (if any). We show that the problem of determining the irregular chromatic index of a graph can be handled in linear time when restricted to trees, but it remains NP-complete in general.

Introduction

How to distinguish the vertices of some undirected simple graph G? One natural way to proceed consists in considering the degrees of the vertices of G, namely to consider that any two vertices are distinguished whenever they have distinct degrees. But distinguishing via the degrees is not relevant in general as it can be easily proved that every simple graph with order at least 2 necessarily has two vertices with the same degree.

To overcome this issue, Chartrand et al. proposed the following approach [START_REF] Chartrand | Irregular networks[END_REF]: transform the graph G into some totally irregular multigraph G by replacing each edge e of G by a set of n e parallel edges, with n e ≥ 1. Since two vertices are adjacent in G if and only if they are adjacent in G, the structures of G and G are similar. In that case, we are interested in finding such a multigraph G which minimizes the quantity max{n e / e ∈ E(G)}.

The notion of vertex-sum-distinguishing edge-weighting of graphs gave birth to dozens of variants (see e.g. [START_REF] Addario-Berry | Vertex colouring edge partitions[END_REF][START_REF] Karoński | Edge weights and vertex colours[END_REF][START_REF] Lo | On a 1,2 conjecture[END_REF], or [START_REF] Gallian | A dynamic survey of graph labeling[END_REF] for a complete survey dedicated to this topic). One such variant, considered by Karoński, Luczak and Thomason in [START_REF] Karoński | Edge weights and vertex colours[END_REF], is defined as follows. A k-edge-weighting w is neighbour-sum-distinguishing if c w (u) = c w (v) for every two adjacent vertices of G. The multigraph G obtained from G by replacing each edge e of G by w(e) parallel edges is now locally irregular, in the sense that only adjacent vertices are distinguished by their degrees. Analogous notions to the one of local irregularity can also be found in literature, see e.g. [START_REF] Alavi | How to define an irregular graph[END_REF].

In [START_REF] Nierhoff | A tight bound on the irregularity strength of graphs[END_REF], Nierhoff proved that graphs with large order n have irregularity strength at most n -1, this upper bound being tight. In contrast, Karoński, Luczak and Thomason conjectured in [START_REF] Karoński | Edge weights and vertex colours[END_REF] that for every graph with no isolated edge one can produce a neighbour-sum-distinguishing 3edge-weighting:

1-2-3 Conjecture. Every graph with no isolated edge admits a neighboursum-distinguishing 3-edge-weighting.

We refer the interested reader to [START_REF] Seamone | The 1-2-3 conjecture and related problems: a survey[END_REF] for an up-to-date survey dedicated to the 1-2-3 Conjecture. It is still not known whether the 1-2-3 Conjecture is true for regular graphs in general. One way for dealing with this question is to consider the following edge-colouring notion. An (improper) edgecolouring φ of G is locally irregular if every colour class of φ induces a locally irregular subgraph of G. As pointed out in [START_REF] Baudon | On decomposing regular graphs into locally irregular subgraphs[END_REF], a locally irregular 2edge-colouring of a regular graph G is also a neighbour-sum-distinguishing 2-edge-weighting of G. Hence, studying locally irregular 2-edge-colourings of graphs can be a way to tackle the 1-2-3 Conjecture in the context of regular graphs.

For a given graph G, we are interested in finding the least number of colours needed by a locally irregular edge-colouring of G (if any), called the irregular chromatic index of G and denoted by χ irr (G). If G does not admit any locally irregular edge-colouring, we say that G is non-colourable and let χ irr (G) = ∞. It was shown in [START_REF] Baudon | On decomposing regular graphs into locally irregular subgraphs[END_REF] that a graph G is non-colourable if and only if G is either an odd-length path, or an odd-length cycle, or a "treelike" graph obtained by connecting an arbitrary number of triangles in a specific way. Due to their simple structure, such graphs can be recognized in polynomial time.

All known colourable graphs have irregular chromatic index at most 3, and graphs with irregular chromatic index exactly k are known for every k ∈ {1, 2, 3}. For instance, we have χ irr (P 3 ) = 1, χ irr (P 2q+1 ) = 2 for every q ≥ 2, and χ irr (C 2q ) = 3 for every odd q ≥ 3, where, for every n ≥ 1, P n and C n denote the path and the cycle on n vertices, respectively. The following conjecture was proposed in [START_REF] Baudon | On decomposing regular graphs into locally irregular subgraphs[END_REF]:

Local-Irregularity Conjecture. Every colourable graph has irregular chromatic index at most 3.

The Local-Irregularity Conjecture was verified for several classes of graphs in [START_REF] Baudon | On decomposing regular graphs into locally irregular subgraphs[END_REF]. In particular, we have the following result (recall that a tree is noncolourable if and only if it is an odd-length path): Theorem 1.1 (Baudon et al. [START_REF] Baudon | On decomposing regular graphs into locally irregular subgraphs[END_REF]). If T is a colourable tree, then χ irr (T ) ≤ 3.

If the Local-Irregularity Conjecture turned out to be true, then all colourable graphs would have irregular chromatic index 1, 2 or 3. Therefore, a natural question is to find out whether it is easy to determine the irregular chromatic index of a given graph. This leads to the following decision problem:

Locally-Irregular k-Edge-Colouring Instance: A graph G. Question: Do we have χ irr (G) ≤ k?

Clearly, χ irr (G) = 1 if and only if G is itself locally irregular. Since checking whether a graph is locally irregular can be done in polynomial time, Locally-Irregular 1-Edge-Colouring is in P. If the Local-Irregularity Conjecture were true, then any colourable graph would have irregular chromatic index less than k for every k ≥ 3 and, for such a value of k, the problem Locally-Irregular k-Edge-Colouring would thus be equivalent to the problem of determining whether G is colourable (which is easy, as noticed above). Hence, if the Local-Irregularity Conjecture were true, then we would get that Locally-Irregular k-Edge-Colouring is in P for every k ≥ 3.

In this paper, we investigate the status of the remaining problem Locally-Irregular 2-Edge-Colouring. We will prove in Section 3 that Locally-Irregular 2-Edge-Colouring is easy when restricted to trees, and in Section 4 that Locally-Irregular 2-Edge-Colouring is NPcomplete in general. More precisely, we will prove the following: Theorem 1.2. There is a linear-time algorithm for solving Locally-Irregular 2-Edge-Colouring when restricted to trees.

Theorem 1.3. Locally-Irregular 2-Edge-Colouring is NP-complete in general, even when restricted to planar graphs with maximum degree at most 6.

Theorem 1.3 notably meets a result proved independently in [START_REF] Ahadi | Algorithmic complexity of proper labeling problems[END_REF] and [START_REF] Dudek | On the complexity of vertex-coloring edgeweightings[END_REF] stating that it is NP-complete to decide whether a graph admits a neighboursum-distinguishing 2-edge-weighting. Before proving Theorems 1.2 and 1.3, we introduce, in Section 2, the definitions, notation and terminology we will use throughout. We will end up this paper in Section 5 by raising additional remarks and open questions related to our results.

Definitions, notation and terminology

For every graph G, we denote by V (G), E(G) and ∆(G) its vertex set, edge set and maximum degree, respectively. If E 0 ⊆ E(G), we denote by G[E 0 ] the subgraph of G induced by E 0 , that is the graph with vertex set V (G) and edge set E 0 . If u ∈ V (G), we denote by deg G (u) the degree of the vertex u in G, or simply by deg(u) whenever the graph G is clear from the context. Let φ be a k-edge-colouring of G and a ∈ {1, . . . , k}. An edge e of G with φ(e) = a is said to be a-coloured. The a-subgraph of G is the subgraph induced by the a-coloured edges of G. If v is a vertex of G, the a-degree of v, denoted by deg φ,a (v), is the degree of v in the a-subgraph of G.

Let T be a tree. By choosing a particular node r of T as the root of T , one naturally define an orientation of T from its root to its leaves. The resulting rooted tree is denoted T r . As usual, according to the orientation of T r , we can speak of the father or the children of a node u. The father of a node u = r will be denoted by u -. If a non-leaf node u has only one child, this child will be denoted by u + . A rooted tree T r is called a shrub if its root has only one child.

Let u be a node in T r with p ≥ 1 children denoted v 1 , . . . , v p . For every i ∈ {1, . . . , p}, we denote by T r [u, i] the subtree of T r induced by u and the nodes in the subtree of T r rooted at v i . Every such T r [u, i] is a shrub, with v i = u + and u = v - i . Clearly, T r is isomorphic to the tree obtained by identifying the roots of the shrubs T r [r, 1], . . . , T r [r, deg(r)].

Let T r be a shrub and φ : E(T r ) → {a, b} a 2-edge-colouring of T r . To make the colour of the edge rr + by φ explicit, we will denote φ by φ a,b if Let T be a tree whose edge set E(T ) is partitioned into p ≥ 2 disjoint subsets E 1 ∪ • • • ∪ E p , and let φ 1 a,b , . . . , φ p a,b be 2-edge-colourings of 3 Proof of Theorem 1.2

T [E 1 ], . . . , T [E p ], respectively. The union φ a,b = φ 1 a,b + • • • + φ p a,b of φ 1 a,b , . . . , φ p a,b is the 2-edge-colouring of T r defined by φ a,b (uv) = φ i a,b (uv) if and only if uv ∈ E i .
We herein prove that the irregular chromatic index of every colourable tree can be determined in linear time. For this purpose, we first show, in Section 3.1, how to obtain an almost locally irregular 2-edge-colouring of every shrub. In Section 3.2, we then explain how to "decompose" every colourable tree T into shrubs, and how to construct a locally irregular edge-colouring of T by composing the almost locally irregular 2-edge-colourings of these shrubs. Then, by carefully studying the situations in which this colouring strategy does not work with only three colours, we characterize the colourable trees with irregular chromatic index exactly 3 in Section 3.3. Using all the previous results and observations, we eventually propose a linear time algorithm for computing the irregular chromatic index of every colourable tree in Section 3.4.

1 if p = 0 then 2 φ a,b (rr + ) = a;

Every shrub admits an almost locally irregular 2-edgecolouring

Algorithm 1 constructs an almost locally irregular 2-edge-colouring φ a,b of any shrub T r . In this algorithm, we denote by p, where p ≥ 0, the number of children of r + . Roughly speaking, the algorithm first inductively constructs almost locally irregular 2-edge-colourings φ 1 a,b , . . . , φ p a,b of T r [r + , 1], . . . , T r [r + , p], respectively. It then inverts some of the φ i a,b 's so that their union is an almost locally irregular 2-edge-colouring of T r when the edge rr + is a-coloured.

The keystone of Algorithm 1 is Line 7. Let us prove that the almost locally irregular 2-edge-colouring φ a,b of T r , obtained by inverting some of the φ i a,b 's, necessarily exists. Proof. If p = 0, then there is nothing to prove. Thus assume that r + has p ≥ 1 children v 1 , v 2 , . . . , v p in T r . We first consider small values of p, namely p ∈ {1, 2, 3}, before generalizing our arguments.

• Suppose p = 1. If φ a,b = φ 0 a,b + φ 1 a,b is not an almost locally irregular 2-edge-colouring of T r , then v 1 has a-degree 2 in T r [r + , 1] by φ 1 a,b . Besides, φ 1 a,b is a locally irregular 2-edge-colouring of T r [r + , 1]. The colouring φ a,b = φ 0 a,b + φ 1 b,a , obtained by inverting φ 1 a,b
, is thus clearly an almost locally irregular 2-edge-colouring of T r .

• Suppose p = 2. If φ a,b = φ 0 a,b +φ 1 a,b +φ 2 a,b
is not an almost locally irregular 2-edge-colouring of T r , then a child of r + , say v 1 , has a-degree 3 in T r [r + , 1] by φ 1 a,b , and

φ 1 a,b is a locally irregular 2-edge-colouring of T r [r + , 1]. Now consider φ a,b = φ 0 a,b + φ 1 b,a + φ 2 a,b . If φ a,b is not an almost locally irregular 2-edge-colouring of T r , then the other child v 2 of r + has a-degree 2 in T r [r + , 2] by φ 2 a,b . Moreover, φ 2 a,b is a locally irregular 2-edge-colouring of T r [r + , 2]. Thus, φ a,b = φ 0 a,b + φ 1 a,b + φ 2 b,a
is an almost locally irregular 2-edge-colouring of T r .

• Suppose p = 3. If φ a,b = φ 0 a,b + φ 1 a,b + φ 2 a,b + φ 3 a,b is not an almost locally irregular 2-edge-colouring of T r , then a child of r + , say v 1 , has a-degree 4 in T r [r + , 1] by φ 1 a,b , and φ 1 a,b is a locally irregular 2-edge- colouring of T r [r + , 1]. Now, if φ 0 a,b + φ 1 b,a + φ 2 a,b + φ 3 a,b
is not an almost locally irregular 2-edge-colouring of T r , then another child of r + , say v 2 , has a-degree 3 in T r [r + , 2] by φ 2 a,b , and φ 2 a,b is a locally irregular 2-edge-colouring of T r [r + , 2]. Again, the a-degree of the last child

v 3 of r + in T r [r + , 3] by φ 3 a,b is 3 if φ 0 a,b + φ 1 a,b + φ 2 b,a + φ 3 a,b
is not an almost locally irregular 2-edge-colouring of T r . Under all these assumptions, we clearly get that φ a,b = φ 0 a,b + φ 1 a,b + φ 2 b,a + φ 3 b,a is an almost locally irregular 2-edge-colouring of T r . By following the same scheme for any p ≥ 4, i.e. by inverting first none of the φ i a,b 's, then, if necessary, one, two, three, ..., of them, we either find an almost locally irregular 2-edge-colouring φ a,b of T r or find out all the values of the a-

degrees of v 1 , v 2 , . . . , v p in T r [r + , 1], T r [r + , 2], . . . , T r [r + , p] by φ 1
a,b , φ 2 a,b , . . . , φ p a,b , respectively. More precisely, in this last situation, we get that one of these a-degrees is equal to p + 1, two of them are equal to p, three of them are equal to p -1 (unless p is not big enough), and so on. Under the assumption that p ≥ 4, note that the biggest p+1 2 values of the resulting a-degree sequence are strictly greater than p+1 2 + 1, while the other values are strictly greater than p+1 2 -1. Considering that the a-degrees of v 1 , v 2 , . . . , v p are ordered decreasingly, i.e. v 1 has a-degree p + 1, v 2 has a-degree p, ..., the 2-edge-colouring [START_REF] Ahadi | Algorithmic complexity of proper labeling problems[END_REF] and Tr[r + , 3] are computed, and

φ a,b = φ 0 a,b + φ 1 a,b + • • • + φ p+1 2 a,b + φ p+1 2 +1 b,a + • • • + φ p b,a , obtained by inverting the last ( p+1 2 -1) (a) Almost locally irregular 2-edge- colourings φ 1 a,b , φ 2 a,b and φ 3 a,b of Tr[r + , 1], Tr[r + ,
φ 0 a,b (rr + ) = a. (b) The 2-edge- colouring φ 0 a,b + φ 1 a,b +φ 2 a,b +φ 3 a,b . (c) If φ 0 a,b + φ 1 a,b + φ 2 a,b + φ 3 a,b
is not an almost locally irregular 2-edgecolouring, then v1 has a-degree 4 in

Tr[r + , 1] by φ 1 a,b . (d) If φ 0 a,b + φ 1 b,a + φ 2 a,b + φ 3 a,b
is not an almost locally irregular 2-edgecolouring, then v2 has a-degree 3 in

Tr[r + , 2] by φ 2 a,b . (e) If φ 0 a,b + φ 1 a,b + φ 2 b,a + φ 3 a,b is not an almost locally irregular 2-edge- colouring, then v3 has a-degree 3 in Tr[r + , 3] by φ 3 a,b . (f) φ 0 a,b + φ 1 a,b + φ 2 b,a + φ 3 b,a
is an almost locally irregular 2-edge-colouring. Figure 2 shows an application of Algorithm 1 on a shrub. Using Algorithm 1, and thanks to Lemma 3.1, we get: Theorem 3.2. Every shrub admits an almost locally irregular 2-edge-colouring.

From shrubs to trees

Consider the procedure based on Algorithm 1, for possibly computing a locally irregular 2-edge-colouring of any colourable tree T , described as follows. Let r be a node of T with deg(r) = p ≥ 1. Start by decomposing T r into the p shrubs T r [r, 1], . . . , T r [r, p], and then compute almost locally irregular 2-edge-colourings φ 1 a,b , . . . , φ p a,b of T r [r, 1], . . . , T r [r, p], respectively. These colourings necessarily exist according to Theorem 3.2. Finally, invert some of the φ i a,b 's so that their union is a locally irregular 2-edge-colouring of T r .

The success of this colouring procedure is not guaranteed since, in some special cases, inverting the φ i a,b 's in every possible way does not lead to a locally irregular 2-edge-colouring of T r . However, the more children the vertex r has, the more possible ways for inverting the φ i a,b 's there are. Hence, the choice of r for rooting T before applying the above colouring procedure is crucial. Because the number of possibilities for inverting the φ i a,b 's grows exponentially compared to deg(r), this strategy actually leads to a locally irregular 2-edge-colouring of T r whenever deg(r) ≥ 5. More precisely, we can prove the following:

Theorem 3.3. If T is a tree with ∆(T ) ≥ 5, then χ irr (T ) ≤ 2.
Proof. Let r be a node of T (chosen as the root of

T ) with p ≥ 5 neigh- bours v 1 , v 2 , . . . , v p . Let φ 1 a,b , φ 2 a,b , . . . , φ p a,b be almost locally irregular 2-edge- colourings of T r [r, 1], T r [r, 2], . . . , T r [r, p],
respectively, which necessarily exist according to Theorem 3.2. Consider successively the 2-edge-colourings φ a,b of T r obtained by inverting none, one, two, ..., of the φ i a,b 's. If, at some step, φ a,b is a locally irregular 2-edge-colouring, then the claim is true for T . Otherwise, at each step, a conflict arises because, for at least one of the children v i of r, the a-degree of v i in T r [r, i] by φ i a,b is equal to the a-degree of r by φ a,b . In particular, if the 2-edge-colouring obtained by inverting none of the φ i a,b 's is not a locally irregular 2-edge-colouring of T r , then we reveal that one of the v i 's has a-degree p. Similarly, if none of the 2-edge-colourings obtained by inverting one of the φ i a,b 's is a locally irregular 2-edge-colouring of T r , then we reveal that two of the v i 's have a-degree p -1. If none of the 2-edge-colourings obtained by inverting two of the φ i a,b 's is a locally irregular 2-edge-colouring of T r , then we reveal that three of the v i 's have a-degree p -2, and so on. We stop the procedure once all the a-degrees of the v i 's have been revealed.

Once the procedure has stopped, we get that the a-degree sequence is (p, p-1, p-1, p-2, p-2, p-2, . . . ), where the element p-k appears exactly k + 1 times, except maybe in the case where pk is the last value of the sequence. When p ≥ 5, each of the a-degrees is strictly greater than p 2 . Hence, if the a-degrees of v 1 , v 2 , . . . , v p are ordered decreasingly, then

φ a,b = φ 1 a,b + φ 2 a,b + • • • + φ p 2 a,b + φ p 2 +1 b,a + • • • + φ p b,a ,
obtained by inverting the last p 2 φ i a,b 's, is a locally irregular 2-edge-colouring of T r since the aand b-degrees of r are then p 2 and p 2 , respectively, which are strictly less than the aand b-degree of its neighbours in the aand b-subgraphs, respectively.

Thanks to Theorems 3.2 and 3.3, we can also give an alternate proof of Theorem 1.1 [START_REF] Baudon | On decomposing regular graphs into locally irregular subgraphs[END_REF].

Alternate proof of Theorem 1.1. Let T be a colourable tree. If ∆(T ) ≤ 2, then T is a path with even length and χ irr (T ) ≤ 2. If ∆(T ) ≥ 5, then χ irr (T ) ≤ 2 according to Theorem 3.3. Let us thus suppose that ∆(T ) ∈ {3, 4}, and let r be a node of T with degree deg(r) = p = ∆(T ) whose neighbours are denoted by v 1 , v 2 , . . . , v p . As in the proof of Theorem 3.3, let φ 1 a,b , φ 2 a,b , . . . , φ p a,b be almost locally irregular 2-edge-colourings of T r [r, 1], T r [r, 2], . . . , T r [r, p], respectively (these exist by Theorem 3.2), and try out the inversion procedure. If no locally irregular 2-edge-colouring φ a,b of T r can be found, then the revealed a-degree sequence is necessarily (3, 2, 2) if p = 3, or (4, 3, 3, 2) if p = 4. Assuming that the a-degrees of v 1 , v 2 , . . . , v p are ordered decreasingly, the colouring

φ a,b = φ 1 a,b + φ 2 b,a + φ 3 c,a
, where c is a third colour, is a locally irregular 3-edge-colouring of T r for p = 3 since r has then a-, band c-degree 1 while its neighbours have degree 3, 2, and 2 in the a-, band c-subgraph, respectively. When p = 4, a locally irregular 3-edge-colouring of T r is given, for instance, by

φ a,b = φ 1 a,b + φ 2 b,a + φ 3 b,a + φ 4 c,a
since r has then a-, band c-degree 1, 2, and 1, respectively, while its neighbours have a-, band c-degree 4, 3 and 2, respectively.

Trees with irregular chromatic index 3

We now consider trees with maximum degree at most 4. In our alternate proof of Theorem 1.1, we have pointed out that the colouring procedure presented in Section 3.2 does not always provide a locally irregular 2-edgecolouring of a tree T r . This typically occurs when the inversion procedure of the φ i a,b 's fails, that is when none of the possible inversions of some of the φ i a,b 's is a locally irregular 2-edge-colouring. A simple computation shows that the inversion procedure fails if and only if the a-degree sequence of the

v i 's in the T r [r, i]'s by the φ i a,b 's is bad, namely is (1) if deg(r) = 1, (2, 1) if deg(r) = 2, (3, 2, 2) if deg(r) = 3, or (4, 3, 3, 2) if deg(r) = 4.
Consequently, if there exist almost locally irregular 2-edge-colourings

φ 1 a,b , φ 2 a,b , . . . , φ p a,b of T r [r, 1], T r [r, 2], . . . , T r [r, p],
respectively, leading to an a-degree sequence which is not bad, then inverting some of the φ i a,b 's necessarily leads to a locally irregular 2-edge-colouring of T r . We thus now focus on the structure of shrubs T r with maximum degree at most 4 such that r + has the same a-degree by all of the possible almost locally irregular 2-edge-colourings of T r . If r + always has a-degree k in this way, with k ∈ {1, 2, 3, 4}, we say that T r is a k-bad shrub.

D 0 = {k} p Signature {1} 0 - 1 D 1 = {2} {2} 1 D 1 = {1} 2 D 1 = {2}, D 2 = {3} 3 D 1 = {3}, D 2 = {3}, D 3 = {4} {3} 2 D 1 = {2}, D 2 = {2} 3 D 1 = {2}, D 2 = {3}, D 3 = {4} {4} 3 D 1 = {2}, D 2 = {3}, D 3 = {3}
Table 1: List of all k-bad signatures. Suppose that r + has children v 1 , . . . , v p with p ≥ 0. For each of the nodes v i , we denote by D i the set of all possible a-degrees of v i in T r [r + , i] by all of the possible almost locally irregular 2-edge-colourings of T r [r + , i]. The set of D i 's is the signature of T r . Analogously, we denote by D 0 the set of all possible a-degrees of r + by all of the almost locally irregular 2-edgecolourings of T r . According to these definitions, T r is a k-bad shrub if and only if D 0 = {k}, that is D 0 is a singleton.

Signature D 1 , D 2 D 0 {1}, {1} {1, 3} {1}, {2} {2, 3} {1}, {3} {1, 2} {1}, {4} {1, 2, 3} {2}, {2} {3} Signature D 1 , D 2 D 0 {2}, {3} {2} {2}, {4} {2, 3} {3}, {3} {1, 2} {3}, {4} {1, 2} {4}, {4} {1, 2, 3}
The set D 0 of any shrub T r can easily be computed thanks to an inductive scheme inspired by Algorithm 1. Roughly speaking, we first compute inductively the sets D 0 of each of the p schrubs T r [r + , 1], . . . , T r [r + , p]. By definition, the set D 0 of T r [r + , i] corresponds to the set D i of T r . Thanks to the signature D 1 , . . . , D p of T r which, in some sense, is a compact way for representing the almost locally irregular 2-edge-colourings of the T r [r + , i]'s, the set D 0 of T r can finally be deduced. Using this procedure, we are able to identify all k-bad signatures of T r , that is all signatures making the set D 0 of T r being {k} for every k ∈ {1, 2, 3, 4}, as shown in the following: Theorem 3.4. All k-bad signatures are those given in Table 1.

Proof. We consider each possible signature of T r with regards to p ≤ 3, the number of children of r + . For the sake of simplicity, we here only detail the proof for the easy cases, i.e. p = 0 and p = 1, so that the reader gets an idea of the technique we use. The remaining cases, i.e. p = 2 and p = 3, are given in Tables 2 and3, respectively. Signatures in bold are those which are k-bad for some k. All remaining cases that do not appear in these tables do not concern bad signatures and can be deduced from canonical cases thanks to the following two rules: If p = 0, then the edge rr + has to be coloured a and r + thus necessarily has a-degree 1. Therefore, the empty signature is a 1-bad signature. Now suppose that p = 1. If D 1 = {1} then, in every almost locally irregular 2-edge-colouring of T r [r + , 1], v 1 has a-degree 1 and we have to colour rr + with colour a. Thus D 0 = {2}, and D 1 = {1} is a 2-bad signature. Similarly, if D 1 = {2}, then every almost locally irregular 2-edgecolouring of T r [r + , 1] is a locally irregular 2-edge-colouring and we have to invert it before colouring rr + with colour a. Therefore, D 0 = {1}, and

Signature D 1 , D 2 , D 3 D 0 {1}, {1}, {1} {1, 2, 4} {1}, {1}, {2} {1, 3, 4} {1}, {1}, {3} {2, 3, 4} {1}, {1}, {4} {1, 2, 3} {1}, {2}, {2} {1, 3, 4} {1}, {2}, {3} {3, 4} {1}, {2}, {4} {1, 3} {1}, {3}, {3} {2, 4} {1}, {3}, {4} {2, 3} {1}, {4}, {4} {1, 2, 3} Signature D 1 , D 2 , D 3 D 0 {2}, {2}, {2} {1, 3, 4} {2}, {2}, {3} {3, 4} {2}, {2}, {4} {1, 3} {2}, {3}, {3} {4} {2}, {3}, {4} {3} {2}, {4}, {4} {1, 3} {3}, {3}, {3} {2, 4} {3}, {3}, {4} {2} {3}, {4}, {4} {2, 3} {4}, {4}, {4} {1, 2, 3}
• if D 1 , . . . ,
D 1 = {2} is a 1-bad signature.
If there exists an almost locally irregular 2-edge-colouring φ 1 a,b of T r [r + , 1] such that v 1 has a-degree 3 or 4, then we may either colour rr + with colour a directly, so that r + has a-degree 2, or invert φ 1 a,b before, so that r + has a-degree 1. Therefore, D 0 = {1, 2} if 3 or 4 belongs to D 1 . Thus, D 1 is not a bad signature whenever it contains 3 or 4.

Finally, D 1 = {1, 2} is not a bad signature since we get D 0 = {1, 2} by the union rule. Every other possibility for D 1 leads to a set D 0 which is not a singleton by the inclusion and union rules. Therefore, D 1 = {1} and D 1 = {2} are the only bad signatures when p = 1.

Arbitrarily many k-bad shrubs can be constructed, thanks to Theorem 3.4, by connecting together "bad pieces" as follows. First choose a k-bad signature, that is some values p and D 1 = {d 1 }, . . . , D p = {d p }, corresponding to one row of Table 1. Let then T r be a rooted tree made of one single edge rr + , and T 1 , . . . , T p be d 1 -, . . . , d p -bad shrubs, respectively. Finally, identify the roots of T 1 , . . . , T p with r + . The resulting shrub T r is clearly k-bad.

Suppose that the vertex r has p ≥ 1 neighbours in a colourable tree T . As explained above, if the shrubs T r [r, 1], . . . , T r [r, p] are k 1 -, . . . , k p -bad, respectively, and the sequence (k 1 , . . . , k p ) is one of the bad a-degree sequences (1), (2, 1), (3, 2, 2) or (4, 3, 3, 2), then we cannot produce a locally irregular 2-edge-colouring of T r by means of the colouring procedure introduced in Section 3.2. In this situation, we say that the vertex r is bad.

We end up this section by showing that if r is bad then every node r = r of T is also bad. This implies that χ irr (T ) = 3 if and only if any node of T is bad. By comparing the bad a-degree sequences and the bad signatures from Table 1, we get the following: Then we have: Theorem 3.6. If r is a bad node of T , then every other node r = r of T is also bad.

Proof. Note that it suffices to prove the claim when r and r are neighbours in T . Suppose that deg(r) = p ≥ 1, deg(r ) = p ≥ 0, r is the first child of r in T r , and r is the first child of r in T r (that is r = r + in T r [r, 1] and r = (r )

+ in T r [r , 1]).
Because r is bad, the shrubs T r [r, 1], . . . , T r [r, p] are k 1 -, . . . , k p -bad, respectively, and (k 1 , . . . , k p ) is a bad a-degree sequence. According to Theorem 3.4, if T r [r, 1] is k 1 -bad, then T r [r , 1], . . . , T r [r , p -1] are 1 -, . . . , p -1 -bad, respectively, and { 1 }, . . . , { p -1 } is a k 1 -bad signature. Besides, according to Observation 3.5, the sequence (k 1 , 1 , . . . , p -1 ) is bad. Now, because r is bad, {k 2 }, . . . , {k p } is a k 1 -bad signature, again by Observation 3.5, and T r [r , 1] is thus a k 1 -bad shrub. Thus, T r [r , 1],

T r [r , 2], . . . , T r [r , p ] are k 1 -, 1 -, . . . , p -1 -bad shrubs, respectively, and (k 1 , 1 , . . . , p -1 ) is a bad sequence. Therefore, r is bad.

Corollary 3.7. If T is a colourable tree, then χ irr (T ) = 3 if and only if any node of T is bad.

All trees with irregular chromatic index 3 can be constructed as follows. First choose one of the bad sequences (d 1 , . . . , d p ), and construct p shrubs T 1 , . . . , T p which are d 1 -, . . . , d p -bad, respectively. Recall that there are infinitely many such shrubs as observed above. Finally, identify the roots of T 1 , . . . , T p . By construction, the node used for the identification is bad, and the obtained tree thus has irregular chromatic index 3 according to Corollary 3.7.

A linear-time algorithm for computing the irregular chromatic index of trees

We now propose an algorithm that determines, thanks to our previous results, the irregular chromatic index of an input tree T . Recall that the bad a-degree sequences are (1), (

Theorem 3.8. Algorithm 2 determines the irregular chromatic index of any tree T of order n in time O(n).

Proof. The correctness of Algorithm 2 follows from the previous results and observations. In particular, the correctness of Lines 5-6 follows from Theorem 3. 

Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by exhibiting a polynomial-time reduction from 1-in-3 Satisfiability to Locally-Irregular 2-Edge-Colouring. For this purpose, we will need the upcoming graph constructions and additional definitions.

An input (resp. output) of some graph G is a pair of edges (i, i ) (resp. (o, o )) such that i = uv and i = vw (resp. o = wv and o = vu) and u and v have degree 1 and 2 in G, respectively. Consider now two graphs G We are now ready to prove the NP-completeness of Locally-Irregular 2-Edge-Colouring. Given a graph G and a 2-edge-colouring φ of G, one can check in polynomial time whether the two subgraphs of G induced by φ are locally irregular or not. Therefore, Locally-Irregular 2-Edge-Colouring is in NP. We now show the NP-completeness of Locally-Irregular 2-Edge-Colouring by reduction from the following NP-complete problem (refer e.g. to [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] for more details on computational complexity theory).

1-in-3 Satisfiability

Instance: A 3CNF formula F with clauses C 1 , C 2 , . . . , C m and variables x 1 , x 2 , . . . , x n . Question: Is there a 1-in-3 truth assignment of the variables of F , that is a truth assignment such that each clause of F has exactly one true literal?

Let us make some observations on the structure of F . First, we can assume that every possible literal appears in F . Indeed, if i does not appear in any clause of F , then the 3CNF formula

F = F ∧ ( i ∨ i ∨ x n+1 ) ∧ (x n+1 ∨ x n+1 ∨ x n+1 ),
where x n+1 is a new variable, clearly admits a 1-in-3 truth assignment of its variables if and only if F admits one too. Since there are 2n literals related to the variables of F , a formula equivalent to F that contains every possible literal over its variables can be obtained from F in polynomial time.

Next, note that no clause of the form (x i ∨ x i ∨ x i ) can be satisfied by exactly one of its literals by any truth assignment of the variables of F . Therefore, we may assume that F does not contain any such clause. Finally, observe that if F contains a clause of the form (x i ∨ x i ∨ x j ) then, in every 1-in-3 truth assignment of the variables of F , x i and x j have to be set to false and true, respectively. In that case, we say that x i and x j are forced to false and true, respectively.

For each formula F , we will build a graph G F such that F is satisfiable in a 1-in-3 way if and only if χ irr (G F ) = 2. It is convenient to view the graph G F as an electrical circuit through which two opposite signals, namely true and false, are propagated through several components whose inputs and outputs are connected in a specific way. The graph G F is constructed in such a way that the propagation of these signals has the same properties as the "propagation" of a locally irregular 2-edge-colouring in a graph.

The graph G F is built from the following components. First, the generator gadget G F (S) of G F spreads the true signal through m clause gadgets G F (C 1 ), G F (C 2 ), ..., G F (C m ), where each clause C i in F is associated with the clause gadget G F (C i ) in G F . The clause gadgets then modulate their input true signal, that is they can switch their input signal or not, and propagate it to the literal gadgets G F ( 1 ), G F ( 2 ), ..., G F ( 2n ) of G F . Similarly as for the clauses of F and the clause gadgets of G F , there is a direct analogy between the literal i and the literal gadget G F ( i ).

The clause and literal gadgets are linked in the following way:

• if C i = ( i 1 ∨ i 2 ∨ i 3 ) is a clause of F , then G F (C i ) is connected to G F ( i 1 ) along an output of G F (C i ). If i 2 = i 1 , then G F (C i ) is connected to G F ( i 2 ) along a second output of G F (C i ). Finally, if i 3 = i 1 and i 3 = i 2 , then G F (C i ) is also connected to G F ( i 3 ) along a third output.
• Exactly one arbitrary output of each clause gadget spreads the true signal, while its other outputs (there are at most two of them) propagate the false signal.

For every i ∈ {1, 2, . . . , 2n}, the literal gadget G F ( i ) of G F has exactly one output and, according to the connection with the clause gadgets, exactly n i inputs, where n i is the number of distinct clauses in F that contain the literal i . The main property of a literal gadget G F ( i ) is that it outputs a signal if and only if the same signal comes in from its n i inputs. Finally, the outputs of the two literal gadgets G F (x i ) and G F (x i ) are linked in such a way that the propagation of the signal is correct if and only if the two output signals are different.

Hence, we have the following analogy between satisfying F in a 1-in-3 way and spreading the true signal through G F :

• each clause C i in F must have exactly one true literal and exactly one output of G F (C i ) must spread the true signal out,

• every literal i must have the same truth value in all clauses it appears in and all the inputs of G F ( i ) must spread the same signal in,

• a variable x i and its negation x i must have distinct truth values and the outputs of G F (x i ) and G F (x i ) must spread different signals out.

We now go into the details of the proof by introducing the generator, clause and literal gadgets of G F . The graph G F is constructed step by step as it is augmented by connecting these gadgets. All along this proof, the function φ : propagated along the edges of G F . When augmenting G F with a new gadget, it should be understood that φ is extended to this new gadget according to the lemmas we point out. The true (resp. false) signal is depicted as thick (resp. thin) edges in our schemas and corresponds to colour 1 (resp. 0) of φ.

E(G F ) → {0, 1} is a locally irregular 2-edge-colouring of G F ,
The generator gadget G F (S) of G F is obtained by connecting several copies of the graph G * , depicted in Figure 4, with input (u 1 u 2 , u 2 u 3 ) and outputs (u 10 u 11 , u 11 u 12 ) and (u 19 u 20 , u 20 u 21 ). The gadget G * has the following property: Lemma 4.1. In every locally irregular 2-edge-colouring of G * , the input and output edges of G * have the same colour.

Proof. We initiate the locally irregular 2-edge-colouring φ of G * with the input of G * . Let us suppose, without loss of generality, that φ(u 1 u 2 ) = 1. Then we have φ(u 2 u 3 ) = 1, since otherwise we would have deg φ,1 (u 1 ) = deg φ,1 (u 2 ) = 1, and φ(u 3 u 4 ) = φ(u 3 u 13 ), since otherwise we would have

deg φ,1 (u 2 ) = deg φ,1 (u 3 ) = 2.
Let us first suppose that φ(u 3 u 4 ) = φ(u 3 u 13 ) = 1. We cannot have φ(u 4 u 5 ) = φ(u 4 u 6 ) since, when colouring u 5 u 6 , we would have either deg φ,1 (u 5 ) = deg φ,1 (u 6 ) or deg φ,0 (u 5 ) = deg φ,0 (u 6 ). Assume thus that φ(u 4 u 5 ) = 1 and φ(u 4 u 6 ) = 0. If φ(u 5 u 6 ) = 1, then we must set φ(u 4 u 7 ) = 0 to get deg φ,0 (u 6 ) = deg φ,0 (u 4 ). But then deg φ,1 (u 4 ) = deg φ,1 (u 5 ) = 2. Similarly, if φ(u 5 u 6 ) = 0, then we must have φ(u 4 u 7 ) = 1 since otherwise we would have deg φ,0 (u 6 ) = deg φ,0 (u 4 ) = 2. But now we have deg φ,1

(u 3 ) = deg φ,1 (u 4 ) = 3. Hence, we cannot extend φ to G * if φ(u 3 u 4 ) = φ(u 3 u 13 ) = 1.
Thus, we must have φ(u 3 u 4 ) = φ(u 3 u 13 ) = 0. For the same reasons as before, we can assume φ(u 4 u 5 ) = 1 and φ(u 4 u 6 ) = 0 without loss of generality. Now, if φ(u 5 u 6 ) = 0, then we must have φ(u 4 u 7 ) = 0, so that deg φ,0 (u 4 ) = deg φ,0 (u 6 ). But then we get deg φ,1 (u 4 ) = deg φ,1 (u 5 ) = 1. Therefore, we must set φ(u 5 u 6 ) = 1. To ensure that u 4 and u 3 have distinct degrees in the 0-subgraph, we need to have φ(u 4 u 7 ) = 0. Similarly as before, we must have φ(u 9 u 8 ) = φ(u 8 u 7 ). If φ(u 9 u 8 ) = φ(u 8 u 7 ) = 0, then we must have φ(u 7 u 10 ) = 0 so that deg φ,0 (u 7 ) = deg φ,0 (u 8 ). But then we get deg φ,0 (u 4 ) = deg φ,0 (u 7 ) = 3. Therefore, φ(u 9 u 8 ) = φ(u 8 u 7 ) = 1 and φ(u 7 u 10 ) = 0, since otherwise we would have deg φ,1

(u 8 ) = deg φ,1 (u 7 ) = 2. Because deg φ,0 (u 7 ) = 2, we must have φ(u 10 u 11 ) = 1. Besides, to get deg φ,1 (u 10 ) = deg φ,1 (u 11 ), we have to set φ(u 11 u 12 ) = 1.
The locally irregular 2-edge-colouring φ is propagated to the remaining edges of G * in a symmetric way. We finally get that the input and outputs of G * have the same colour via φ, as claimed.

According to Lemma 4.1, the gadget G * propagates its input colour, say the thick one, into two directions. Moreover, by connecting two copies G 1 and G 2 of G * along one output of G 1 and the input of G 2 , we can propagate the thick colour into three directions. By successively repeating this construction, one can spread the thick colour towards an arbitrary number of directions. Now consider the path P 5 = u 1 u 2 u 3 u 4 u 5 on 5 vertices with input (u 1 u 2 , u 2 u 3 ) and output (u 3 u 4 , u 4 u 5 ), and denote by G the graph obtained by connecting G * and P 5 along (u 10 u 11 , u 11 u 12 ) and (u 1 u 2 , u 2 u 3 ). Clearly, in every extension of a locally irregular 2-edge-colouring of G * to G , the two new output edges u 3 u 4 and u 4 u 5 of G are coloured with the thin colour. Hence, we may also spread the thin colour as well.

The generator gadget G F (S) of G F is obtained by combining the previous remarks, that is by connecting several copies of G * and P 5 .

From now on, we suppose that φ is the locally irregular 2-edge-colouring of G F mentioned before. This colouring is initiated with G F (S) in such a way that its input is 1-coloured. According to our terminology, G F (S) has a finite number of outputs which are either positive or negative, depending on whether they are 1-or 0-coloured via φ, respectively. The number of these outputs will be clarified later.

In what follows, a (k 1 , k 2 )-vertex a of G F for some k 1 , k 2 ≥ 1 is a vertex of degree k 1 + k 2 resulting from the identification of k 1 distinct positive outputs of G F (S) and k 2 distinct negative outputs of G F (S). Note that this resulting vertex a has degree k 1 (resp. k 2 ) in the 1-(resp. 0-) subgraph of G F (S). According to our terminology, we have deg φ,1 (a) = k 1 and deg φ,0 (a) = k 2 . Besides, it should be understood that a subgraph of G F containing a (k 1 , k 2 )-vertex is implicitly connected to G F (S). We now introduce the clause gadgets G F (C 1 ), G F (C 2 ), . . . , G F (C m ) that are connected to some outputs of G F (S). Depending on the number c i ∈ {2, 3} of distinct literals in C i (recall that c i = 1), the clause gadget G F (C i ) can be of two different forms.

v 1 v 2 v 3 v 4 v 5 v 6 v 9 v 8 v 7 (a) Case where ci = 2. a i,1 a i,2 a i,3 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 13 v 14 v 15 v 16 v 17 v 1 v 11 v 12 v 18 v 19 v 20 v 10 v 22 v 23 v 24
• If c i = 2, then G F (C i ) is the graph depicted in Figure 5.a, obtained by connecting a copy of G * and P 5 in such a way that G F (C i ) has one positive output and one negative output. The graph Proof. Since a i,1 is adjacent to a vertex of G F (S) with degree 2 in the 0-subgraph, we must set φ(a i,1 v 1 ) = 1. Similarly, we have to set φ(a i,2 v 1 ) = 0 and φ(a i,3 v 1 ) = 1. We thus get deg φ,1 (a i,1 ) = deg φ,0 (a i,2 ) = 4 and deg φ,1 (a i,3 ) = 5. If the number of 1-coloured edges in {v 1 v 4 , v 1 v 12 , v 1 v 18 } were exactly 0, 2 or 3, then we would have deg φ,0 (v 1 ) = deg φ,0 (a i,2 ), deg φ,1 (v 1 ) = deg φ,1 (a i,1 ) or deg φ,1 (v 1 ) = deg φ,1 (a i,3 ), respectively. Therefore, exactly one such edge is 1-coloured.

G F (C i ) is con- nected to G F (S) along one positive output of G F (S) and (v 1 v 2 , v 2 v 3 ), where (v 1 v 2 , v 2 v 3 ) is the input of G F (C i ). • If c i = 3, then G F (C i ) is
Let us suppose φ(v 1 v 4 ) = 1 without loss of generality. Observe that deg φ,1 (v 1 ) = deg φ,0 (v 1 ) = 3. Again, the edges v 2 v 3 and v 3 v 4 have to be coloured with the same colour, but this colour cannot be 1. Indeed, if φ(v 2 v 3 ) = φ(v 3 v 4 ) = 1, then we would have deg φ,1 (v 3 ) = deg φ,1 (v 4 ) = 2. Thus, we have to set φ(v 4 v 5 ) = 1 but then we get deg φ,1 (v 4 ) = deg φ,1 (v 1 ) = 3. Hence, we necessarily have φ(v 2 v 3 ) = φ(v 3 v 4 ) = 0, and φ(v 4 v 5 ) = 1 since otherwise we would get deg φ,0

(v 3 ) = deg φ,0 (v 4 ) = 2. Now, because deg φ,1 (v 4 ) = 2, we need φ(v 5 v 6 ) = φ(v 6 v 7 ) = 0. Analogously, we have φ(v 7 v 8 ) = φ(v 8 v 9 ) = 1.
Repeating the same arguments towards v 17 and v 25 and considering that φ(v

1 v 12 ) = φ(v 1 v 18 ) = 0, we get φ(v 15 v 16 ) = φ(v 16 v 17 ) = 0 and φ(v 23 v 24 ) = φ(v 24 v 25 ) = 0. Finally, observe that this colouring of G F (C i ) via φ is not unique (it depends on which edge from {v 1 v 4 , v 1 v 12 , v 1 v 18 } is 1-coloured). But in every extension of φ to G F (C i ), exactly one output of G F (C i ) is 1-coloured.
We finally clarify the literal gadgets. Recall that for i ∈ {1, 2, . . . , 2n}, n i denotes the number of distinct clauses of F that contains i . Besides, we have n i ≥ 1 for every such integer by assumption.

The outputs of the clause gadgets G F (C 1 ), G F (C 2 ), . . . , G F (C m ) are now connected with the literal gadgets G F ( 1 ), G F ( 2 ), . . . , G F ( 2n ) of G F as follows. The literal gadget G F ( i ) has one output and exactly n i inputs connected to n i clause gadgets of G F , according to which clauses of F contain i . More precisely, if i is contained at least once in C j , then we connect G F (C j ) and G F ( i ) along exactly one output of G F (C j ) and one input of G F ( i ). The output of G F (C j ) used for the connection is chosen arbitrarily, except in the case where c j = 2. Recall that, in this case, C j has two distinct literals x i and x i that are forced to false and true, respectively. To model this constraint, we force one input of G F (x i ) to be 0-coloured while one input of G F (x i ) is 1-coloured. This is done by using a negative and a positive output of G F (C j ), respectively, for the connection of G F (C j ) and G F (x i ), and G F (C j ) and G F (x i ).

The structure of the literal gadget G F ( i ) depends on the value of n i : • if n i = 2, then G F ( i ) is a copy of the graph depicted in Figure 6.a, with inputs (w 1 w 2 , w 2 w 5 ) and (w 3 w 4 , w 4 w 5 ), and output (w 11 w 12 , w 12 w 13 ),

• if n i = 1, then G F ( i )
w 10 i 1 i ′ 1 i n i i ′ n i b i,1 b i,k i c i,1 w 3 w 4 c i,k i w 2 (b) Case where ni ≥ 3.
• if n i ≥ 3, then G F ( i ) is a copy of the graph depicted in Figure 6.b, with inputs (i 1 i 1 , i 1 w 1 ), . . . , (i n i i n i , i n i w 1 ) and output (w 8 w 9 , w 9 w 10 ). In this gadget, the vertices b

i,1 , b i,2 , . . . , b i,k i (resp. c i,1 , c i,2 , . . . , c i,k i ),
where k i = n i 2 +1, are (n i , 1)-, (n i +1, 1)-, . . . , (n i + n i 2 , 1)-vertices (resp. (1, n i )-, (1, n i + 1)-, . . . , (1, n i + n i 2 )-vertices), respectively. Besides, the vertex w 2 results from the identification of a positive output and a negative output of G F (S).

When n i = 2 or n i ≥ 3, the important property of G F ( i ) is that φ can be propagated to G F ( i ) if and only if all of its inputs have the same colour. This is proved via the following two lemmas. Lemma 4.3. Suppose n i = 2. The colouring φ is extendible to G F ( i ) if and only if all the inputs of G F ( i ) have the same colour. Moreover, in any extension of φ to G F ( i ), the output of G F ( i ) is coloured with the input colour of G F ( i ).

Proof. Suppose φ(w 1 w 2 ) = φ(w 2 w 5 ) = 1 and φ(w 3 w 4 ) = φ(w 4 w 5 ) = 0, without loss of generality. If φ(w 5 w 8 ) = 1, then deg φ,1 (w 2 ) = deg φ,1 (w 5 ) = 2. Similarly, if φ(w 5 w 8 ) = 0, then deg φ,0 (w 4 ) = deg φ,0 (w 5 ) = 2. Thus φ is only extendible to G F ( i ) when φ(w 1 w 2 ) = φ(w 2 w 5 ) = φ(w 3 w 4 ) = φ(w 4 w 5 ).

Let us thus suppose φ(w 1 w 2 ) = φ(w 2 w 5 ) = φ(w 3 w 4 ) = φ(w 4 w 5 ) = 1, without loss of generality. Then, we have to set φ(w 5 w 8 ) = 1 since otherwise we would have deg φ,1 (w 2 ) = deg φ,1 (w 5 ) = deg φ,1 (w 4 ) = 2. For the same reasons as before, we necessarily have φ(w 6 w 7 ) = φ(w 7 w 8 ). If this colour is 1, then we need to set φ(w 8 w 9 ) = 1 to distinguish w 7 and w 8 in the 1-subgraph, but then deg φ,1 (w 5 ) = deg φ,1 (w 8 ) = 3. So, φ(w 6 w 7 ) = φ(w 7 w 8 ) = 0 and we need to set φ(w 8 w 9 ) = 1 since otherwise the 0-subgraph would have two adjacent vertices with degree 2. Since deg φ,1 (w 8 ) = 2, the colouring φ is propagated alternatively along the path w 9 w 10 w 11 w 12 w 13 in such a way that φ(w 9 w 10 ) = φ(w 10 w 11 ) = 0 and φ(w 11 w 12 ) = φ(w 12 w 13 ) = 1.

We show that the same property holds for every n i ≥ 3. Lemma 4.4. Suppose n i ≥ 3. The colouring φ is extendible to G F ( i ) if and only if all the inputs of G F ( i ) have the same colour. Moreover, in any extension of φ to G F ( i ), the output of G F ( i ) is coloured with the input colour of G F ( i ).

Proof. For the same reasons as before, the edges b i,1 w 1 , b i,2 w 1 , . . . , b i,k i w 1 (resp. c i,1 w 1 , c i,2 w 1 , . . . , c i,k i w 1 ) have to be 1-coloured (resp. 0-coloured) in any extension of φ to G F ( i ). Therefore, the vertex w 1 is adjacent to vertices with degree n i + 1, n i + 2, . . . , n i + n i 2 + 1 in both the 1-and the 0-subgraphs. Suppose now that y inputs of G F ( i ) are 1-coloured via φ, where n i 2 ≤ y ≤ n i -1. Then w 1 has degree y + k i (if φ(w 1 w 2 ) = 0) or y + k i + 1 (otherwise) in the 1-subgraph, but these two values belong to the set {n i + 1, n i + 2, . . . , n i + n i 2 + 1}. Therefore, all the inputs of G F ( i ) must have the same colour via φ. Assume that this colour is 1, without loss of generality. Then, we necessarily have φ(w 1 w 2 ) = 1 since otherwise we would have deg φ,1

(w 1 ) = deg φ,1 (b i,k i ) = n i + n i 2 + 1.
Observe that so far, the 0-subgraph is locally irregular since k i < n i + 1 for every n i ≥ 3.

Since w 2 has degree 2 in the 1-subgraph and is already adjacent to a vertex with degree 2 in the 1-subgraph, we need to set φ(w 2 w 5 ) = 1. If we set φ(w 3 w 4 ) = φ(w 4 w 5 ) = 1, then we need to have φ(w 5 w 6 ) = 1 so that w 4 and w 5 do not have the same degree in the 1-subgraph. But then we have deg φ,1 (w 5 ) = deg φ,1 (w 2 ) = 3. Thus, φ(w 3 w 4 ) = φ(w 4 w 5 ) = 0 and φ(w 5 w 6 ) = 1 since otherwise w 4 and w 5 would have degree 2 in the 0-subgraph. Now, w 5 has degree 2 in the 1-subgraph and, thus, the colouring must alternate along w 6 w 7 w 8 w 9 w 10 . For similar reasons as before, this is done in such a way that φ(w 8 w 9 ) = φ(w 9 w 10 ) = 1 .

Finally, for each variable x i in F , we identify the outputs of the literal gadgets G F (x i ) and G F (x i ). Observe that φ is a locally irregular 2-edgecolouring of G F if and only if the output of G F (x i ) is coloured with a colour different from the one used to colour the output of G F (x i ). Indeed, if this is not the case, then vertices with degree 2 would be adjacent in either the 1-or the 0-subgraph.

To show that this reduction may be achieved in polynomial time, we now determine the number of vertices of G F . The number of outputs of G F (S) may be computed as follows.

• In the worst case, a clause C i has three distinct literals and, in this special case, the clause gadget G F (C i ) contains a (3, 1)-, a (1, 3)and a (4, 1)-vertex. Thus, we need O(m) distinct outputs of G F (S) to construct the clause gadgets of G F .

• We have n i ≤ m for every i ∈ {1, 2, . . . , 2n}. Thus, in the worst case, the literal gadget G F ( i ) needs 2k i special vertices constructed thanks to O(m 2 ) dedicated outputs of G F (S). Since there are 2n literals in F , we get that O(nm 2 ) outputs of G F (S) may be necessary to construct the literal gadgets of G F .

Thus, O(nm 2 ) outputs of G F (S) are necessary to ensure that φ is propagated correctly along G F . These are obtained by connecting O(nm 2 ) copies of G * , while G * has a constant number of vertices. Roughly, omitting that some outputs of G F (S) are negative, we get that the order of G F (S) is O(nm 2 ).

Finally, the number of vertices of a clause or literal gadget of G F that do not belong to the generator gadget is clearly upper bounded by O(m + n). Therefore, the number of new vertices needed to construct the clause and literal gadgets of G F , that is vertices that do not belong to G F (S), is irrelevant compared to O(nm 2 ).

According to the previous arguments, this reduction is achieved in polynomial time regarding the size of F .

Discussion

In this paper, we investigated the computational complexity of Locally-Irregular k-Edge-Colouring regarding both the specific case of trees and the general case.

Regarding trees, we proposed a linear-time algorithm for determining the irregular chromatic index of these graphs, see Theorem 3.8. As a side result, Theorem 3.3 gives a sufficient condition for a tree to have irregular chromatic index at most 2 which is easy to check. As mentioned in Section 3.3, trees with irregular chromatic index 3 have a predictable structure made up of "bad pieces", namely those given in Table 1. By carefully studying how these pieces must be connected, we can exhibit additional sufficient easy conditions for a tree to have irregular chromatic index 3. These conditions mainly concern the location of nodes with degree 3 or 4 and the way they are organized in such trees.

Observe, for example, that no bad signature includes {1} whenever p ≥ 2. This means that if a node with degree at least 3 of T is connected to a hanging path with odd length, then T has irregular chromatic index at most 2. Moreover, if the colouring procedure from Section 3.2 fails on T r for some bad vertex r with degree deg(r) = ∆(T ) = 4, then r necessarily has a neighbour with degree 4 since one of the T r [r, i]'s is a 4-bad shrub. Therefore, if T has a node r with degree 4 which has no neighbour with degree 4, then r is not bad and T has irregular chromatic index at most 2 by Corollary 3.7.

Regarding the general case, we proved that Locally-Irregular 2-Edge-Colouring is NP-complete in general, see Theorem 1.3. It is worth mentioning that this result implies that there should not exist any FPT algorithm for Locally-Irregular k-Edge-Colouring parameterised by k. Indeed, such an algorithm applied to the case k = 2 would yield a polynomial-time algorithm for deciding whether the irregular chromatic index of a graph is 2, contradicting Theorem 1.3 unless P = NP.

Note that the only unavoidable edge crossings in a reduced graph G F only concern edges between clause and literal gadgets. We can directly get rid of these crossings by assuming that F is a planar formula. Since 1-in-3 Satisfiability is known to remain NP-complete when restricted to planar formula, we get that Locally-Irregular 2-Edge-Colouring remains NP-complete when restricted to planar graphs.

In G F , the vertices with the largest degrees are those from the literal gadgets whose associated literals appear in at least 3 clauses. Note that we could replace such gadgets by several copies of the gadget depicted in Figure 6.a, so that literal gadgets all have maximum degree 3. Proceed as follows for a gadget G F ( i ). Recall that n i outputs (o 1 , o 1 ), (o 2 , o 2 ), . . . , (o n i , o n i ) of the clause gadgets must propagate the colouring to G F ( i ). First take one copy G 1 of the graph of Figure 6.a, and connected (o 1 , o 1 ) and (o 2 , o 2 ) with the inputs of G 1 , respectively. According to Lemma 4.3, the colouring is propagated to the output of G 1 , say o(G 1 ) and o (G 1 ), if and only if (o 1 , o 1 ) and (o 2 , o 2 ) have the same colour. Besides, if the colouring is propagated, then o(G 1 ) and o (G 1 ) have the same colour as the input edges. Now, take another copy G 2 of the graph of Figure 6.a, and connect its inputs with

  Three almost locally irregular 2edge-colourings φ 1 a,b , φ 2 a,b and φ 3 a,b of Tr[r, 1], Tr[r, 2] and Tr[r, 3], respectively. r (b) A locally irregular 2edge-colouring φ a,b of Tr.
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 1 Figure 1: Examples of almost locally irregular 2-edge-colourings of shrubs and of a locally irregular 2-edge-colouring of a rooted tree. Thick edges stand for a-coloured edges and thin edges for b-coloured edges.

Figure 1

 1 Figure 1 depicts how a locally irregular 2-edge-colouring φ a,b of a tree T r with deg(r) = 3 can be obtained by decomposing T r into three shrubs T r [r, 1], T r [r, 2] and T r [r, 3], computing three almost locally irregular 2-edgecolourings φ 1 a,b , φ 2 a,b and φ 3 a,b of these shrubs, and considering the union φ a,b = φ 1 a,b + φ 2 a,b + φ 3 a,b .
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 341111 i ∈ {1, . . . , p} do 5 compute an almost locally irregular 2-edge-colouring φ i a,b of T r [r + , i] inductively; 6 φ 0 a,b (rr + ) = a; 7 choose φ i c i ,c i = φ i a,b or φ i b,a for every i ∈ {1, . . . , p} in such a way that φ a,b = φ 0 a,b + φ • • • + φ p cp,c p is an almost locally irregular 2-edge-colouring of T r ; Algorithm for constructing an almost locally irregular 2-edge-colouring φ a,b of a shrub T r .
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 31 The almost locally irregular 2-edge-colouring φ a,b of T r claimed at Line 7 of Algorithm 1 necessarily exists.

Figure 2 : 2 + 1 and b-degree p+1 2 - 1 .

 2221 Figure 2: Application of Algorithm 1 on a shrub T r with deg(r + ) = 4. Thick edges stand for a-coloured edges and thin edges for b-coloured edges.

  D p is not a bad signature of T r , then D 1 , . . . , D p is not a bad signature when D i ⊆ D i for every i ∈ {1, . . . , p} (inclusion rule),• if D 1 , . . . , D i ,D i+1 , . . . , D p is a k-bad signature and D 1 , . . . , D i , D i+1 , . . . , D p is a k -bad signature with k = k for some D i = D i , then D 1 , . . . , D i ∪ D i , D i+1 , . . . , D p is not a bad signature (union rule).

Observation 3 . 5 .

 35 If {d 1 }, . . . , {d p } is a d 0 -bad signature, then (d 0 , d 1 , . . . , d p ) is a bad sequence. Conversely, if σ is any permutation of {d 0 , d 1 , . . . , d p } and (d 0 , d 1 , . . . , d p ) is a bad sequence, then {σ(d 1 )}, . . . , {σ(d p )} is a σ(d 0 )-bad signature.
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 24623 Figure 3: Two graphs G and H with output (o, o ) and input (i, i ), respectively, and the connection of G and H along (o, o ) and (i, i ).
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 64 Figure 4: The gadget G * and a locally irregular 2-edge-colouring of G * .

  Case where ci 3.
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 5 Figure 5: The clause gadget G F (C i ) and locally irregular 2-edge-colourings of G F (C i ).

  a copy of the graph depicted in Figure5.b, where a i,1 , a i,2 and a i,3 are (3, 1)-, (1, 3)-and (4, 1)-vertices, respectively, and (v 7 v 8 , v 8 v 9 ), (v 15 v 16 , v 16 v 17 ) and (v 23 v 24 , v 24 v 25 ) are its three outputs.When c i = 3, the clause gadget G F (C i ) has the following property.
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 42 Suppose c i = 3. In any extension of φ to G F (C i ), exactly one output of G F (C i ) is 1-coloured.
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 6 Figure 6: The literal gadget G F ( i ) in the cases where n i ≥ 2 and locally irregular 2-edge-colourings of G F ( i ).
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 2 All possible canonical signatures of T r and the resulting set D 0 when p = 2.

Table 3 :

 3 All possible canonical signatures of T r and the resulting set D 0 when p = 3.

  is a copy of P 7 = u 1 u 2 . . . u 6 u 7 and has input (u 1 u 2 , u 2 u 3 ) and output (u 5 u 6 , u 6 u 7 ),

		n i	
		w 1
	w 1	w 3	
	w 2	w 4	
		w 5	
	w 6 w 7	w 8	w 5
		w 9	w 6
		w 10	w 7
		w 11	w 8
		w 12	w 9
		w 13	
	(a) Case where ni = 2.	
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the output of G 1 and (o 3 , o 3 ), respectively. Once again, the colouring is propagated if and only if the two input colours are the same. And so on.

Using the gadget obtained in this way by using n i -1 copies of the gadget from Figure 6.a is thus equivalent to using the gadget from Figure 6.b. If any two of the outputs (o 1 , o 1 ), (o 2 , o 2 ), . . . , (o n i , o n i ) have distinct colours, then the colouring cannot be propagated. Therefore, the literal gadgets of G F can all have maximum degree 3. Under this assumption, the maximum degree of any reduced graph G F is at most 6, which is the maximum degree of a clause gadget whose associated clause of F have three distinct literals. We thus get that Locally-Irregular 2-Edge-Colouring remains NP-hard when restricted to graphs with maximum degree at most 6.

Observe that, in the proof of Theorem 1.3, the resulting graph G F is not bipartite mainly because of the induced triangles of the gadget G * . The existence of a bipartite gadget with the same properties as G * would be a first step towards a proof that the problem Locally-Irregular 2-Edge-Colouring remains NP-complete when restricted to bipartite graphs. But we did not manage to find such a gadget so far. So we ask the following.