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Abstract

A multiscale strategy using model reduction for frictional contact com-
putation is presented. This new approach aims to improve computation
time of finite element simulations involving frictional contact between lin-
ear and elastic bodies. This strategy is based on a combination between
the LATIN (LArge Time INcrement) method and the FAS (Full Approx-
imation Scheme) multigrid solver. The LATIN method is an iterative
solver operating on the whole time-space domain. Applying an a poste-
riori analysis on solutions of different frictional contact problems shows
a great potential as far as reducibility for frictional contact problems is
concerned. Time-space vectors forming the so-called reduced basis depict
particular scales of the problem. It becomes easy to make analogies with
multigrid method to take full advantage of multiscale information.

This is a preprint of an article published in its final form in Inter-
national Journal for Numerical Methods in Engineering 97(3):207–230,
2014, Wiley. doi:10.1002/nme.4590

Keywords: Frictional contact, LATIN, Model reduction, Proper Orthogonal
Decomposition (POD), Multigrid (MG-FAS).

1 Introduction

Simulations of mechanical systems involving frictional contact between flexi-
ble bodies can lead to strong difficulties. Non-linear behavior for bodies, large
contact zones, and somehow large friction coefficient lead to numerical issues.
Frictional contact problems are characterized by non-smooth behaviors at con-
tacting boundaries of solids (discontinuities at contact interfaces for both normal
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and tangential components). These strong non-linearities dare the computa-
tional mechanic community to solve efficiently such problems. Over the last
decades, various resolution methods have been developed. Contact problems
can be formulated as an optimization problem subject to constraints with the
augmented Lagrangian formulation. Such formulation can be solved using aug-
mented Lagrangian methods [1, 2, 3, 4, 5, 6, 7, 8]. Non-linear Gauss-Seidel
solvers are also developed and applied to problems involving multi-contact bod-
ies (rigid or flexible) [9, 10, 11]. But these last methods are not the most efficient
to solve large systems (poor rate of convergence). Gradient methods are devel-
oped and adapted [12, 13, 14, 15] (with projection of the descent direction on
feasible region for contact laws or active-set violation control strategy ...) in or-
der to reproduce well-known performances of such methods for linear systems.
But the main drawback of them is the difficulty to provide a convergence proof.

In spite of the non-smooth property of contact problems, widely used New-
ton’s methods (generalized Newton’s methods) are studied [16, 17, 18, 19]. Such
methods proved their efficiency and robustness in large scale elasticity problems
with contact and friction. Once again and due non-smooth property of con-
tact problems, convergence proof of generalized Newton’s methods are hard to
provide. Another method consists in casting the contact problems into a linear
complementarity problem (LCP) and using specific solvers such as active-set
methods, Lemke’s algorithm, projected successive over relaxation (PSOR). In
[20], an LCP formulation is used to solve a frictional contact problem by faceting
the Coulomb’s cone. Nevertheless, this approximation is tough and not efficient
(the problem to solve becomes larger). Nowadays, LCP formulations are suited
to frictionless problems.

Generally speaking and even within a quasi-static context, all these non-
linear solvers can lead to prohibitive time of computations. Acceleration strate-
gies based on multigrid methods were proposed [21, 22]. Computational costs
spur recent and intensive works on efficient model reduction techniques in var-
ious fields [23, 24, 25, 26]. But and due to the non-differentiable nature of
frictional contact, application of such methods seems to be heretic.

The aim of this work is to propose a strategy accelerating solution for fric-
tional contact problems in the finite element framework embedding model re-
duction techniques also well-suited for parametric studies. Linear elastic, ho-
mogeneous, isotropic behavior and quasi-static evolution are assumed for the
bodies. Frictional contact laws involve a non-linear and non-smooth behav-
ior at the boundary of the body. To solve this mechanical problem, the non-
incremental LATIN (LArge Time INcrement) method is used. This method
is well-known for its ability to solve difficult non-linear large problems (non-
linear material, contact problems...) [27, 28] with a global time-space approach.
This method is closed to augmented Lagrangian methods. Its great advantages
are non re-factorization of matrices (stiffness matrix remains constant through
LATIN iterations) and explicit subsequent iterations (no iterations to handle
the non-linear behavior solved only on the contacting boundary). So the cost
of a LATIN iteration is low even if the number of iterations can be elevated
as augmented Lagrangian methods. We will try to exploit scale separability
of contact problems as observed in [29, 30] for fracture mechanics. The set of
vector solutions can be compressed into a small number of vectors. Moreover,
each of them describes a particular scale of the problem (e.g. scale of the global
structure vs. scale of the crack). This phenomenon fosters multiscale strategies.
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Figure 1: Problem set.

At first, we propose to illustrate multiscale contents of solutions for three
different contact problems. Then, some recalls about the LATIN method will
be given in order to introduce the specific approach we propose. Subsequently,
applications with convergence results on those three cases will be performed in
order to highlight the feasibility of our strategy and its aptitude in the para-
metric studies framework.

2 Reference problem

A flexible body is contacting a rigid basement (figure 1). We define Ω, the
domain occupied by this solid with an open boundary (denoted by ∂Ω) at time
t ∈ [0, T ] ⊂ R. This boundary can be split into three parts:

• ∂1Ω: the part of the boundary where displacements up are prescribed;

• ∂2Ω = ∂Ω \ ∂1Ω: the part of the boundary where external loads f ext are
prescribed;

• ∂3Ω: the part of the boundary where contact conditions occurs (contacting
interface).

2.1 Strong formulation

Linear hypothesis are assumed (small displacements, homogeneous-isotropic-
elastic material). External loads are time dependent but quasi-static regime is
assumed. The problem can be set as follows: find the displacement field and
the Cauchy’s stress field denoted respectively by u(x, t) and σ(x, t) satisfying:

• kinematic admissibility:

u(x, t) ∈ U [0,T ]

with U [0,T ] =
{
u has a finite energy, ∀(x, t) ∈ ∂1Ω× [0, T ],u(x, t) = up

}

(1)
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and the strain-displacement (in small perturbations) relationship reads:

∀(x, t) ∈ Ω× [0, T ] : ε(u) =
1

2

[
∇u + ∇Tu

]
(2)

• static admissibility: σ(x, t) is balanced with external force, i.e.

{
∀(x, t) ∈ ∂2Ω× [0, T ] : σ n = f ext

∀(x, t) ∈ Ω× [0, T ] : div
(
σ
)

= 0
(3)

• constitutive laws:

– Hooke law for elasticity :

∀(x, t) ∈ Ω× [0, T ] : σ = Kε(u) (4)

where K is the linear elasticity operator.

– Coulomb frictional law for contact. With v and λ, the traces of
displacement field and contact force field (both normal and tangen-
tial) on the contacting interface ∂3Ω, these conditions can be written
formally as:

R(v,λ) = 0 (5)

To be more precise for the frictional behavior, at the contacting interface
∂3Ω, we denote the local outward normal vector n. Then, the two fields can be
split into a normal and a tangential part as:

∀(x, t) ∈ ∂3Ω× [0, T ] :

{
v(x, t) = uNn + uT

λ(x, t) = λNn + λT

(6)

R governs the contact behavior at the interface ∀(x, t) ∈ ∂3Ω× [0, T ], accord-
ing to Signorini’s conditions and Coulomb’s law on the displacement field and
contact force field:

• Normal contact or Signorini’s conditions given in [31],

uN = u · n 6 g Non-penetration condition

λN = (σ n) · n 6 0 Compressive contact force

λN (g − uN ) = 0 Complementarity condition

(7)

where g is the initial gap.

• Tangential contact or Coulomb’s friction law [32]:

‖λT ‖2 = −µλN sliding: ‖u̇T ‖2 6= 0 and u̇T = −ρλT with ρ > 0

‖λT ‖2 6 −µλN sticking: ‖u̇T ‖2 = 0
(8)

where µ ∈ [0 ,+∞[ is the friction coefficient. Assuming a radial evolution
of the displacement field per time step, the velocity can be replaced with
the increment of displacement in the previous law.
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2.2 Weak formulation

We define the following set of homogeneous kinematically admissible functions
as:

u(x, t) ∈ U [0,T ]
0

with U [0,T ]
0 = {u has a finite energy and ∀(x, t) ∈ ∂1Ω× [0, T ],u(x, t) = 0}

(9)

Equilibrium (3) is equivalent to the following integral formulation with com-
patibility of contact force field and displacement field to contact conditions (7)
and (8):

∀u∗ ∈ U [0,T ]
0 :

∫

Ω

σ : ε(u∗)dV −
∫

∂2Ω

f ext · u∗dS −
∫

∂3Ω

λ · u∗dS = 0 (10)

2.3 Discretized weak formulation

Using Hooke law for σ = Kε and the finite element approximation for displace-
ment field yield to the so-called equilibrium equation with respect to frictional
contact conditions at each node:

∀u∗ :

∫ T

0

u∗TKu dt =

∫ T

0

u∗T
(
fext + fctc

)
dt with





v = Bu

fctc = BTλ

R(v,λ) = 0

(11)
K is the stiffness matrix, fext and λ are generalized forces corresponding to

f ext and λ, and B is a boolean matrix mapping the global vector of nodal values
to the values on contact boundary nodes. All in all, we have to find displacement
field u and contact force field fctc verifying (11) for all weight functions u∗.

Time interval is discretized into a subsequent of time steps t06k6m describing
a regular time stepping, i.e. tk+1 = tk + ∆t.

2.4 Reduced weak formulation and a posteriori analysis

Assuming u(x, t) being the solution of the discretized reference problem depicted
in section 2 defined over the whole space (including boundaries) and time do-
mains, the corresponding stress field is denoted by σ(x, t) and the contact force
field by λ(x, t).

Discretized nodal displacements (with n degrees of freedom) are known for
all time steps t06k6m and are cast into a snapshot matrix defined as follows:

U =




u(x1, t0) u(x1, t1) · · · u(x1, tm)
u(x2, t0) u(x2, t1) · · · u(x2, tm)

...
...

. . .
...

u(xn, t0) u(xn, t1) · · · u(xn, tm)


 =

[
w(t0) w(t1) · · · w(tm)

]

(12)
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U ∈ Rn×m is a real rectangular matrix. According to the singular value
theorem [33], U can be factorized using singular value decomposition (SVD):

U = ΥΣΦT =
[
Υ1 · · · Υn

]




σ1 0 · · · 0

0 σ2

...
...

. . . 0
0 · · · 0 σr
0 · · · 0 0







ΦT
1

...

ΦT
m


 (13)

with r = min(n,m), Υ ∈ Rn×n is a unitary matrix containing left-singular
vectors, Φ ∈ Rm×m a unitary matrix containing right-singular vectors and
Σ ∈ Rn×m contains positive singular values σi in increasing order.

Moreover, left-singular vectors Υi are space vectors which are combined with
time functions Φi scaled with the singular value σi. Consequently, displacement
field can be written as a sum of radial solutions:

U = Υ1σ1Φ
T
1 + Υ2σ2Φ

T
2 + · · ·+ ΥiσiΦ

T
i︸ ︷︷ ︸

ith radial solution

+ · · ·+ ΥrσrΦ
T
r (14)

This decomposition is unique up to an arbitrary sign for the couples of
vectors (Υi,Φi).

Given U and its SVD, and taking into account only K ≤ r first singular
values, allows to define an approximation Ǔ such that:

Ǔ = Υ1σ1Φ
T
1 + Υ2σ2Φ

T
2 + · · ·+ ΥKσKΦT

K (15)

According to the Eckart-Young’s low rank approximation theorem [33], Ǔ
is the best approximation of rank K of U according to the Frobenius’ norm. It
corresponds to the discrete POD of U. Moreover, if K = r then Ǔ = U.

Consequently, we are able to build a basis of relevant functions from Υ
containing the K first left-singular space vectors. Moreover, the first vectors
are the most energetic ones (i.e. they describe globally the solution and contain
a great fraction of the elastic energy), as it will be exemplified in the following.

The elastic energy of the displacement field solution integrated over the
studied time interval is given by

E =
1

2

∫ T

0

w(t)TKw(t) dt (16)

It can be distributed among radial solutions as E =
∑r

i=1Ei where

Ei =
σi

2

2
ΥT

i KΥi

∫ T

0

ΦT
i Φi dt (17)

corresponds to the elastic energy contained in the ith radial solution.

3 Application to 2D frictional contact problems

Though frictional contact problems lead to non-smooth solutions, the represen-
tation of a solution in the space-time domain allows to define a reduced basis
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Case A Case B Case C
Number of time steps m 201 201 185

Number of dofs n 1144 2552 2552
Number of contacting nodes nC 101 101 101

Young modulus E 3000 Pa
Poisson ratio ν 0.3

Friction coefficient µ 0.15
Final time T 1 s

Table 1: Simulation parameters.

suited to approximate it. The following examples are aimed to exemplify this
on 2D frictional contact problems once their space-time solutions have been ob-
tained. The first test model is a single contact case, the second one represents
a larger structure when a part of it encounters contact conditions while the last
one uses a more complex loading which is known to be less easily represented
on a reduced radial base. Each time, we discuss the contribution of the different
SVD modes and of their scale lengths.

Linear 3-node triangular finite elements are used for the spatial discretiza-
tion.

Material properties, simulation characteristics and parameters are given in
table 1, for the upcoming three cases.

3.1 Hemicylindrical body contacting a rigid basement (case
A)

The first model (figure 2) consists in an elastic hemicylindrical body contacting
a frictional rigid basement. We prescribe displacement on the upper boundary
such that a large contact zone occurs. The scale of the structure and the scale
of the contact zone are similar. Initially, the solid is not contacting. From
time-step t1 to t40, it approaches and becomes pressed on the rigid basement.
Meanwhile, a tangential displacement is prescribed to activate a global frictional
reaction at the contacting zone.

We apply SVD to displacement field in order to generate singular vectors in
space (figure 4) and in time (figure 3). We notice that for this case a few couple
of modes (4 or 5) are needed to render 99.9% of the elastic energy of the highly
reducible solution, which is therefore provided that we consider the space-time
evolution in a while.

On figure 4, we notice that the three first modes refer to a large scale con-
tribution acting on the whole body. Whereas after the fourth one, space modes
are remarkably localized in the vicinity of contact area. After the 6th mode, the
characteristic length scale of the mode get closer and closer to the discretization
length scale (i.e. the mesh size). Similarly, respective time functions have a
global / local behavior on the time interval.
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Figure 2: (a) Model — (b) Prescribed displacement evolution — (c) Shape of
the deformed body at t50.

3.2 Cantilevered indenter contacting a rigid basement (case
B)

The second problem (figure 5) consists in an elastic clamped cantilevered hemi-
cylindrical indenter contacting a frictional rigid basement. External loads are
designed in order to get different status at the contacting nodes during the stud-
ied time interval (no contact, sliding, sticking). The size of the effective contact
area is smaller than the scale of the structure.

In the same way, by applying the SVD to the displacement field, we get time
and space functions. A few couple of modes (4 or 5) are also needed to render
99.9% of the elastic energy of the simulation (figure 6). The solution of this
second problem is also highly reducible.

From figures 6 and 7, same conclusions as for the first simulation case can
be drawn. Status switching seems to not affect reducibility of the solution. For
this problem, the length scale of the global structure is more separated from
the one of the contact area, and this is also depicted in the succession of spatial
modes.

3.3 Cantilevered indenter contacting a rigid basement with
a non radial external load (case C)

The last problem (figure 8) is the same as the second excepting for the external
loads. We design a mobile half-sine lobe load moving along the upper boundary
of the body with an increasing amplitude. It is well-known that this kind of
solicitation is not efficiently described by a finite set of radial functions (15). A
soft contact occur at the bottom of the hemicylindrical part.

In figure 8, we introduce the space variable ` localizing he position of the
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Figure 3: (a) The a posteriori analysis of the first 50 singular values and the
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first 6 right-singular time modes Φi scaled by
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Figure 8: Model C — (a) Model with a mobile external load. The load is a
half-sine moving twice from ` = 0 to ` = L and back to ` = 0. Its amplitude
varies linearly according to `. At ` = 0 external load are null — (b) Shape of
the deformed body when ` = L.

lobe on the upper boundary. The evolution of ` according the time variable is
prescribed as follows:





t ∈ [0, T4 ] : ` = 4L t
T

t ∈ [T4 ,
T
2 ] : ` = 4L(1− t

T )

t ∈ [T2 ,
3T
4 ] : ` = 4L t

T

t ∈ [ 3T
4 , T ] : ` = 4L(1− t

T )

(18)

According to figure 9, the reduction of the solution is clearly less efficient
than other problems. Twenty modes are needed (instead of five) to contain
99.9% of the elastic energy. Space modes on figure 10 are concerned with three
scales of the problem: the body length scale, the contact zone length and the
load length scale (the wavelength of the lobe) on the upper boundary where it
is applied.
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Figure 9: (a) The a posteriori analysis of the first 50 singular values and the
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3.4 SVD functions and multiscale contents

Time-space model reduction emphasizes scale separability phenomenon. At
least, two scales of the problem can be distinguished: the global scale of the
structure and a local scale where contact occurs. First radial solutions obtained
by SVD describe globally the displacement field (both in space but also in time)
whereas higher order modes bring corrections enhancing precision at contact
interface.

We can notice that time-space modes can be dominated by specific solici-
tations occurring during the deformation process. It is clear in the model A :
the first and the second modes are linked to the compression on the rigid base-
ment whereas the third one is linked to shearing effects involved by friction: the
appropriate linear combination of these three modes for each time step covers
roughly 95% of the elastic energy involved. Nevertheless and due to orthogo-
nality properties and energetic considerations, SVD modes are not prescribed
to be characterized by load components. Consequently, we have to distinguish
SVD decomposition and linear superposition principle even though both span
the exact solution.

4 Efficient resolution using reduced order model

Scale separability observation encourages the deployment of multiscale strate-
gies [34]. Generally speaking, they consist in distinguishing a global behavior
occurring on the whole structure and a behavior localized on specific area. For
instance, in [35], a cracked body is studied taking into account friction con-
tacts between crack faces. Behavior at interfaces (crack faces) is treated as an
autonomous problem (own discretization, constitutive law, internal variables)
and then linked in a weak sense to the global problem. In [36], a local/global
strategy is used by solving the global problem in a reduced space (obtained by
POD) while the local problem (where localized damage phenomenon occurs) is
fully resolved. Then, both of the global and local problems are coupled. Other
efficient approaches are multigrid solvers suitable for various non-linear prob-
lems [37, 38, 39, 40]. For frictional contact problems, multigrid methods were
proposed in [22]. Various iterative solvers (called “smoothers”) have a remark-
able smoothing effect on high-frequency component of the error (relatively to
the discretization). In contrast, low-frequency of the error is slowly damped by
these solvers. Consequently, coarser discretization are introduced (coarse grids)
to bring corrections to fine grids to increase convergence rate.

We can draw an analogy between the previous observations and multigrid
solvers. We propose to consider global scale modes as coarse grid components.
In the same way as multigrid methods, we try to bring time-space corrections
from a subspace spanned with these first space modes obtained by an a posteriori
analysis. Corrections are quickly computed on a reduced order model (defined by
a reduced basis built on left-singular Υ vectors of SVD). Then, these corrections
are transferred on the full order model (full dimensional model) to increase
convergence rate of the iterative LATIN solver [27] (considered as the smoother).
In this study we rely on the SVD modes that are precomputed to exemplify these
effects on the solvers. Of course, such modes, taking into account their scale
properties could have been computed by other means (for instance, coarse grid
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computations, analytical local solutions ...) but this is out of the scope of this
article.

4.1 LATIN method

One of the major points of our strategy is the non-incremental LATIN method
introduced by Ladevèze and designed for time-dependent problems. Champaney
et al. in [41, 28, 42] used this method to solve problems involving contact be-
tween substructures. In [43, 44], LATIN method is used to solve 3D impacts
with frictional contacts with plasticity interfaces. Herein, we give a short re-
call of the LATIN method directly formulated for frictional contact problems
with a two-field weak formulation. Stabilized formulations (three-field weak
formulation with stabilization operator) can be used as in [45].

LATIN method is based on three principles illustrated on figure 11:

(P1) Separation of the linear and non-linear behavior. A denotes the set of
solutions s = (v, λ) satisfying linear constitutive law, kinematic admissi-
bility and static admissibility. These are defined on the whole time-space
domains Ω × [0, T ]. Γ denotes the set of solutions ŝ = (v̂, λ̂) verifying
frictional contact conditions and are defined locally at the contacting in-
terface and on the whole time interval ∂3Ω × [0, T ]. The solution of the
problem is s ∈ A ∩ Γ.

(P2) A two-staged iterative algorithm. The solution of the problem is searched
with the construction of two sequences of approximations belonging al-
ternatively to A and then Γ. At the ith iteration, global stage consists
in finding si+1 = (vi+1, λi+1) ∈ A with a search direction (si+1 − ŝi) =
(vi+1 − v̂i, λi+1 − λ̂i) ∈ E−. Note that ŝi = (v̂i, λ̂i) is known at this
stage. Then, local stage consists in finding ŝi+1 = (v̂i+1, λ̂i+1) ∈ Γ with
another search direction (̂si+1− si+1) = (v̂i+1−vi+1, λ̂i+1−λi+1) ∈ E+.
And si+1 = (v̂i+1, λ̂i+1) is known from the previous stage.

(P3) Radial approximation. The unknowns are represented as a sum of prod-
ucts between a time function and a space functions. This principle is not
use herein.

To specify the equations to solve at global and local stage, we use a displace-
ment formulation. Velocity formulation well-suited for dynamical framework
could also be used [43].

Global stage. This stage consists in finding a displacement field v(x, t) and
a contact force field λ(x, t) defined over ∂3Ω × [0, T ] verifying the balance of
the solid with the search direction (19).

(E−) : λ− λ̂ = −k(v − v̂)

⇔
{
λT

λN

}
−
{
λ̂T

λ̂N

}
= −

[
kT Id 0

0 kNId

]({
vT

vN

}
−
{

v̂T

v̂N

})
(19)

Id is the identity matrix of size equal to the number of contacting nodes. kN
and kT are parameters of the method defined at each node. It is similar to the
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si = (vi,λi)

ŝi = (v̂i, λ̂i)

E+

si+1

E−
ŝi+1

E+

Figure 11: LATIN non-linear iterative solver.

penalty parameter in an augmented Lagrangian formulation. Different values for
the normal and tangential problem can be chosen. These values influence only
on the convergence rate and optimal values are related to mechanical properties
of the studied body [27, 42, 46, 45]. Generally speaking and according to [46],
optimum values are searched as follows:

k = ELc (20)

with E the Young’s modulus and Lc a contact characteristic dimension. k has
the dimension of a stiffness. A parametric study was carried out for case A
(figure 12) to identify the optimal value of k for both LATIN and FAS/LATIN
algorithm (algorithm proposed).

Displacement field and contact force field verifying equilibrium are given by
(21).





Ku = fext + BTλ

v = Bu

λ = λ̂− k(v − v̂)

(21)

Local stage. The local stage is an updating stage for the contacting interface.
Its solution is explicit and is deduced from search direction (22) and non-linear
contact conditions.
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Figure 12: Number of LATIN iterations to reach a precision of 10−3 according
different value for search directions (normal kN and tangential kT problem). We
can remark that FAS/LATIN doesn’t modify the optimal value and spreads the
“optimal zone”
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Normal components

λ̂N = 〈cN 〉− v̂N = j− 1

kN
〈cN 〉+

Tangential components

Sliding: ‖cT ‖2 > µ|λ̂N | Sticking: ‖cT ‖2 6 µ|λ̂N |
t = cT /‖cT ‖2
λ̂T = µ|λ̂N |t

v̂k
T = v̂k−1

T − 1

kT

(
‖cT ‖2−µ|λ̂N |

)
t

λ̂T = cT

v̂k
T = v̂k−1

T

Table 2: Solutions of the local stage.

(E+) : λ̂− λ = k(v̂ − v)

⇔
{
λ̂T

λ̂N

}
−
{
λT

λN

}
=

[
kT Id 0

0 kNId

]({
v̂T

v̂N

}
−
{

vT

vN

})
(22)

Equivalently, search directions can be rewritten for both tangential and nor-
mal contact. For each contacting node, the search direction yields to equations
(23) and (24). vk

T refers to the nodal displacement on the contacting interface
in the tangential plane at time step tk.

cN = λN − kN (vN − j) = λ̂N − kN (v̂N − j) (23)

cT = λT − kT (vk
T − v̂k−1

T ) = λ̂T − kT (v̂k
T − v̂k−1

T ) (24)

Solutions of the local stage are given in table 2 and have to be computed for
each node belonging to the contacting interface and for each time step.

Initialization and stopping criterion. To initiate the iterative process, a
linear contactless prediction is computed for s0. We use stopping criterion (25)
introduced in [47]. Iterative process is stopped once I < ε.

I = max

(√
‖sN − ŝN‖2∞
‖sN‖2∞ + ‖ŝN‖2∞

,

√
‖sT − ŝT ‖2∞
‖sT ‖2∞ + ‖ŝT ‖2∞

)

with ‖sN,T ‖2∞ = max
x,t

[
1

k
λ2
N,T + ku2

N,T

]
(25)

where k is the search direction parameter. Note that subscripts N and T refer
respectively to normal and tangential components at a given node belonging to
the contacting interface. Criterion (25) is a very tough convergence indicator
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Figure 13: Convergence rates according to the local convergence criterion I and
the global one IG for cases A, B and C.

providing a possible low convergence rate. Another far less restrictive criterion
(a global energetic one) can be used:

IG =

∫ T

0

(
w(t)−wref(t)

)T
K
(
w(t)−wref(t)

)
dt

∫ T

0
wref(t)TKwref(t)dt

(26)

where wref is the reference solution for displacement field. As it proceeds in
a global space-time approach implying a specific error appreciation (e.g. con-
vergence criterion, constitutive law error...), LATIN method cannot be directly
compared to usual methods.

The LATIN method is summarized up in the algorithm 1 and convergence
indicators are plotted for all described cases on figure 13.

4.2 Algorithm proposal

The full approximation scheme (FAS) multigrid method [37] is a well-suited
solver for non-linear problems. Difficulty of a such a solver is to define a coarse
problem where low-cost corrections (computationally speaking) are calculated.
For that purpose, we propose the following algorithm:

1. a few iterations (ν1 relaxations) on the full order model (FOM) with the
non-linear LATIN solver;

2. compute a coarse correction on a subspace spanned by space vectors (on
a reduced order model or ROM);

3. a few iterations (ν2 relaxations) on the full order model with the non-linear
LATIN solver.
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Algorithm 1: LATIN solver for frictional contact

Input: Numerical model
Output: Admissible displacement field and contact force field

1 Initialization: i = 0
2 Initialization with a contactless linear elastic prediction. Solve Ku = fext

3 Extract displacement interface v = Bu
4 Set contact force λ = 0
5 while I > ε and i < imax do
6 i← i+ 1

7 for each time step do Solve local stage to get (v̂, λ̂) satisfying

R(v̂, λ̂) = 0 for each time step do

8 Solve
[
K + BTkB

]
u = fext + BT (λ̂+ kv̂)

9 Extract displacement interface v = Bu

10 Search direction λ = λ̂− k(v − v̂)

11 end

12 Compute convergence criterion I(v,λ, v̂, λ̂)

13 end
14 if i = imax then No convergence

We have to define operators to transfer quantities between the full order
space and the reduced order one. These are analog to intergrid operators (re-
striction and interpolation operators). Thus, we define:

• restriction operator projecting dual quantities from FOM to ROM: R (e.g.
R = ΥT )

• restriction operator projecting primal quantities from FOM to ROM: R
(e.g. R = ΥT )

• prolongation operator projection primal quantities from ROM to FOM:
P = Υ (e.g. P = Υ)

As mentioned in [39], prolongation and restriction operators have to fulfill
energy conservation condition between ROM and FOM. Consequently, we have
to verify :

R = PT (27)

Fine problem (FOM). LATIN iterations are considered as relaxations on
the FOM (or the finest description of the problem). The solution of the FOM
is the solution of the reference problem. Consequently, convergence indicator
and errors have to be evaluated at this stage. We chose to end relaxations by a
local stage that produces a solution (ũ, λ̃) satisfying the contact behavior but
not admissibility conditions. There is therefore a balance residual defined as:

r̃es = fext + BT λ̃−Kũ (28)

Coarse problem (ROM). We have to define it in such a way that we get

relevant corrections for both displacement field and contact force field (ũ, λ̃)
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obtained from previous relaxation stage. For this purpose, we propose a mixed
version of the LATIN solver and FAS coarse solver: a two-stage iterative process
on corrective increments to satisfy contact conditions and reducing equilibrium
residual.

• First stage. If one gets a first approximation of the correction (∆̂u, ∆̂λ),
we search for a better approximation (∆u,∆λ) trying to reduce the bal-
ance residual res which is:

res = fext + BT
(
λ̃+ ∆λ

)
−K

(
ũ + ∆u

)
(29)

using an additional search direction:

∆λ = ∆̂λ− k(∆v − ∆̂v) (30)

one gets

res = r̃es + BT
(
∆̂λ+ k∆̂v

)
−
[
K + BTkB

]
∆u (31)

The FAS scheme nullifies the coarse component of this residual (i.e. Rres =
0) with the representation:

∆u = P
(
Ψ−Rũ

)
(32)

Therefore it leads to solve:

[
R
[
K + BTkB

]
P
]
(Ψ−Rũ) = R

[
r̃es + BT

(
∆̂λ+ k∆̂v

)]

⇔
[
R
[
K + BTkB

]
P
]
Ψ = R

[
r̃es + BT

(
∆̂λ+ k∆̂v

)
+
[
K + BTkB

]
PRũ

]

(33)

Once Ψ is obtained, the correction (∆u,∆λ) is easily computed and the

corresponding full fields are (ũ + ∆u, λ̃+ ∆λ).

• Second stage. It consists in obtaining a new correction (∆̂u, ∆̂λ) to satisfy
contact conditions for the full fields. Here, we simply reuse the local stage

to get full fields (û, λ̂) and corrective increments (∆̂u, ∆̂λ).

The pseudocode is described in algorithm 2.

4.3 Application

Knowing a posteriori a reduced basis defining the coarse problem, we compare
the proposed strategy and the former non-linear LATIN solver in terms of num-
ber of relaxations for each three problems presented before. Sets of parameters
used for the application of the proposed algorithm are described on table 3. The
value of search direction parameters are set to optimal values (the less number
of LATIN iterations are needed to solve the problem).
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Algorithm 2: LATIN/FAS

Input: Numerical model, reduced basis Υ
Output: Admissible displacement field and contact force field

1 Initialization with a contactless linear elastic prediction. Solve Ku = fext

2 Extract displacement interface v = Bu
3 Set contact force λ = 0
4 Initialization j = 0
5 while I > ε or j < jmax do
6 j ← j + 1

7 if j 6= 1 then (v,λ)← (Bu(j−1),λ(j−1)) for ν1 relaxations do

8 for each time step do Solve local stage to get (v̂, λ̂) satisfying

R(v̂, λ̂) = 0 for each time step do

9 Solve
[
K + BTkB

]
u = fext + BT (λ̂+ kv̂)

10 Extract displacement interface v = Bu

11 Search direction λ = λ̂− k(v − v̂)

12 end

13 end

14 Solve local stage to get (v̂, λ̂) satisfying R(v̂, λ̂) = 0

15 Unbalanced solution assembly (ũ, λ̃)←
({ uΩ\∂3Ω

u∂3Ω = v̂

}
, λ̂
)

16 Create or update operators: R,R,P

17 Compute balance residual r̃es = fext + BT λ̃−Kũ

18 Initialization ∆̂v = 0, ∆̂λ = 0, iC = 0
19 while IC > εC or iC < iC,max do
20 iC ← iC + 1
21 if iC 6= 1 then

22 for each time step do Solve local stage to get (v̂, λ̂) satisfying

R(v̂, λ̂) = 0 Update corrections ∆̂v = v̂ − ṽ and ∆̂λ = λ̂− λ̃
23 end
24 Solve equation (33) to get time functions Ψ:[

R
[
K + BTkB

]
P
]
Ψ =

R
[
r̃es + BT

(
∆̂λ+ k∆̂v

)
+
[
K + BTkB

]
PRũ

]

25 Correction for displacement field ∆u = P
(
Ψ−Rũ

)
and

∆v = B∆u
26 Corrected displacement field u = u + ∆u

27 Search direction λ = λ̃+ ∆̂λ− k(∆v − ∆̂v)

28 Compute convergence criterion IC = I(v,λ, v̂, λ̂)

29 end

30 for ν2 relaxations do

31 for each time step do Solve local stage to get (v̂, λ̂) satisfying

R(v̂, λ̂) = 0 for each time step do

32 Solve
[
K + BTkB

]
u = fext + BT (λ̂+ kv̂)

33 Extract displacement interface v = Bu

34 Search direction λ = λ̂− k(v − v̂)

35 end

36 end

37 Compute convergence criterion I(v,λ, v̂, λ̂)

38 Solution assembly s = (u(j),λ(j))← (u,λ)

39 end
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Figure 14: Convergence rates of the algorithm proposed vs. LATIN method:
(a) Case A – (b) Case B – (c) Case C. Convergence diagrams are plotted with
errors evaluated at each relaxation (coarse problem is considered costless). As
no analytic solution exists, the reference is a solution evaluated with a precision
of ε = 10−12. The number of SVD vectors defining the reduced order model is
studied. 25



Parameters Case A Case B Case C
µ 0.15
ν1 1 1 3
ν2 1 1 3

iC,max 15 15 15
εC −1 −1 −1

Table 3: Algorithm parameters used for previous different cases.
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Figure 15: Convergence rates of the algorithm proposed vs. LATIN method
for case A. Convergence diagrams are plotted with errors evaluated at each
relaxation (coarse problem is considered costless). The number of relaxations
before (ν1) and after (ν2) coarse stage is studied.
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4.4 Discussion

Results on figure 14 were obtained by enforcing coarse step iterating 15 times
for each cycle (one cycle = ν1 relaxations + coarse step + ν2 relaxations). The
threshold εC is therefore set to a negative value to prescribe a given number
of iterations for the coarse correction. In this study, we chose a rather large
number of iterations for the coarse step to get an “exact” coarse correction.
Indeed, it would be possible to make it only run until a threshold fixed by a
level of accuracy (convergence criterion εC,max > 0).

Generally speaking, the proposed algorithm converges faster than the LATIN
method (number of relaxations can be divided from 2 to 10 depending on pa-
rameters and desired precision).

On figure 14, the first comment concerns the content of the reduced basis and
the definition of operators P, R, R. A reduced order model built exclusively
on a posteriori SVD vectors leads to a weak acceleration of convergence even if
the size of the basis is large (for case A, the 48 SVD vectors correspond to all
vectors associated to non-null singular values). As a consequence, other vectors
have to be introduced to define the coarse problem. Indeed, at each cycle,
an approximated solution is built which could be not properly represented in
the ROM (SVD vectors are built from the solution of the problem and not
from the iterates). As a consequence, relevant coarse corrections can not be
brought to the FOM from ROM. For that purpose, we have to add other vectors
spanning the orthogonal residual (to SVD basis) of iterated solution. Arbitrary,
we complete SVD vectors with 15 other vectors spanning the residual. At each
cycle, these vectors are updated and the size of the coarse problem remains the
same. On figure 14, we study the influence of the number of SVD vectors fixing
the number of “residual vectors” to 15.

Generally speaking, the more SVD vectors there are, the larger is the num-
ber of used SVD vectors, the smaeller is the number of iterations to converge,
but the larger is the coarse problem. Consequently, we have to make a com-
promise between the size and the relevancy of the coarse model. A too few
number of vectors defining the coarse problem makes the coarse step inefficient
(no accelerating effect) or, even worse, tends to struggle convergence of the al-
gorithm (coarse correction becomes irrelevant). The additional residual vectors
allow to counterbalance a possible lake of relevancy of SVD vectors and ensure
convergence.

FAS/LATIN convergence plots exhibit different regimes in the converging
process: an acceleration of the convergence is clearly seen during a first group
of iterations, then the convergence rate of the former classical LATIN method
is recovered. The larger the reduced basis is, the longer the accelerating regime
pertains. This can be explained by the multiscale content of the reduced basis
as it was exemplified in section 3. During the first iterations, global scale of the
problem is captured (and contained in the first modes of the SVD) involving
a steep slope of the error. Then, the slope reduces depending on the content
of the coarse problem. During this second regime, local scales are solved and
higher order SVD vectors are used to compute coarse correction. The last
regime shows a convergence rate roughly similar to the former LATIN method
convergence rate. Only relaxation steps are useful and the coarse step does not
bring corrections anymore.

Besides the definition of the coarse problem, other parameters can influence
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the behavior of the proposed algorithm, namely: the number of relaxations
before and after the coarse step. This parameter allows to give a prominent role
to the FOM or the ROM. Generally speaking, more relaxations steps renders the
algorithm slower but more robust as shown on figure 15: a too few relaxations
makes fail the convergence of the problem (up to a certain level of accuracy:
for instance on figure 15, ν1 = 1 and ν2 = 0 stops to converge at 10−4). This
may also depend on the number of SVD vectors that are selected. According
to results on figure 15, the less (but a sufficient) number of relaxations is the
optimal configuration. Note that the more relaxations there are for ν1 and ν2,
the closest to the LATIN method our strategy becomes (the less the coarse step
occurs).

5 Parametric study

Product design requires several optimization phases. In particular, physical pa-
rameters has to be choose among discrete or continuous interval values in order
to minimize a cost function. To achieve this goal, response surface methodology
(using e.g. basic interpolations or kriging) can be used to identify the optimum
set of parameters. A such methodology needs several evaluations of the cost
function (a sample of set of parameters) which is a very expensive phase. Thus,
acceleration strategies might be a very useful tool to save up computational
cost. In this respect, we propose to deploy our strategy.

Originally, the LATIN method is very well-suited for such parametric stud-
ies. The main idea consists in re-using a previous solution for a given set of
parameters to start LATIN iterations for a new set of parameters. This way, a
large amount of relaxations (LATIN iterations on the full order model) can be
spared as it is described in [46, 48, 49].

In the other hand, reduced basis methods are also used to accelerate solu-
tions [50, 51, 52]. Generally speaking, these consist in solving once the full-order
problem associated to a first set of parameters and extract a reduced basis from
computed solution (an expensive first phase). Then, the reduced basis is used
(and eventually enriched) to accelerate solutions of other sets of parameters.

We wish study different values for the friction coefficient µ ∈ {µm = 0, 0.01, 0.5, 0.7, µM =
1} focusing on the case A, knowing a first result for µ = 0.15.

First, we propose a reduced basis approach using our strategy. Then, a com-
bination between reusing previous solution to compute new ones (as proposed
in [46, 48]) and our strategy is tested. All these approaches are compared to a
brute force method.

5.1 Brute force method

For each µ, a calculation is carried out with the non-linear full-order LATIN
method (figure 16).

5.2 Reduced basis methods

Two approaches can be used [53]:

(I) First ROM-POD approach. A reduced basis is built from the solution with
µ = 0.15. Then, this basis is used to solve all other problems associated
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to the other friction coefficients.

(II) Second ROM-POD approach. A reduced basis is constructed from reso-
lutions of problem associated to extreme values for the varying parameter
(µ = 0 and µ = 1). Then, we use this basis to solve all problems asso-
ciated to all other µ. SVD reduced basis is built by concatenating and
orthogonalizing the first 20 SVD vectors of the solution for µ = 0 and the
first 20 SVD vectors of the solution for µ = 1.

For both ROM-POD approaches, we update a set of vectors of the reduced
basis on the fly without a posteriori knowledge, but we keep the same size of
the reduced basis.

Results obtained using the proposed algorithm are depicted on figure 16.
Clearly, using our strategy to solve similar problems with varying parameters
allows to reduce the number of relaxations in comparison to brute force method.
Bringing coarse corrections on reduced basis (global scale of the structure) is rel-
evant for all problems differing only on a localized scale (contacting boundary).
Generally speaking, in both approaches, simulations with small coefficients of
friction (µ = 0 and µ = 0.01) are highly accelerated. But for higher ones, ac-
celerating effect is weaker for both approaches. That can be explained by the
toughness of tangential problem which is difficult for large coefficient of friction
requiring particular local modes. Moreover the SVD basis is built with a prob-
lem where the friction coefficient is relatively small (µ = 0.15). Approach (II)
is globally more efficient than approach (I). Indeed, coarse model of approach
(II) is built from a larger panel of solutions and is spanned with more vectors.

Enriching the collection of SVD vectors with vectors spanning the unpro-
jected residual adapts the definition the coarse stage to a specific problem to
solve. It can be seen as an a priori method which tries to maintain the relevancy
of the subspace spanned by the the coarse model.

5.3 Reusing previous solutions

In this paper, we initialize the LATIN and the FAS/LATIN method with the
linear elastic solution (kinematically and statically admissible) without contact
conditions. Now, as in [46, 48], we initialize the LATIN method or FAS/LATIN
with the previous solution computed (figure 17). We compare the number of
relaxations done to reach a precision of 10−4 for all approaches (figure 18). For
the FAS/LATIN, the first reduced basis approach is used (basis computed for
µ = 0.15).

We firstly note that the solution reusing doesn’t reduce the number of rela-
tion for LATIN method. Indeed, the linear elastic solution (used originally) of
the studied case is already a good and relevant first guess of the low-frictional
solutions for case A. In case of µ = 0 (frictionless problem), the solution for
µ = 0.15 is irrelevant (mid-frictional problem) and the number of relaxations
increases. Nevertheless, for high-frictional problems (µ = 0.5 or 0.7), initializing
with a (high-)frictional solution is this time a relevant choice. A quite obvious
conclusion can be drawn, reusing solutions is suited for initializing LATIN to
solve quite similar problems. In addition to this observation, the FAS/LATIN
algorithm provides a very interesting gain and shows its ability to perform such
parametric problems.
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Figure 16: Convergence rate according different methods. (a) : Brute force
method (LATIN method is used to solve each problem) — (b) : approach (I):
ν1 = ν2 = 2, kC = 15, εC = −1, 40 modes from SVD of the solution µ = 0.15
+ 15 residual vectors. (c) : approach (II): ν1 = ν2 = 2, kC = 15, εC = −1.30
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6 Conclusion

This article shows that a frictional contact problem can be reduced and ef-
ficiently described with a set of space-time radial functions (radial solutions)
provided that a time-space model reduction is used. Analyses of each radial so-
lution reveal a clear scale separability of the solution. This observation justifies
the use of multiscale approach. Then, an algorithm based on the non-linear FAS
multigrid solver was proposed. The relaxation step is based on the non-linear
LATIN solver and the non-linear coarse step is based on a reduced basis strategy.
However, a sole POD basis is insufficient to increase efficiently the convergence
rate even if the solution of one problem is highly reducible. This is why a few
more vectors have to complete the POD basis: the iterates of solutions built by
the non-linear iterative solver have to be taken into account. Consequently, a
possible enrichment of the reduced basis is a key point to increase efficiently the
convergence rate of the multiscale approach. Moreover, it has been shown that
such an approach is also well-suited to parametric studies.

In the proposed approach, enrichment of POD basis vectors with residual
vectors can be compared with an a priori method. This enrichment can be
integrated by considering the so-called radial approximation (or separated rep-
resentation). The efficiency of this approach has already been emphasized for
thermal and mechanical problems [54, 53, 44] which is close to PGD (Proper
Generalized Decomposition) methods [55, 56]. PGD methods operate without
a priori knowledge of the solution (contrary to POD approaches). Many works
underline the potential of such a priori approaches [53, 57]. That point is cur-
rently being investigated.
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