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Abstract. Electromagnetic modeling provides high accuracy but is often too time-consuming.
Solving electromagnetic scattering and radiation problems with moment methods or finite
element methods over a large frequency band requires the computer code to be run for every
frequency sample. This is too expensive. So we propose a fast, dccurate methodology for
calculating the electromagnetic behaviour of an antenna with very few simulations over a
large frequency band.
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1 INTRODUCTION

The computational electromagnetic simulation takes so long that the user often reduces the
number of frequency samples in order to have a moderate computitig time. However if the
number of sample points is small, physical effects are wrong considered, so the obtained
results are not right. All these facts are common to various applications as signal processing,
microwave imaging reconstruction and optimization in electromagnetic topics.

Today the cost of computation for the moment method or the finite element method is
expensive because the computer model is running for every frequency sample. But from some
years, various interpolation algorithms were developed and published [1-10]. They were
applied to build a moment matrix and its frequency interpolation.

Our aim is to know the current flows at the antenna surface over the frequency band using
only a limited number of frequency samples adding specific information [10-12] as the
knowledge of the derivatives of these current flows. Then we developed an original adaptive
polynomial interpolation. We present various results and comments for some structures.

2 TECHNICAL MODELING

2.1 Analysis

We propose an original method taking into account the formal knmowledge of the
derivatives of the variational expressions of the current flows. It is numerically solved by a
surface finite element method coupled with an interpolation adaptive algorithm [10-12]. This
approach takes into account the real electromagnetic behavior.

With the frequency derivability results associated to the Huyghens principle for C2
surfaces, and the two derivatives of the Rumisey reaction [10] obtaified by a computer algebra
system (Maple), we determined the unknown current flows and their derivatives at the
antenna surface for a very small number of frequency samples [11-12]. The expressions of the
derivatives of the current flow become more complex when the order of derivation increases
and the kernel singularity is never stronger than the original one. Nevertheless the integration
of the successive kernels needs specific developments.

Solving numerically the Rumsey reaction, we use a finite element computer code (SR3D
of France Télécom R&D). It is based on an integral equation formulation with a triangular
finite element discretization. Thus software SR3D solves an bilinear form equation where a is
a bilinear form, x the vector flow, xt the functions tests. By deriving this expression compared
to the pulsation ® one finds:

a(i,xr):—a—a(x,xt)+a(§£,xt)
a(x,x")=1(x") implies the relation : dw dw da (D
a2 )= 2 ()=t )
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at the order k :

ax

dw

For more visibility, we note X the current flow instead of the notation x above. Thus the
derivative of flows of current (X°, X*) are solutions of a system of the form:

A.X=B (€))

Operator A is the same one, only the second member changes : B’ for X’ and B”” for X™".
It consists of the successive derivatives of A and B and of lower order derivatives of the
current flow. After calculating the vector solution X, the derivative operators and the new
second member are computed. Then we solve the system. The calculation of the derivatives of
the current flow at each frequency requires the one of the successive derivatives of bilinear
forms A and B.

The figure 1 shows a synopsis of our method.

Once the successive derivatives of the unknown current flows are computed at some
sampling points over the frequency band, our special adaptive interpolation routine is applied
to evaluate them [12].

The analysis of the behavior of the intetpolation function (interpolated current flows)
allows to detect critical points where a small number of new sampling frequency points is
needed. So the surface currents can be computed faster (ratio from 1 to 10) and we are able to
deduce the expressions of the antenna characteristics.

ik t_ﬂk I_kél m_a_]c—m m _t
a.:o((aa)) ’x)_(aw) CORDN (aa)) a(z)".x) 2

m=0

Design structure
and specify frequency range
I :
At each frequency Computing matrices A and B
then X
I
Computing derivative operators
for A’,B’, A, B”
I
Computing the first derivative X’
(function of A’, B’ and X)
| :
Computing the second derivative X
(function of A’, A”’, B”” and X")

]IIIIIId."L'ﬂ)'.' timg

Figure 1 : Flow chart of the method
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2.2 Interpolation

Interpolating and approximating a function by polynomials or rational functions looks hard
if we know only a small number of sample points without other information.

Many kinds of interpolation methods exist [13-20], for example : the well known least-
square method, the Taylor series, the Newton, Lagrange, Chebyshev and trigonometric
polynomial interpolations, and so on [16-18]. The Padé is a well old formal transformation of
the first terms of a serie into a rational function as a Chebyshev or Chebyshev-Padé
approximation [15]. The Thiele interpolation is used to derive the rational function
interpolating the data points with the use of continued fractions from the sample points [16].

A piecewise polynomial function that can have a locally very simple form and smooth.
Splines are very useful for modelling arbitrary functions [17].

A rational approximation is sometimes superior to polynomial one because of their ability
to model functions with poles. The degree of the two polynomials are quite difficult to be
determined [18-20]. This approximation is sometimes used by Computer-Aided-Design
software analysing general planar structures (Model Based Parameter Estimation (MBPE) or
Adaptive Frequency Sampling modules) [1,5,19]. It allows to halve or more the number of the
computed points. _

So we develop an original and flexible adaptive fifth order polynomial interpolation based
on the knowledge of the derivatives of the current flows This choice allows to minimize much
more the number of frequency samples (figure 2).

Step 1 Selection of the uniform set of
frequency samples - level 0

Stegz Computine the current flow and its first two

i £ | : -~ FTOeC
NnLs 01 tNe 1Cvel i progross

Step3| Polynomial interpolation
Step 4|  Analysis of the behavior of the function — >>NO
Is there any pathology ? Algorithm successfully
applied >> END

Step 5

wround the il

<< Return to step 2

Figure 2 : Flow chart of the adaptive algorithm
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In this flow chart we present our adaptive algorithm based on the detection of a pathology
in the behavior of the function. It is based on the variations of the first derivative function
associated to the second derivative function.

Our model gives better results than other methods as simple polynomial interpolation,
spline functions, least square (figure 3) [12]. When there is only one peak in the original
function, Thiele interpolation gives very good results. Comparisons are obtained between
various interpolation results and our adaptive model with 7 points only for a 30% bandwidth.

In the case of two or more peaks when the sample frequencies are equally spaced, Maple's
formula for Thiele approximation has singularities which cause it to fail. Some solutions exist
but doesn’t agree always. We present a comparison between various interpolation results and
our model with 7 points only for a 40% bandwidth (figure 4). Here a fifth degree polynomial
is used in the least square method.

So we observe our theoretical results are in excellent agreement. The others methods don’t
give better agreement.

3_
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Figure 3 : Comparison between various interpolation results
and our model with 7 points only for a 30% bandwidth.
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Figure 4 : Comparison between various interpolation results and our model with 7 points only for a 40%
bandwidth. Here a fifth degree polynomial is used in the least square method.

3 RESULTS

The figure 5 presents the variations of the quadratic error versus the frequency in the case
of a line slotted patch antenna. It is obtained from the reference results of SR3D code with 55
frequency points. The level 0 of the algorithm needs 11 frequency samples (blue curve,
named optimized code). The level 1 adds 2 points around 5.1 GHz to refine the results with a
first level (red curve named optimized and adaptive code).

Now we consider a circular waveguide over the frequency band 4.6-6 GHz. This structure
is meshed with 4 432 elements at 5 GHz. Using finite element SR3D code and 70 frequency
points we compute the reference variations of the VSWR (Voltage Standing Wave Ratio) over
this band given by a green curve on figures 6 and 7.

The figure 6 shows the comparison between this red reference curve calculated from the
classical computed current flows and the interpolated variations of the VSWR obtained from
the classical computed current flows (red curve). It is the level 0 of the algorithm. The
quadratic error is less than 5%. However we have a pathologic behavior around 4.9 GHz. So

we run the adaptive version of our modified SR3D code to refine the data set around this
frequency : it is the level 1 of the algorithm.



A
E% n
20 +
The optimized SR3D code
with 11 points
15 4
10

The optimized and adaptive
SR3D code with 11+2 points

Figure 5 : Variations of the quadratic error versus the frequency.
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Figure 6 : Variations of the VSWR Figure 7 : Variations of the VSWR
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The figure 7 presents the refined VSWR by adding one point to the uniform frequency set.
We observe an excellent agreement between the reference and the new interpolated VSWR.

We show on the figure 8 the variations of the computing time saving versus the ratio of the
number (N;) of frequency samples used in the adaptive code related to the number (N) of the
samples used in the classical code. This ratio is usually about 0.06. The saving is very
important and justify the use of the derivatives of the current flows in our model.

In the case of the same structure given in figure 5, we also present some examples of the
efficiency of the adaptive algorithm. So in the figures 9 to 11 we start the interpolation
process respectively with 3, 4 and 7 initial frequency samples only. In each figure, the part (a)
presents the comparison of the average of the twenty strongest values of the modulus of the
current flow versus the frequency (4.5-6.0 GHz) for various numerical simulations. The part
(b) concerns the quadratic average of the twenty first stronger values of the current flows. It is
sufficient to give a excellent idea of the behavior of the real current flow.

When we use a very few initial number of frequency samples we obtain a shift of the
frequency of resonance on the theoretical black curve with regard to the reference one
obtained by SR3D software (green points). When we implement the first level of our adaptive
algorithm we observe a very good alignment between the optimized curve (red curve) and the
reference points (green ones). If the second level of the algorithm is realized, an excellent
agreement is obtained (green curve).

Saving
% A

95 1=

90 +
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80 -
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70

' : : | +— Ni/N
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Figure 8 : Variations of the computing time saving



C. Dedeban, P. Dubois, J.-P. Zolésio and J.-P. Damiano

T T 1 T
1 1 ' L}
1 1
485 [ro g - I"__'_|_“‘""l—___f_'——':'--"—'l'____:_-"——
i : i i
iy hasodoasadtoeob e e S b ue aa :._-_..: _____ L I e
i I 1 1 1
] 1 L ]
42 ek a - N R A
1 1 1 '
1 1 ) 1
1 1 I 1
< S—— e =i
1 1 ' 1
1 | 1 1
| 1 i
52 [mmmmt b o= d i i s bas R s
1 1 1 ] 1
' ' 1 1 [
AT f= === = g ol A o ] Yo o b e
| B 1 1 ] ]
11 1 1 L |}
s ) e gl | ety !!rz‘?: —-ﬂ--%---—%—--—--:-----:—-';;—
= 1 | 1 1
— 1 I 1 1 1
=11 ﬁfﬂwﬁ e s i M e
1 1 i I
1 ] ] ]
1 [ I 1 1
T o R EEEES EETE EETEY LR
1 /_/r’ ! o O 6 Oo—g
1 4 0OV
]Bi : g 0 © #’ ge 1 , E— (ﬁ)
ez i@ dg@m 4958 S5I1B@  S5PS@  5dB@ 5558 5@ 5858 6EE@
] HE W ] ]

] ]
1 ]
R SRR AR YL AN R I IR S | IR
67 [----- " TTTTYTTTTRTTTT T ! 1
] 1 1 I ] 1 ]
1 1 1 L} 1 ! I
1 ! " i 1 1 I 1
Bl prasi= e ) il B S Uil i
1 1 1 1 1 I 1
1 ! I 1 1 I 1
1 1 1 1 L] L] []
55 e - i T et Rl e el (el
] 1 1 1 L) 1 ]
1 L] 1 1 1 1 ]
1 ! 1 1 1 ! 1
L L S e o e et et s e e e e - S ]
1 1 1 1
1 1 1 1
| | | T ' L
43 -==n TN NG~ SPARRINTY J——- FE.

37 - 4]

N
1
1
'
1
T
.
I
15
1

] === S b el T = =
‘ ‘;\é‘u
a5 { s g, 9 v
| 1 i L 1
19 : (b)
d5p9 4pSE  dEB® 489S 2 S1P@  SP5W 5489 55SW  57@W 0 SB58 GHEW
[ ] [ Em mE | ]

Figure 9 (a) : Comparison of the average of the twenty strongest values of the current flows
versus the frequency (4.5 - 6.0 GHz) for various numerical simulations.
(b) : Comparison of the quadratic average of the 20 first stronger values of the current flows
versus the frequency for various numerical simulations.

Black curve : Numerical simulation including interpolation with 3 frequency samples only.
Red curve : Simulation with first level of refinement (2 added points found by the adaptive algorithm)
Green curve : Second level of refinement (new 3 added points found by the adaptive algorithm)
O : Values calculated by the SR3D classical code without any optimization
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Figure 10 (a) : Comparison of the average of the twenty strongest values of the current flows
versus the frequency (4.5 - 6.0 GHz) for various numerical simulations.
(b) : Comparison of the quadratic average of the 20 first stronger values of the current flows
versus the frequency for various numerical simulations.

Black curve : Numerical simulation including interpolation with 4 frequency samples only.
Red curve : Simulation with first level of refinement (3 added points found by the adaptive algorithm)
Green curve : Second level of refinement (new 2 added points found by the adaptive algorithm)
O : Values calculated by the SR3D classical code without any optimization
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Figure 11 (a) : Comparison of the average of the twenty strongest values of the current flows
versus the frequency (4.5 - 6.0 GHz) for various numerical simulations.
(b) : Comparison of the quadratic average of the 20 first stronger values of the current flows
versus the frequency for various numerical simulations.

Black curve : Numerical simulation including interpolation with 7 frequency samples only.
Red curve : Simulation with first level of refinement (2 added points found by the adaptive algorithm)
Green curve : Second level of refinement (new 3 added points found by the adaptive algorithm)
O : Values calculated by the SR3D classical code without any optimization
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4 CONCLUSION

We presented an original and accurate optimization technique to calculate the current flow
at the antenna surface over a large frequency band, given a very small number of the
frequency samples. We use the knowledge of the formal derivatives of the current flow
associated with a polynomial interpolation. We compare our results with reference points
obtained by a finite element code without any optimization. We observe excellent results and
an important computing time saving.
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