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Abstract

An undirected simple graphG is locally irregular if adjacent vertices
ofG have different degrees. An edge-colouring φ ofG is locally irregular
if each colour class of φ induces a locally irregular subgraph of G. The
irregular chromatic index χ′

irr
(G) of G is the least number of colours

used by a locally irregular edge-colouring of G (if any). We show that
the problem of determining the irregular chromatic index of a graph
can be handled in linear time when restricted to trees, but remains
NP-complete in general.

1 Introduction

How to distinguish the vertices of some undirected simple graph G? One
natural way to proceed consists in considering the degrees of the vertices
of G, namely to consider that any two vertices are distinguished whenever
they have distinct degrees. But distinguishing via the degrees is not relevant
in general as it can be easily proved that every simple graph with order at
least 2 necessarily has two vertices with the same degree.

To overcome this issue, Chartrand et al. proposed the following ap-
proach [5]: transform the graph G into some totally irregular multigraph G′

by replacing each edge e of G by a set of ne parallel edges, with ne ≥ 1.
Since two vertices are adjacent in G′ if and only if they are adjacent in G, the
structures of G and G′ are similar. In that case, we are interested in finding
such a multigraph G′ which minimizes the quantity max{ne / e ∈ E(G)}.
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This problem can be expressed as an edge-weighting problem as follows.
Let w : E(G) → {1, . . . , k} be a k-edge-weighting of G. For each vertex
v ∈ V (G), define

cw(v) :=
∑

u∈N(v)

w(vu)

as the sum of the weights “incident” to v. If cw is injective, that is cw(u) 6=
cw(v) for every two vertices u and v of G, we say that w is vertex-sum-
distinguishing. Note that if w is vertex-sum-distinguishing, the multigraph
G′ obtained from G by replacing each edge e of G by w(e) parallel edges is
totally irregular. Regarding the problem introduced above, we are interested
in finding a vertex-sum-distinguishing edge-weighting of G that minimizes
the number k of weights. The smallest k for which a graphG admits a vertex-
sum-distinguishing k-edge-weighting is called the irregularity strength of G
in the literature.

The notion of vertex-sum-distinguishing edge-weighting of graphs gave
birth to dozens of variants (see e.g. [1, 9, 11], or [7] for a complete survey ded-
icated to this topic). One such variant, considered by Karoński,  Luczak and
Thomason in [9], is defined as follows. A k-edge-weighting w is neighbour-
sum-distinguishing if cw(u) 6= cw(v) for every two adjacent vertices of G.
The multigraph G′ obtained from G by replacing each edge e of G by w(e)
parallel edges is now locally irregular, in the sense that only adjacent ver-
tices are distinguished by their degrees. The notion of local irregularity is
sometimes referred to as high irregularity in the literature, see e.g. [3].

In [10], Nierhoff proved that graphs with large order have irregular-
ity strength at most n − 1, this upper bound being tight. In contrast,
Karoński,  Luczak and Thomason conjectured in [9] that for every graph
with no isolated edge one can produce a neighbour-sum-distinguishing 3-
edge-weighting:

1-2-3 Conjecture. Every graph with no isolated edge admits a neighbour-
sum-distinguishing 3-edge-weighting.

We refer the interested reader to [12] for an up-to-date survey dedicated
to the 1-2-3 Conjecture. It is still not known whether the 1-2-3 Conjecture
is true for regular graphs in general. One way for dealing with this question
is to consider the following edge-colouring notion. An (improper) edge-
colouring φ of G is locally irregular if every colour class of φ induces a
locally irregular subgraph of G. As pointed out in [4], a locally irregular 2-
edge-colouring of a regular graph G is also a neighbour-sum-distinguishing
2-edge-weighting of G. Hence, studying locally irregular 2-edge-colourings of
graphs can be a way to tackle the 1-2-3 Conjecture in the context of regular
graphs.

For a given graph G, we are interested in finding the least number of
colours needed by a locally irregular edge-colouring of G (if any), called the
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irregular chromatic index of G and denoted by χ′
irr(G). If G does not admit

any locally irregular edge-colouring, we say that G is non-colourable and
let χ′

irr(G) = ∞. It was shown in [4] that a graph G is non-colourable if
and only if G is either an odd-length path, an odd-length cycle, or a “tree-
like” graph obtained by connecting an arbitrary number of triangles in a
specific way. Due to their simple structure, such graphs can be recognized
in polynomial time.

All known colourable graphs have irregular chromatic index at most 3,
and graphs with irregular chromatic index exactly k are known for every
k ∈ {1, 2, 3}. For instance, we have χ′

irr(P3) = 1, χ′
irr(P2q+1) = 2 for every

q ≥ 2, and χ′
irr(C2q′) = 3 for every odd q′ ≥ 3, where, for every n ≥ 1,

Pn and Cn denote the path and the cycle on n vertices, respectively. The
following conjecture was proposed in [4]:

Local-Irregularity Conjecture. Every colourable graph has irregular chro-
matic index at most 3.

The Local-Irregularity Conjecture was verified for several classes of graphs
in [4]. In particular, we have the following result (recall that a tree is non-
colourable if and only if it is an odd-length path):

Theorem 1.1 (Baudon et al. [4]). If T is a colourable tree, then χ′
irr(T ) ≤ 3.

If the Local-Irregularity Conjecture turned out to be true, then all co-
lourable graphs would have irregular chromatic index 1, 2 or 3. Therefore,
a natural question is to find out whether it is easy to determine the irreg-
ular chromatic index of a given graph. This leads to the following decision
problem:

Locally-Irregular k-Edge-Colouring

Instance: A graph G.
Question: Do we have χ′

irr(G) ≤ k?

Clearly, χ′
irr(G) = 1 if and only if G is itself locally irregular. Since

checking whether a graph is locally irregular can be done in polynomial time,
Locally-Irregular 1-Edge-Colouring is in P. If the Local-Irregularity
Conjecture were true, then any colourable graph would have irregular chro-
matic index less than k for every k ≥ 3 and, for such a value of k, the
problem Locally-Irregular k-Edge-Colouring would thus be equiva-
lent to the problem of determining whether G is colourable (which is easy,
as noticed above). Hence, if the Local-Irregularity Conjecture were true,
then we would get that Locally-Irregular k-Edge-Colouring is in P

for every k ≥ 3.

In this paper, we investigate the status of the remaining problem Lo-

cally-Irregular 2-Edge-Colouring. We will prove in Section 3 that
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Locally-Irregular 2-Edge-Colouring is easy when restricted to trees,
and in Section 4 that Locally-Irregular 2-Edge-Colouring is NP-
complete in general. More precisely, we prove the following:

Theorem 1.2. There is a linear-time algorithm for solving Locally-Irre-

gular 2-Edge-Colouring when restricted to trees.

Theorem 1.3. Locally-Irregular 2-Edge-Colouring is NP-complete
in general, even when restricted to planar graphs with maximum degree at
most 6.

Theorem 1.3 notably meets a result proved independently in [2] and [6]
stating that it is NP-complete to decide whether a graph admits a neighbour-
sum-distinguishing 2-edge-weighting. Before proving Theorems 1.2 and 1.3,
we introduce, in Section 2, the definitions, notation and terminology we will
use throughout. We end up this paper in Section 5 by raising additional
remarks and open questions related to our results.

2 Definitions, notation, and terminology

For every graph G, we denote by V (G), E(G) and ∆(G) its vertex set, edge
set and maximum degree, respectively. If E0 ⊆ E(G), we denote by G[E0]
the subgraph of G induced by E0, that is the graph with vertex set V (G)
and edge set E0. If u ∈ V (G), we denote by degG(u) the degree of the vertex
u in G, or simply by deg(u) whenever the graph G is clear from the context.
Let φ be a k-edge-colouring of G and a ∈ {1, . . . , k}. An edge e of G with
φ(e) = a is said to be a−coloured. The a−subgraph of G is the subgraph
induced by the a−coloured edges of G. If v is some vertex of G, the a−degree
of v, denoted by degφ,a(v), is the degree of v in the a−subgraph of G.

Let T be a tree. By choosing a particular node r of T as the root of
T , one naturally define an orientation of T from its root to its leaves. The
resulting rooted tree is denoted Tr. As usual, according to the orientation of
Tr, we can speak of the father or the children of a node u. The father of a
node u 6= r will be denoted by u−. If a non-leaf node u has only one child,
this child will be denoted by u+. A rooted tree Tr is called a shrub if its
root has only one child.

Let u be a node in Tr with p ≥ 1 children denoted v1, . . . , vp. For every
i ∈ {1, . . . , p}, we denote by Tr[u, i] the subtree of Tr induced by u and the
nodes in the subtree of Tr rooted at vi. Every such Tr[u, i] is a shrub, with
vi = u+ and u = v−i . Clearly, Tr is isomorphic to the tree obtained by
identifying the roots of the shrubs Tr[r, 1], . . . , Tr[r, deg(r)].

Let Tr be a shrub and φ : E(Tr) → {a, b} a 2-edge-colouring of Tr. To
make the colour of the edge rr+ by φ explicit, we will denote φ by φa,b if
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(a) Three almost locally irregular 2-
edge-colourings φ1

a,b, φ
2
a,b and φ3

a,b of
Tr[r, 1], Tr[r, 2] and Tr[r, 3], respec-

tively.

r

(b) A locally irregular 2-
edge-colouring φa,b of Tr.

Figure 1: Examples of almost locally irregular 2-edge-colourings of shrubs
and of a locally irregular 2-edge-colouring of a rooted tree. Thick edges
stand for a−coloured edges and thin edges for b−coloured edges.

φ(rr+) = a, or by φb,a if φ(rr+) = b. If φa,b is a 2-edge-colouring of Tr
that uses colours a and b, and {c, d} is a pair of distinct colours, then we
can obtain a 2-edge-colouring φc,d of Tr using colours c and d by swapping
{a, b} and {c, d}: φc,d(uv) = c if φa,b(uv) = a, or φc,d(uv) = d otherwise. A
swapping of φa,b to φb,a is called an inversion. Clearly, a node with a−degree
p in Tr by φa,b has b−degree p by φb,a. We further say that φa,b is an almost
locally irregular 2-edge-colouring of Tr if either φa,b is a locally irregular 2-
edge-colouring of Tr, or rr+ is isolated in the a−subgraph of Tr and φa,b is
a locally irregular 2-edge-colouring of Tr[r, 1].

Let T be a tree whose edge set E(T ) is partitioned into p ≥ 2 dis-
joint subsets E1 ∪ · · · ∪ Ep, and let φ1a,b, . . . , φ

p
a,b be 2-edge-colourings of

T [E1], . . . , T [Ep], respectively. The union φa,b = φ1a,b + · · ·+φpa,b of φ1a,b, . . . ,

φpa,b is the 2-edge-colouring of Tr defined by φa,b(uv) = φia,b(uv) if and only
if uv ∈ Ei.

Figure 1 depicts how a locally irregular 2-edge-colouring φa,b of a tree
Tr with deg(r) = 3 can be obtained by decomposing Tr into three shrubs
Tr[r, 1], Tr[r, 2] and Tr[r, 3], computing three almost locally irregular 2-edge-
colourings φ1a,b, φ

2
a,b and φ3a,b of these shrubs, and considering the union

φa,b = φ1a,b + φ2a,b + φ3a,b.

3 Proof of Theorem 1.2

We herein prove that the irregular chromatic index of every colourable tree
can be determined in linear time. For this purpose, we first show, in Sec-
tion 3.1, how to obtain an almost locally irregular 2-edge-colouring of every
shrub. In Section 3.2, we then explain how to “decompose” every colourable
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1 if p = 0 then

2 φa,b(rr
+) = a;

3 else

4 foreach i ∈ {1, . . . , p} do

5 compute an almost locally irregular 2-edge-colouring φia,b of

Tr[r
+, i] inductively;

6 φ0a,b(rr
+) = a;

7 choose φi
ci,c

′

i
= φia,b or φib,a for every i ∈ {1, . . . , p} in such a way

that φa,b = φ0a,b + φ1
c1,c

′

1

+ · · · + φpcp,c′p
is an almost locally irregular

2-edge-colouring of Tr;

Algorithm 1: Algorithm for constructing an almost locally irregular
2-edge-colouring φa,b of a shrub Tr.

tree T into shrubs, and how to construct a locally irregular edge-colouring
of T by composing the almost locally irregular 2-edge-colourings of these
shrubs. Then, by carefully studying the situations in which this colour-
ing strategy does not work with only three colours, we characterize the
colourable trees with irregular chromatic index exactly 3 in Section 3.3.
Using all the previous results and observations, we eventually propose a
linear time algorithm for computing the irregular chromatic index of every
colourable tree in Section 3.4.

3.1 Every shrub admits an almost locally irregular 2-edge-

colouring

Algorithm 1 constructs an almost locally irregular 2-edge-colouring φa,b of
any shrub Tr. In this algorithm, we denote by p, p ≥ 0, the number
of children of r+. Roughly speaking, the algorithm first inductively con-
structs almost locally irregular 2-edge-colourings φ1a,b, . . . , φ

p
a,b of Tr[r

+, 1],

. . . , Tr[r
+, p], respectively. It then inverts some of the φia,b’s so that their

union is an almost locally irregular 2-edge-colouring of Tr when the edge
rr+ is a−coloured.

The keystone of Algorithm 1 is Line 7. Let us prove that the almost
locally irregular 2-edge-colouring φa,b of Tr, obtained by inverting some of
the φia,b’s, necessarily exists.

Lemma 3.1. The almost locally irregular 2-edge-colouring φa,b of Tr claimed
at Line 7 of Algorithm 1 necessarily exists.

Proof. If p = 0, then there is nothing to prove. Thus assume that r+ has
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p ≥ 1 children v1, v2, . . . , vp in Tr. We first consider small values of p, namely
p ∈ {1, 2, 3}, before generalizing our arguments.

• Suppose p = 1. If φa,b = φ0a,b + φ1a,b is not an almost locally irregular

2-edge-colouring of Tr, then v1 has a−degree 2 in Tr[r
+, 1] by φ1a,b.

Besides, φ1a,b is a locally irregular 2-edge-colouring of Tr[r
+, 1]. The

colouring φa,b = φ0a,b + φ1b,a, obtained by inverting φ1a,b, is thus clearly
an almost locally irregular 2-edge-colouring of Tr.

• Suppose p = 2. If φa,b = φ0a,b+φ1a,b+φ2a,b is not an almost locally irreg-

ular 2-edge-colouring of Tr, then a child of r+, say v1, has a−degree 3
in Tr[r

+, 1] by φ1a,b, and φ1a,b is a locally irregular 2-edge-colouring of

Tr[r
+, 1]. Now consider φa,b = φ0a,b + φ1b,a + φ2a,b. If φa,b is not an

almost locally irregular 2-edge-colouring of Tr, then the other child v2
of r+ has a−degree 2 in Tr[r

+, 2] by φ2a,b. Moreover, φ2a,b is a locally

irregular 2-edge-colouring of Tr[r
+, 2]. Thus, φa,b = φ0a,b + φ1a,b + φ2b,a

is an almost locally irregular 2-edge-colouring of Tr.

• Suppose p = 3. If φa,b = φ0a,b + φ1a,b + φ2a,b + φ3a,b is not an almost

locally irregular 2-edge-colouring of Tr, then a child of r+, say v1, has
a−degree 4 in Tr[r

+, 1] by φ1a,b, and φ1a,b is a locally irregular 2-edge-

colouring of Tr[r
+, 1]. Now, if φ0a,b + φ1b,a + φ2a,b + φ3a,b is not an almost

locally irregular 2-edge-colouring of Tr, then another child of r+, say
v2, has a−degree 3 in Tr[r

+, 2] by φ2a,b, and φ2a,b is a locally irregular

2-edge-colouring of Tr[r
+, 2]. Again, the a−degree of the last child v3

of r+ in Tr[r
+, 3] by φ3a,b is 3 if φ0a,b +φ1a,b +φ2b,a +φ3a,b is not an almost

locally irregular 2-edge-colouring of Tr. Under all these assumptions,
we clearly get that φa,b = φ0a,b + φ1a,b + φ2b,a + φ3b,a is an almost locally
irregular 2-edge-colouring of Tr.

By following the same scheme for any p ≥ 4, i.e. by inverting none of the
φia,b’s, then one, two, three, ..., of them, we either find an almost locally ir-
regular 2-edge-colouring φa,b of Tr or find out all the values of the a−degrees
of v1, v2, . . . , vp in Tr[r

+, 1], Tr[r
+, 2], . . . , Tr[r

+, p] by φ1a,b, φ
2
a,b, . . . , φ

p
a,b, re-

spectively. More precisely, in this last situation, we get that one of these
a−degrees is equal to p + 1, two of them are equal to p, three of them are
equal to p−1 (unless p is not big enough), and so on. Under the assumption
that p ≥ 4, note that the biggest ⌊p+1

2 ⌋ values of the resulting a−degree se-

quence are strictly greater than ⌊p+1
2 ⌋+1, while the other values are strictly

greater than ⌈p+1
2 ⌉ − 1. Considering that the a−degrees of v1, v2, . . . , vp are

ordered decreasingly, i.e. v1 has a−degree p+ 1, v2 has a−degree p, ..., the

2-edge-colouring φa,b = φ0a,b + φ1a,b + · · · + φ
⌊ p+1

2
⌋

a,b + φ
⌊ p+1

2
⌋+1

b,a + · · · + φpb,a,
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(a) Almost locally
irregular 2-edge-
colourings φ1

a,b, φ2
a,b

and φ3
a,b of Tr[r

+, 1],
Tr[r

+, 2] and Tr[r
+, 3]

are computed, and
φ0
a,b(rr

+) = a.

(b) The 2-edge-
colouring φ0

a,b +
φ1
a,b+φ2

a,b+φ3
a,b.

(c) If φ0
a,b + φ1

a,b +
φ2
a,b + φ3

a,b is not
an almost locally
irregular 2-edge-
colouring, then v1
has a−degree 4 in

Tr[r
+, 1] by φ1

a,b.

(d) If φ0
a,b + φ1

b,a +
φ2
a,b + φ3

a,b is not
an almost locally
irregular 2-edge-
colouring, then v2
has a−degree 3 in

Tr[r
+, 2] by φ2

a,b.

(e) If φ0
a,b + φ1

a,b + φ2
b,a +

φ3
a,b is not an almost

locally irregular 2-edge-
colouring, then v3 has
a−degree 3 in Tr[r

+, 3] by
φ3
a,b.

(f) φ0
a,b+φ1

a,b+φ2
b,a+φ3

b,a

is an almost locally irreg-
ular 2-edge-colouring.

Figure 2: Application of Algorithm 1 on a shrub Tr with deg(r+) = 4.

obtained by inverting the last (⌈p+1
2 ⌉ − 1) almost locally irregular 2-edge-

colourings, is an almost locally irregular 2-edge-colouring of Tr since r+ has
then a−degree ⌊p+1

2 ⌋ + 1 and b−degree ⌈p+1
2 ⌉ − 1.

Figure 2 shows an application of Algorithm 1 on a shrub. Using Algo-
rithm 1, and thanks to Lemma 3.1, we get:

Theorem 3.2. Every shrub admits an almost locally irregular 2-edge-colou-
ring.

3.2 From shrubs to trees

Consider the procedure based on Algorithm 1, for possibly computing a
locally irregular 2-edge-colouring of any colourable tree T , described as fol-
lows. Let r be a node of T with deg(r) = p ≥ 1. Start by decomposing
Tr into the p shrubs Tr[r, 1], . . . , Tr[r, p], and then compute almost locally
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irregular 2-edge-colourings φ1a,b, . . . , φ
p
a,b of Tr[r, 1], . . . , Tr[r, p], respectively.

These colourings necessarily exist according to Theorem 3.2. Finally, invert
some of the φia,b’s so that their union is a locally irregular 2-edge-colouring
of Tr.

The success of this colouring procedure is not guaranteed since, in some
special cases, inverting the φia,b’s in every possible way does not lead to
a locally irregular 2-edge-colouring of Tr. However, the more children the
vertex r has, the more possible ways for inverting the φia,b’s there are. Hence,
the choice of r for rooting T before applying the above colouring procedure
is crucial. Because the number of possibilities for inverting the φia,b’s grows
exponentially compared to deg(r), this strategy actually leads to a locally
irregular 2-edge-colouring of Tr whenever deg(r) ≥ 5. More precisely, we
can prove the following:

Theorem 3.3. If T is a tree with ∆(T ) ≥ 5, then χ′
irr(T ) ≤ 2.

Proof. Let r be a node of T with p ≥ 5 neighbours v1, v2, . . . , vp. Let
φ1a,b, φ

2
a,b, . . . , φ

p
a,b be almost locally irregular 2-edge-colourings of Tr[r, 1],

Tr[r, 2], . . . , Tr[r, p], respectively, which necessarily exist according to Theo-
rem 3.2. Consider successively the 2-edge-colourings φa,b of Tr obtained by
inverting none, one, two, ..., of the φia,b’s. If, at some step, φa,b is a locally
irregular 2-edge-colouring, then the claim is true for T . Otherwise, at each
step, a conflict arises because, for at least one of the children vi of r, the
a−degree of vi in Tr[r, i] by φia,b is equal to the a−degree of r by φa,b. In

particular, if the 2-edge-colouring obtained by inverting none of the φia,b’s
is not a locally irregular 2-edge-colouring of Tr, then we reveal that one of
the vi’s has a−degree p. Similarly, if none of the 2-edge-colourings obtained
by inverting one of the φia,b’s is a locally irregular 2-edge-colouring of Tr,
then we reveal that two of the vi’s have a−degree p − 1. If none of the 2-
edge-colourings obtained by inverting two of the φia,b’s is a locally irregular
2-edge-colouring of Tr, then we reveal that three of the vi’s have a−degree
p − 2, and so on. We stop the procedure once all the a−degrees of the vi’s
have been revealed.

Once the procedure has stopped, we get that the a−degree sequence is
(p, p−1, p−1, p−2, p−2, p−2, . . . ), where the element p−k appears exactly
k + 1 times, except maybe in the case where p − k is the last value of the
sequence. When p ≥ 5, each of the a−degrees is strictly greater than ⌊p2⌋.
Hence, if the a−degrees of v1, v2, . . . , vp are ordered decreasingly, then

φa,b = φ1a,b + φ2a,b + · · · + φ
⌈ p

2
⌉

a,b + φ
⌈ p

2
⌉+1

b,a + · · · + φpb,a,

obtained by inverting the last ⌊p2⌋ φ
i
a,b’s, is a locally irregular 2-edge-colouring

of Tr since the a− and b−degrees of r are then ⌈p2⌉ and ⌊p2⌋, respectively,
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which are strictly less than the a− and b−degree of its neighbours in the a−
and b−subgraphs, respectively.

Thanks to Theorems 3.2 and 3.3, we can also give an alternate proof of
Theorem 1.1 [4].

Alternate proof of Theorem 1.1. Let T be a colourable tree. If ∆(T ) ≤ 2,
then T is a path with even length and χ′

irr(T ) ≤ 2. If ∆(T ) ≥ 5, then
χ′
irr(T ) ≤ 2 according to Theorem 3.3. Let us thus suppose that ∆(T ) ∈

{3, 4}, and let r be a node of T with degree deg(r) = p = ∆(T ) whose
neighbours are denoted by v1, v2, . . . , vp. As in the proof of Theorem 3.3,
let φ1a,b, φ

2
a,b, . . . , φ

p
a,b be almost locally irregular 2-edge-colourings of Tr[r, 1],

Tr[r, 2], . . . , Tr[r, p], respectively (these exist by Theorem 3.2), and try out
the inversion procedure. If no locally irregular 2-edge-colouring φa,b of Tr
can be found, then the revealed a−degree sequence is necessarily (3, 2, 2) if
p = 3, or (4, 3, 3, 2) if p = 4. Assuming that the a−degrees of v1, v2, . . . , vp
are ordered decreasingly, the colouring φa,b = φ1a,b + φ2b,a + φ3c,a, where c is a
third colour, is a locally irregular 3-edge-colouring of Tr for p = 3 since r has
then a−, b− and c−degree 1 while its neighbours have degree 3, 2, and 2 in
the a−, b− and c−subgraph, respectively. When p = 4, a locally irregular
3-edge-colouring of Tr is given, for instance, by φa,b = φ1a,b +φ2b,a +φ3b,a +φ4c,a
since r has then a−, b− and c−degree 1, 2, and 1, respectively, while its
neighbours have a−, b− and c−degree 4, 3 and 2, respectively.

3.3 Trees with irregular chromatic index 3

We now consider trees with maximum degree at most 4. In the proof of
Theorem 1.1, we have pointed out that the colouring procedure presented
in Section 3.2 does not always provide a locally irregular 2-edge-colouring of
a tree Tr. This typically occurs when the inversion procedure of the φia,b’s

fails, that is when none of the possible inversions of some of the φia,b’s is
a locally irregular 2-edge-colouring. A simple computation shows that the
inversion procedure fails if and only if the a−degree sequence of the vi’s
in the Tr[r, i]’s by the φia,b’s is bad, namely is (1) if deg(r) = 1, (2, 1) if
deg(r) = 2, (3, 2, 2) if deg(r) = 3, or (4, 3, 3, 2) if deg(r) = 4.

Consequently, if there exist almost locally irregular 2-edge-colourings
ψ1
a,b, ψ

2
a,b, . . . , ψ

p
a,b of Tr[r, 1], Tr[r, 2], . . . , Tr[r, p], respectively, leading to a

a−degree sequence which is not bad, then inverting some of the ψi
a,b’s nec-

essarily leads to a locally irregular 2-edge-colouring of Tr. We thus now
focus on the structure of shrubs Tr with maximum degree at most 4 such
that r+ has the same a−degree by all of the possible almost locally irregu-
lar 2-edge-colourings of Tr. If r+ always has a−degree k in this way, with
k ∈ {1, 2, 3, 4}, we say that Tr is a k−bad shrub.

10



D0 = {k} p Signature

{1}
0 -
1 D1 = {2}

{2}
1 D1 = {1}
2 D1 = {2}, D2 = {3}
3 D1 = {3}, D2 = {3}, D3 = {4}

{3}
2 D1 = {2}, D2 = {2}
3 D1 = {2}, D2 = {3}, D3 = {4}

{4} 3 D1 = {2}, D2 = {3}, D3 = {3}

Table 1: List of all k−bad signatures.

Signature D1,D2 D0

{1}, {1} {1, 3}

{1}, {2} {2, 3}

{1}, {3} {1, 2}

{1}, {4} {1, 2, 3}

{2}, {2} {3}

Signature D1,D2 D0

{2}, {3} {2}

{2}, {4} {2, 3}

{3}, {3} {1, 2}

{3}, {4} {1, 2}

{4}, {4} {1, 2, 3}

Table 2: All possible canonical signatures of Tr and the resulting set D0

when p = 2.

Suppose that r+ has children v1, . . . , vp with p ≥ 0. For each of the
nodes vi, we denote by Di the set of all possible a−degrees of vi in Tr[r

+, i]
by all of the possible almost locally irregular 2-edge-colourings of Tr[r

+, i].
The set of Di’s is the signature of Tr. Analogously, we denote by D0 the set
of all possible a−degrees of r+ by all of the almost locally irregular 2-edge-
colourings of Tr. According to these definitions, Tr is a k−bad shrub if and
only if D0 = {k}, that is D0 is a singleton.

The setD0 of any shrub Tr can easily be computed thanks to an inductive
scheme inspired by Algorithm 1. Roughly speaking, we first compute induc-
tively the sets D0 of each of the p schrubs Tr[r

+, 1], . . . , Tr[r
+, p]. By defi-

nition, the set D0 of Tr[r
+, i] corresponds to the set Di of Tr. Thanks to the

signature D1, . . . , Dp of Tr which, in some sense, is a compact way for rep-
resenting the almost locally irregular 2-edge-colourings of the Tr[r

+, i]’s,the
set D0 of Tr can finally be deduced. Using this procedure, we are able to
identify all k−bad signatures of Tr, that is all signatures making the set D0

of Tr being {k} for every k ∈ {1, 2, 3, 4}, as shown in the following:

Theorem 3.4. All k−bad signatures are those given in Table 1.

Proof. We consider each possible signature of Tr with regards to p ≤ 3, the
number of children of r+. For the sake of simplicity, we here only detail the
proof for the easy cases, i.e. p = 0 and p = 1, so that the reader gets an

11



Signature D1,D2,D3 D0

{1}, {1}, {1} {1, 2, 4}

{1}, {1}, {2} {1, 3, 4}

{1}, {1}, {3} {2, 3, 4}

{1}, {1}, {4} {1, 2, 3}

{1}, {2}, {2} {1, 3, 4}

{1}, {2}, {3} {3, 4}

{1}, {2}, {4} {1, 3}

{1}, {3}, {3} {2, 4}

{1}, {3}, {4} {2, 3}

{1}, {4}, {4} {1, 2, 3}

Signature D1,D2,D3 D0

{2}, {2}, {2} {1, 3, 4}

{2}, {2}, {3} {3, 4}

{2}, {2}, {4} {1, 3}

{2}, {3}, {3} {4}

{2}, {3}, {4} {3}

{2}, {4}, {4} {1, 3}

{3}, {3}, {3} {2, 4}

{3}, {3}, {4} {2}

{3}, {4}, {4} {2, 3}

{4}, {4}, {4} {1, 2, 3}

Table 3: All possible canonical signatures of Tr and the resulting set D0

when p = 3.

idea of the technique we use. The remaining cases, i.e. p = 2 and p = 3, are
given in Tables 2 and 3, respectively. Signatures in bold are those which are
k−bad for some k. All remaining cases that do not appear in these tables do
not concern bad signatures and can be deduced from canonical cases thanks
to the following two rules:

• if D1, . . . , Dp is not a bad signature of Tr, then D′
1, . . . , D

′
p is not a

bad signature when Di ⊆ D′
i for every i ∈ {1, . . . , p} (inclusion rule),

• if D1, . . . , Di, Di+1, . . . , Dp is a k−bad signature and D1, . . . , D
′
i, Di+1,

. . . , Dp is a k′−bad signature with k′ 6= k for some D′
i 6= Di, then

D1, . . . , Di ∪D
′
i, Di+1, . . . , Dp is not a bad signature (union rule).

If p = 0, then the edge rr+ has to be coloured a and r+ thus necessarily
has a−degree 1. Therefore, the empty signature is a 1−bad signature.

Now suppose that p = 1. If D1 = {1} then, in every almost locally
irregular 2-edge-colouring of Tr[r

+, 1], v1 has a−degree 1 and we have to
colour rr+ with colour a. Thus D0 = {2}, and D1 = {1} is a 2−bad
signature. Similarly, if D1 = {2}, then every almost locally irregular 2-edge-
colouring of Tr[r

+, 1] is a locally irregular 2-edge-colouring and we have to
invert it before colouring rr+ with colour a. Therefore, D0 = {1}, and
D1 = {2} is a 1−bad signature.

If there exists an almost locally irregular 2-edge-colouring φ1a,b of Tr[r
+, 1]

such that v1 has a−degree 3 or 4, then we may either colour rr+ with
colour a directly, so that r+ has a−degree 2, or invert φ1a,b before, so that

r+ has a−degree 1. Therefore, D0 = {1, 2} if 3 or 4 belongs to D1. Thus,
D1 is not a bad signature whenever it contains 3 or 4.

Finally, D1 = {1, 2} is not a bad signature since we get D0 = {1, 2} by
the union rule. Every other possibility for D1 leads to a set D0 which is

12



not a singleton by the inclusion and union rules. Therefore, D1 = {1} and
D1 = {2} are the only bad signatures when p = 1.

Arbitrarily many k−bad shrubs can be constructed, thanks to Theo-
rem 3.4, by connecting together “bad pieces” as follows. First choose a
k−bad signature, that is some values p and D1 = {d1}, . . . , Dp = {dp}, cor-
responding to one row of Table 1. Let then Tr be a rooted tree made of one
single edge rr+, and T1, . . . , Tp be d1−, . . . , dp−bad shrubs, respectively.
Finally, identify the roots of T1, . . . , Tp with r+. The resulting shrub Tr is
clearly k−bad.

Suppose that the vertex r has p ≥ 1 neighbours in a colourable tree T .
As explained above, if the shrubs Tr[r, 1], . . . , Tr[r, p] are k1−, . . . , kp−bad,
respectively, and the sequence (k1, . . . , kp) is one of the bad a−degree se-
quences (1), (2, 1), (3, 2, 2) or (4, 3, 3, 2), then we cannot produce a locally
irregular 2-edge-colouring of Tr by means of the colouring procedure intro-
duced in Section 3.2. In this situation, we say that the vertex r is bad.

We end up this section by showing that if r is bad then every node r′ 6= r
of T is also bad. This implies that χ′

irr(T ) = 3 if and only if any node of T
is bad. By comparing the bad a−degree sequences and the bad signatures
from Table 1, we get the following:

Observation 3.5. If {d1}, . . . , {dp} is a d0−bad signature, then (d0, d1, . . . ,
dp) is a bad sequence. Conversely, if σ is any permutation of {d0, d1, . . . ,
dp} and (d0, d1, . . . , dp) is a bad sequence, then {σ(d1)}, . . . , {σ(dp)} is a
σ(d0)−bad signature.

Then we have:

Theorem 3.6. If r is a bad node of T , then every other node r′ 6= r of T
is also bad.

Proof. Note that it suffices to prove the claim when r and r′ are neighbours
in T . Suppose that deg(r) = p ≥ 1, deg(r′) = p′ ≥ 0, r′ is the first child of
r in Tr, and r is the first child of r′ in Tr′ (that is r′ = r+ in Tr[r, 1] and
r = (r′)+ in Tr′ [r

′, 1]).

Because r is bad, the shrubs Tr[r, 1], . . . , Tr[r, p] are k1−, . . . , kp−bad,
respectively, and (k1, . . . , kp) is a bad a−degree sequence. According to
Theorem 3.4, if Tr[r, 1] is k1−bad, then Tr[r

′, 1], . . . , Tr[r
′, p′ − 1] are ℓ1−,

. . . , ℓp′−1−bad, respectively, and {ℓ1}, . . . , {ℓp′−1} is a k1−bad signature.
Besides, according to Observation 3.5, the sequence (k1, ℓ1, . . . , ℓp′−1) is
bad. Now, because r is bad, {k2}, . . . , {kp} is a k1−bad signature, again
by Observation 3.5, and Tr′ [r

′, 1] is thus a k1−bad shrub. Thus, Tr′ [r
′, 1],

Tr′ [r
′, 2], . . . , Tr′ [r

′, p′] are k1−, ℓ1−, . . . , ℓp′−1−bad shrubs, respectively,
and (k1, ℓ1, . . . , ℓp′−1) is a bad sequence. Therefore, r′ is bad.
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1 if T is an odd-length path then

2 χ′
irr(T ) is undefined;

3 else if T is locally irregular then

4 χ′
irr(T ) = 1;

5 else if ∆(T ) ≤ 2 or ∆(T ) ≥ 5 then

6 χ′
irr(T ) = 2;

7 else

8 choose an arbitrary node r of T with deg(r) = p ≥ 1;
9 foreach i ∈ {1, 2, . . . , p} do

10 let Di be the set D0 of Tr[r, i] computed inductively;
11 if Di is not a singleton then

12 χ′
irr(T ) = 2;

13 exit algorithm;

14 let Di = {di} for every i ∈ {1, 2, . . . , p};
15 if (d1, d2, . . . , dp) is not a bad a−degree sequence then

16 χ′
irr(T ) = 2;

17 else

18 χ′
irr(T ) = 3;

Algorithm 2: Algorithm for determining the irregular chromatic in-
dex of any tree T .

Corollary 3.7. If T is a colourable tree, then χ′
irr(T ) = 3 if and only if any

node of T is bad.

All trees with irregular chromatic index 3 can be constructed as follows.
First choose one of the bad sequences (d1, . . . , dp), and construct p shrubs
T1, . . . , Tp which are d1−, . . . , dp−bad, respectively. Recall that there are
infinitely many such shrubs as observed above. Finally, identify the roots
of T1, . . . , Tp. By construction, the node used for the identification is bad,
and the obtained tree thus has irregular chromatic index 3 according to
Corollary 3.7.

3.4 A linear-time algorithm for computing the irregular chro-

matic index of trees

We now propose an algorithm that determines, thanks to our previous re-
sults, the irregular chromatic index of an input tree T . Recall that the bad
a−degree sequences are (1), (2, 1), (3, 2, 2) and (4, 3, 3, 2).

Theorem 3.8. Algorithm 2 determines the irregular chromatic index of any
tree T of order n in time O(n).
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G H

i′io o′

G H

Figure 3: Two graphs G and H with output (o, o′) and input (i, i′), respec-
tively, and the connection of G and H along (o, o′) and (i, i′).

Proof. The correctness of Algorithm 2 follows from the previous results and
observations. In particular, the correctness of Lines 5-6 follows from Theo-
rem 3.3, while the correctness of Lines 11-12 and Lines 15-16 follows from
observations raised in Section 3.3. The correctness of Lines-17-18 follows
from Corollary 3.7. The most costly instruction of Algorithm 2 is Line 10,
which is achieved in time O(n) by computing the values of D0 from the
leaves to the root for each shrub, as in the proof of Theorem 3.4. Every
other line of the algorithm runs either in time O(1) or O(n). Therefore,
Algorithm 2 runs in time O(n).

4 Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by exhibiting a polynomial-time
reduction from 1-in-3 Satisfiability to Locally-Irregular 2-Edge-
Colouring. For this purpose, we will need the upcoming graph construc-
tions and additional definitions.

An input (resp. output) of some graph G is a pair of edges (i, i′) (resp.
(o, o′)) such that i = uv and i′ = vw (resp. o = wv and o′ = vu) and u
and v have degree 1 and 2 in G, respectively. Consider now two graphs G
and H such that (o, o′) and (i, i′) are an output of G and an input of H,
respectively. The connection of G and H along (o, o′) and (i, i′) is the graph
obtained by taking the disjoint union of G and H, and then identifying the
edges o and i, and o′ and i′. The inputs and outputs of the resulting graph
are those of G and H that have not been used for the connection. This
construction is depicted in Figure 3.

Given two outputs (o1, o
′
1) and (o2, o

′
2) of G with o′1 = v1w1 and o′2 =

v2w2, the identification of the two outputs (o1, o
′
1) and (o2, o

′
2) is obtained by

identifying the vertices w1 and w2 in G. The identification of more than two
outputs of G is defined analogously. According to the original definition,
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note that identified outputs of G are not outputs of the resulting graph.

We are now ready to prove the NP-completeness of Locally-Irregu-

lar 2-Edge-Colouring. Given a graph G and a 2-edge-colouring φ of G,
one can check in polynomial time whether the two subgraphs of G induced
by φ are locally irregular or not. Therefore, Locally-Irregular 2-Edge-
Colouring is in NP. We now show the NP-completeness of Locally-Irre-
gular 2-Edge-Colouring by reduction from the following NP-complete
problem (refer e.g. to [8] for more details on computational complexity
theory).

1-in-3 Satisfiability

Instance: A 3CNF formula F with clauses C1, C2, . . . , Cm and variables
x1, x2, . . . , xn.
Question: Is there a 1-in-3 truth assignment of the variables of F , that is a
truth assignment such that each clause of F has exactly one true literal?

Let us make some observations on the structure of F . First, we can
assume that every possible literal appears in F . Indeed, if ℓi does not appear
in any clause of F , then the 3CNF formula

F ′ = F ∧ (ℓi ∨ ℓi ∨ xn+1) ∧ (xn+1 ∨ xn+1 ∨ xn+1),

where xn+1 is a new variable, clearly admits a 1-in-3 truth assignment of its
variables if and only if F admits one too. Since there are 2n literals related
to the variables of F , a formula equivalent to F that contains every possible
literal over its variables can be obtained from F in polynomial time.

Next, note that no clause of the form (xi ∨ xi ∨ xi) can be satisfied by
exactly one of its literals by any truth assignment of the variables of F .
Therefore, we may assume that F does not contain any such clause. Finally,
observe that if F contains a clause of the form (xi ∨ xi ∨ xj) then, in every
1-in-3 truth assignment of the variables of F , xi and xj have to be set to
false and true, respectively. In that case, we say that xi and xj are forced
to false and true, respectively.

For each formula F , we will build a graph GF such that F is satisfiable in
a 1-in-3 way if and only if χ′

irr(GF ) = 2. It is convenient to view the graph
GF as an electrical circuit through which two opposite signals, namely true
and false, are propagated through several components whose inputs and
outputs are connected in a specific way. The graph GF is constructed in
such a way that the propagation of these signals has the same properties as
the “propagation” of a locally irregular 2-edge-colouring in a graph.

The graph GF is built from the following components. First, the gener-
ator gadget GF (S) of GF spreads the true signal through m clause gadgets
GF (C1), GF (C2), ..., GF (Cm), where each clause Ci in F is associated with
the clause gadget GF (Ci) in GF . The clause gadgets then modulate their
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input true signal, that is they can switch their input signal or not, and prop-
agate it to the literal gadgets GF (ℓ1), GF (ℓ2), ..., GF (ℓ2n) of GF . Similarly
as for the clauses of F and the clause gadgets of GF , there is a direct analogy
between the literal ℓi and the literal gadget GF (ℓi).

The clause and literal gadgets are linked in the following way:

• if Ci = (ℓi1 ∨ ℓi2 ∨ ℓi3) is a clause of F , then GF (Ci) is connected
to GF (ℓi1) along an output of GF (Ci). If ℓi2 6= ℓi1 , then GF (Ci) is
connected to GF (ℓi2) along a second output of GF (Ci). Finally, if
ℓi3 6= ℓi1 and ℓi3 6= ℓi2 , then GF (Ci) is also connected to GF (ℓi3) along
a third output.

• Exactly one arbitrary output of each clause gadget spreads the true
signal, while its other outputs (there are at most two of them) propa-
gate the false signal.

For every i ∈ {1, 2, . . . , 2n}, the literal gadget GF (ℓi) of GF has exactly
one output and, according to the connection with the clause gadgets, exactly
ni inputs, where ni is the number of distinct clauses in F that contain the
literal ℓi. The main property of a literal gadget GF (ℓi) is that it outputs
a signal if and only if the same signal comes in from its ni inputs. Finally,
the outputs of the two literal gadgets GF (xi) and GF (xi) are linked in such
a way that the propagation of the signal is correct if and only if the two
output signals are different.

Hence, we have the following analogy between satisfying F in a 1-in-3
way and spreading the true signal through GF :

• each clause Ci in F must have exactly one true literal and exactly one
output of GF (Ci) must spread the true signal out,

• every literal ℓi must have the same truth value in all clauses it appears
in and all the inputs of GF (ℓi) must spread the same signal in,

• a variable xi and its negation xi must have distinct truth values and
the outputs of GF (xi) and GF (xi) must spread different signals out.

We now go into the details of the proof by introducing the generator,
clause and literal gadgets of GF . The graph GF is constructed step by step
as it is augmented by connecting these gadgets. All along this proof, the
function φ : E(GF ) → {0, 1} is a locally irregular 2-edge-colouring of GF ,
propagated along the edges of GF . When augmenting GF with a new gadget,
it should be understood that φ is extended to this new gadget according to
the lemmas we point out. The true (resp. false) signal is depicted as thick
(resp. thin) edges in our schemas and corresponds to colour 1 (resp. 0) of
φ.

17



u1

u2

u3
u14

u15

u19

u20

u21

u16 u18u17

u12

u11

u10

u7

u4 u13

u9 u8

u5

u6

Figure 4: The gadget G∗ and a locally irregular 2-edge-colouring of G∗.

The generator gadget GF (S) of GF is obtained by connecting several
copies of the graph G∗, depicted in Figure 4, with input (u1u2, u2u3) and
outputs (u10u11, u11u12) and (u19u20, u20u21). The gadget G∗ has the fol-
lowing property:

Lemma 4.1. In every locally irregular 2-edge-colouring of G∗, the input and
output edges of G∗ have the same colour.

Proof. We initiate the locally irregular 2-edge-colouring φ of G∗ with the in-
put of G∗. Let us suppose, without loss of generality, that φ(u1u2) = 1.
Then we have φ(u2u3) = 1, since otherwise we would have dφ,1(u1) =
dφ,1(u2) = 1, and φ(u3u4) = φ(u3u13), since otherwise we would have
dφ,1(u2) = dφ,1(u3) = 2.

Let us first suppose that φ(u3u4) = φ(u3u13) = 1. We cannot have
φ(u4u5) = φ(u4u6) since, when colouring u5u6, we would have either dφ,1(u5) =
dφ,1(u6) or dφ,0(u5) = dφ,0(u6). Assume thus that φ(u4u5) = 1 and φ(u4u6) =
0. If φ(u5u6) = 1, then we must set φ(u4u7) = 0 to get dφ,0(u6) 6= dφ,0(u4).
But then dφ,1(u4) = dφ,1(u5) = 2. Similarly, if φ(u5u6) = 0, then we must
have φ(u4u7) = 1 since otherwise we would have dφ,0(u6) = dφ,0(u4) = 2.
But now we have dφ,1(u3) = dφ,1(u4) = 3. Hence, we cannot extend φ to G∗

if φ(u3u4) = φ(u3u13) = 1.

Thus, we must have φ(u3u4) = φ(u3u13) = 0. For the same reasons
as before, we can assume φ(u4u5) = 1 and φ(u4u6) = 0 without loss of
generality. Now, if φ(u5u6) = 0, then we must have φ(u4u7) = 0, so that
dφ,0(u4) 6= dφ,0(u6). But then we get dφ,1(u4) = dφ,1(u5) = 1. Therefore,
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we must set φ(u5u6) = 1. To ensure that u4 and u3 have distinct degrees
in the 0−subgraph, we need to have φ(u4u7) = 0. Similarly as before, we
must have φ(u9u8) = φ(u8u7). If φ(u9u8) = φ(u8u7) = 0, then we must
have φ(u7u10) = 0 so that dφ,0(u7) 6= dφ,0(u8). But then we get dφ,0(u4) =
dφ,0(u7) = 3. Therefore, φ(u9u8) = φ(u8u7) = 1 and φ(u7u10) = 0, since
otherwise we would have dφ,1(u8) = dφ,1(u7) = 2. Because dφ,0(u7) = 2, we
must have φ(u10u11) = 1. Besides, to get dφ,1(u10) 6= dφ,1(u11), we have to
set φ(u11u12) = 1.

The locally irregular 2-edge-colouring φ is propagated to the remaining
edges of G∗ in a symmetric way. We finally get that the input and outputs
of G∗ have the same colour via φ, as claimed.

According to Lemma 4.1, the gadget G∗ propagates its input colour, say
the thick one, into two directions. Moreover, by connecting two copies G1

and G2 of G∗ along one output of G1 and the input of G2, we can propa-
gate the thick colour into three directions. By successively repeating this
construction, one can spread the thick colour towards an arbitrary number
of directions.

Now consider the path P5 = u1u2u3u4u5 on 5 vertices with input (u1u2, u2u3)
and output (u3u4, u4u5), and denote by G′ the graph obtained by connect-
ing G∗ and P5 along (u10u11, u11u12) and (u1u2, u2u3). Clearly, in every
extension of a locally irregular 2-edge-colouring of G∗ to G′, the two new
output edges u3u4 and u4u5 of G′ are coloured with the thin colour. Hence,
we may also spread the thin colour as well.

The generator gadgetGF (S) ofGF is obtained by combining the previous
remarks, that is by connecting several copies of G∗ and P5.

From now on, we suppose that φ is the locally irregular 2-edge-colouring
of GF mentioned before. This colouring is initiated with GF (S) in such a
way that its input is 1−coloured. According to our terminology, GF (S) has
a finite number of outputs which are either positive or negative, depending
on whether they are 1− or 0−coloured via φ, respectively. The number of
these outputs will be clarified later.

In what follows, a (k1, k2)−vertex a of GF for some k1, k2 ≥ 1 is a vertex
of degree k1 + k2 resulting from the identification of k1 distinct positive
outputs of GF (S) and k2 distinct negative outputs of GF (S). Note that this
resulting vertex a has degree k1 (resp. k2) in the 1- (resp. 0-) subgraph of
GF (S). According to our terminology, we have dφ,1(a) = k1 and dφ,0(a) =
k2. Besides, it should be understood that a subgraph of GF containing a
(k1, k2)−vertex is implicitly connected to GF (S).

We now introduce the clause gadgets GF (C1), GF (C2), . . . , GF (Cm) that
are connected to some outputs of GF (S). Depending on the number ci ∈
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Figure 5: The clause gadget GF (Ci) and locally irregular 2-edge-colourings
of GF (Ci).

{2, 3} of distinct literals in Ci (recall that ci 6= 1), the clause gadget GF (Ci)
can be of two different forms.

• If ci = 2, then GF (Ci) is the graph depicted in Figure 5.a, obtained
by connecting a copy of G∗ and P5 in such a way that GF (Ci) has one
positive output and one negative output. The graph GF (Ci) is con-
nected to GF (S) along one positive output of GF (S) and (v1v2, v2v3),
where (v1v2, v2v3) is the input of GF (Ci).

• If ci = 3, then GF (Ci) is a copy of the graph depicted in Figure 5.b,
where ai,1, ai,2 and ai,3 are (3, 1)−, (1, 3)− and (4, 1)−vertices, re-
spectively, and (v7v8, v8v9), (v15v16, v16v17) and (v23v24, v24v25) are its
three outputs.

When ci = 3, the clause gadget GF (Ci) has the following property.

Lemma 4.2. Suppose ci = 3. In any extension of φ to GF (Ci), exactly one
output of GF (Ci) is 1−coloured.

Proof. Since ai,1 is adjacent to a vertex of GF (S) with degree 2 in the
0−subgraph, we must set φ(ai,1v1) = 1. Similarly, we have to set φ(ai,2v1) =
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0 and φ(ai,3v1) = 1. We thus get dφ,1(ai,1) = dφ,0(ai,2) = 4 and dφ,1(ai,3) =
5. If the number of 1−coloured edges in {v1v4, v1v12, v1v18} were exactly
0, 1 or 2, then we would have dφ,0(v1) = dφ,0(ai,2), dφ,1(v1) = dφ,1(ai,1)
or dφ,1(v1) = dφ,1(ai,3), respectively. Therefore, exactly one such edge is
1−coloured.

Let us suppose φ(v1v4) = 1 without loss of generality. Observe that
dφ,1(v1) = dφ,0(v1) = 3. Again, the edges v2v3 and v3v4 have to be coloured
with the same colour, but this colour cannot be 1. Indeed, if φ(v2v3) =
φ(v3v4) = 1, then we would have dφ,1(v3) = dφ,1(v4) = 2. Thus, we have
to set φ(v4v5) = 1 but then we get dφ,1(v4) = dφ,1(v1) = 3. Hence, we
necessarily have φ(v2v3) = φ(v3v4) = 0, and φ(v4v5) = 1 since otherwise
we would get dφ,0(v3) = dφ,0(v4) = 2. Now, because dφ,1(v4) = 2, we need
φ(v5v6) = φ(v6v7) = 0. Analogously, we have φ(v7v8) = φ(v8v9) = 1.

Repeating the same arguments towards v17 and v25, and considering that
φ(v1v12) = φ(v1v18) = 0, we get φ(v15v16) = φ(v16v17) = 0 and φ(v23v24) =
φ(v24v25) = 0. Finally, observe that this colouring of GF (Ci) via φ is not
unique (it depends on which edge from {v1v4, v1v12, v1v18} is 1−coloured).
But in every extension of φ to GF (Ci), exactly one input of GF (Ci) is
1−coloured.

We finally clarify the literal gadgets. Recall that for i ∈ {1, 2, . . . , 2n},
ni denotes the number of distinct clauses of F that contains ℓi. Besides, we
have ni ≥ 1 for every such integer by assumption.

The outputs of the clause gadgets GF (C1), GF (C2), . . . , GF (Cm) are now
connected with the literal gadgets GF (ℓ1), GF (ℓ2), . . . , GF (ℓ2n) of GF as
follows. The literal gadget GF (ℓi) has one output and exactly ni inputs
connected to ni clause gadgets ofGF , according to which clauses of F contain
ℓi. More precisely, if ℓi is contained at least once in Cj , then we connect
GF (Cj) and GF (ℓi) along exactly one output of GF (Cj) and one input of
GF (ℓi). The output of GF (Cj) used for the connection is chosen arbitrarily,
except in the case where cj = 2. Recall that, in this case, Cj has two
distinct literals xi and x′i that are forced to false and true, respectively. To
model this constraint, we force one input of GF (xi) to be 0−coloured while
one input of GF (x′i) is 1−coloured. This is done by using a negative and a
positive output of GF (Cj), respectively, for the connection of GF (Cj) and
GF (xi), and GF (Cj) and GF (x′i).

The structure of the literal gadget GF (ℓi) depends on the value of ni:

• if ni = 1, then GF (ℓi) is a copy of P7 = u1u2 . . . u6u7 and has input
(u1u2, u2u3) and output (u5u6, u6u7),

• if ni = 2, thenGF (ℓi) is a copy of the graph depicted in Figure 6.a, with
inputs (w1w2, w2w5) and (w3w4, w4w5), and output (w11w12, w12w13),
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Figure 6: The literal gadget GF (ℓi) in the cases where ni ≥ 2 and locally
irregular 2-edge-colourings of GF (ℓi).

• if ni ≥ 3, then GF (ℓi) is a copy of the graph depicted in Figure 6.b,
with inputs (i1i

′
1, i

′
1w1), . . . , (ini

i′ni
, i′ni

w1) and output (w8w9, w9w10).
In this gadget, the vertices bi,1, bi,2, . . . , bi,ki (resp. ci,1, ci,2, . . . , ci,ki),
where ki = ⌊ni

2 ⌋+1, are (ni, 1)−, (ni+1, 1)−, . . . , (ni+⌊ni

2 ⌋, 1)−vertices
(resp. (1, ni)−, (1, ni + 1)−, . . . , (1, ni + ⌊ni

2 ⌋)−vertices), respectively.
Besides, the vertex w2 results from the identification of a positive out-
put and a negative output of GF (S).

When ni = 2 or ni ≥ 3, the important property of GF (ℓi) is that φ can
be propagated to GF (ℓi) if and only if all of its inputs have the same colour.
This is proved via the following two lemmas.

Lemma 4.3. Suppose ni = 2. The colouring φ is extendible to GF (ℓi) if
and only if all the inputs of GF (ℓi) have the same colour. Moreover, in any
extension of φ to GF (ℓi), the output of GF (ℓi) is coloured with the input
colour of GF (ℓi).

Proof. Suppose φ(w1w2) = φ(w2w5) = 1 and φ(w3w4) = φ(w4w5) = 0,
without loss of generality. If φ(w5w8) = 1, then dφ,1(w2) = dφ,1(w5) = 2.
Similarly, if φ(w5w8) = 0, then dφ,0(w4) = dφ,0(w5) = 2. Thus φ is only
extendible to GF (ℓi) when φ(w1w2) = φ(w2w5) = φ(w3w4) = φ(w4w5).
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Let us thus suppose φ(w1w2) = φ(w2w5) = φ(w3w4) = φ(w4w5) = 1,
without loss of generality. Then, we have to set φ(w5w8) = 1 since otherwise
we would have dφ,1(w2) = dφ,1(w5) = dφ,1(w4) = 2. For the same reasons
as before, we necessarily have φ(w6w7) = φ(w7w8). If this colour is 1, then
we need to set φ(w8w9) = 1 to distinguish w7 and w8 in the 1−subgraph,
but then dφ,1(w5) = dφ,1(w8) = 3. So, φ(w6w7) = φ(w7w8) = 0 and we
need to set φ(w8w9) = 1 since otherwise the 0−subgraph would have two
adjacent vertices with degree 2. Since dφ,1(w8) = 2, the colouring φ is
propagated alternatively along the path w9w10w11w12w13 in such a way that
φ(w9w10) = φ(w10w11) = 0 and φ(w11w12) = φ(w12w13) = 1.

We show that the same property holds for every ni ≥ 3.

Lemma 4.4. Suppose ni ≥ 3. The colouring φ is extendible to GF (ℓi) if
and only if all the inputs of GF (ℓi) have the same colour. Moreover, in any
extension of φ to GF (ℓi), the output of GF (ℓi) is coloured with the input
colour of GF (ℓi).

Proof. For the same reasons as before, the edges bi,1w1, bi,2w1, . . . , bi,kiw1

(resp. ci,1w1, ci,2w1, . . . , ci,kiw1) have to be 1−coloured (resp. 0−coloured)
in any extension of φ to GF (ℓi). Therefore, the vertex w1 is adjacent to
vertices with degree ni + 1, ni + 2, . . . , ni + ⌊ni

2 ⌋ + 1 in both the 1− and the
0−subgraphs.

Suppose now that y inputs of GF (ℓi) are 1−coloured via φ, where ⌈ni

2 ⌉ ≤
y ≤ ni − 1. Then w1 has degree y + ki (if φ(w1w4) = 0) or y + ki +
1 (otherwise) in the 1−subgraph, but these two values belong to the set
{ni + 1, ni + 2, . . . , ni + ⌊ni

2 ⌋ + 1}. Therefore, all the inputs of GF (ℓi) must
have the same colour via φ. Assume that this colour is 1, without loss
of generality. Then, we necessarily have φ(w1w2) = 1 since otherwise we
would have dφ,1(w1) = dφ,1(bi,ki) = ni + ⌊ni

2 ⌋ + 1. Observe that so far, the
0−subgraph is locally irregular since ki < ni + 1 for every ni ≥ 3.

Since w2 has degree 2 in the 1−subgraph and is already adjacent to a
vertex with degree 2 in the 1−subgraph, we need to set φ(w2w5) = 1. If we
set φ(w3w4) = φ(w4w5) = 1, then we need to have φ(w5w6) = 1 so that w4

and w5 do not have the same degree in the 1−subgraph. But then we have
dφ,1(w5) = dφ,1(w2) = 3. Thus, φ(w3w4) = φ(w4w5) = 0 and φ(w5w6) = 1
since otherwise w4 and w5 would have degree 2 in the 0−subgraph. Now,
w5 has degree 2 in the 1−subgraph and, thus, the colouring must alternate
along w6w7w8w9w10. For similar reasons as before, this is done in such a
way that φ(w8w9) = φ(w9w10) = 1 .

Finally, for each variable xi in F , we identify the outputs of the literal
gadgets GF (xi) and GF (xi). Observe that φ is a locally irregular 2-edge-
colouring of GF if and only if the output of GF (xi) is coloured with a colour
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different from the one used to colour the output of GF (xi). Indeed, if this
is not the case, then vertices with degree 2 would be adjacent in either the
1− or the 0−subgraph.

To show that this reduction may be achieved in polynomial time, we now
determine the number of vertices of GF . The number of outputs of GF (S)
may be computed as follows.

• In the worst case, a clause Ci has three distinct literals and, in this
special case, the clause gadget GF (Ci) contains a (3, 1)−, a (1, 3)−
and a (4, 1)−vertex. Thus, we need O(m) distinct outputs of GF (S)
to construct the clause gadgets of GF .

• We have ni ≤ m for every i ∈ {1, 2, . . . , 2n}. Thus, in the worst case,
the literal gadget GF (ℓi) needs 2ki special vertices constructed thanks
to O(m2) dedicated outputs of GF (S). Since there are 2n literals in F ,
we get that O(nm2) outputs of GF (S) may be necessary to construct
the literal gadgets of GF .

Thus, O(nm2) outputs of GF (S) are necessary to ensure that φ is propa-
gated correctly along GF . These are obtained by connecting O(nm2) copies
of G∗, while G∗ has a constant number of vertices. Roughly, omitting that
some outputs of GF (S) are negative, we get that the order of GF (S) is
O(nm2).

Finally, the number of vertices of a clause or literal gadget of GF that
do not belong to the generator gadget is clearly upper bounded by O(m +
n). Therefore, the number of new vertices needed to construct the clause
and literal gadgets of GF , that is vertices that do not belong to GF (S), is
irrelevant compared to O(nm2).

According to the previous arguments, this reduction is achieved in poly-
nomial time regarding the size of F .

5 Discussion

In this paper, we investigated the computational complexity of Locally-

Irregular k-Edge-Colouring regarding both the specific case of trees
and the general case.

Regarding trees, we proposed a linear-time algorithm for determining the
irregular chromatic index of these graphs, see Theorem 3.8. As a side result,
Theorem 3.3 gives a sufficient condition for a tree to have irregular chromatic
index at most 2 which is easy to check. As mentioned in Section 3.3, trees
with irregular chromatic index 3 have a predictable structure made up of
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“bad pieces”, namely those given in Table 1. By carefully studying how
these pieces must be connected, we can exhibit additional sufficient easy
conditions for a tree to have irregular chromatic index 3. These conditions
mainly concern the location of nodes with degree 3 or 4 and the way they
are organized in such trees.

Observe, for example, that no bad signature includes {1} whenever p ≥ 2.
This means that if a node with degree at least 3 of T is connected to a
hanging path with odd length, then T has irregular chromatic index at
most 2. Moreover, if the colouring procedure from Section 3.2 fails on Tr
for some bad vertex r with degree deg(r) = ∆(T ) = 4, then r necessarily
has a neighbour with degree 4 since one of the Tr[r, i]’s is a 4-bad shrub.
Therefore, if T has a node r′ with degree 4 which has no neighbour with
degree 4, then r′ is not bad and T has irregular chromatic index at most 2
by Corollary 3.7.

Regarding the general case, we proved that Locally-Irregular 2-
Edge-Colouring is NP-complete in general, see Theorem 1.3. It is worth
mentioning that this result implies that there should not exist any FPT
algorithm for Locally-Irregular k-Edge-Colouring parameterised by
k. Indeed, such an algorithm applied to the case k = 2 would yield a
polynomial-time algorithm for deciding whether the irregular chromatic in-
dex of a graph is 2, contradicting Theorem 1.3 unless P = NP.

Note that the only unavoidable edge crossings in a reduced graph GF

only concern edges between clause and literal gadgets. We can directly get
rid of these crossings by assuming that F is a planar formula. Since 1-in-3

Satisfiability is known to remain NP-complete when restricted to planar
formula, we get that Locally-Irregular 2-Edge-Colouring remains
NP-complete when restricted to planar graphs.

In GF , the vertices with the largest degrees are those from the literal
gadgets whose associated literals appear in at least 3 clauses. Note that we
could replace such gadgets by several copies of the gadget depicted in Fig-
ure 6.a, so that literal gadgets all have maximum degree 3. Proceed as follows
for a gadget GF (ℓi). Recall that ni outputs (o1, o

′
1), (o2, o

′
2), . . . , (oni

, o′ni
) of

the clause gadgets must propagate the colouring to GF (ℓi). First take one
copy G1 of the graph of Figure 6.a, and connected (o1, o

′
1) and (o2, o

′
2) with

the inputs of G1, respectively. According to Lemma 4.3, the colouring is
propagated to the output of G1, say o(G1) and o′(G1), if and only if (o1, o

′
1)

and (o2, o
′
2) have the same colour. Besides, if the colouring is propagated,

then o(G1) and o′(G1) have the same colour as the input edges. Now, take
another copy G2 of the graph of Figure 6.a, and connect its inputs with
the output of G1 and (o3, o

′
3), respectively. Once again, the colouring is

propagated if and only if the two input colours are the same. And so on.

Using the gadget obtained in this way by using ni−1 copies of the gadget
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from Figure 6.a is thus equivalent to using the gadget from Figure 6.b. If any
two of the outputs (o1, o

′
1), (o2, o

′
2), . . . , (oni

, o′ni
) have distinct colours, then

the colouring cannot be propagated. Therefore, the literal gadgets of GF can
all have maximum degree 3. Under this assumption, the maximum degree
of any reduced graph GF is at most 6, which is the maximum degree of a
clause gadget whose associated clause of F have three distinct literals. We
thus get that Locally-Irregular 2-Edge-Colouring remains NP-hard
when restricted to graphs with maximum degree at most 6.

Observe that, in the proof of Theorem 1.3, the resulting graph GF is
not bipartite mainly because of the induced triangles of the gadget G∗. The
existence of a bipartite gadget with the same properties as G∗ would be a
first step towards a proof that the problem Locally-Irregular 2-Edge-
Colouring remains NP-complete when restricted to bipartite graphs. But
we did not manage to find such a gadget so far. So we ask the following.

Question 5.1. Is Locally-Irregular 2-Edge-Colouring NP-complete
when restricted to bipartite graphs?
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