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A DYNAMICAL SYSTEM APPROACH TO HEISENBERG

UNIQUENESS PAIRS

PHILIPPE JAMING & KARIM KELLAY

Abstract. Let Λ be a set of lines in R2 that intersect at the origin. For Γ ⊂ R2 a
smooth curve, we denote by AC(Γ) the subset of finite measures on Γ that are absolutely
continuous with respect to arc length on Γ. For such a µ, µ̂ denotes the Fourier transform
of µ.

Following Hendenmalm and Montes-Rodŕıguez, we will say that (Γ,Λ) is a Heisenberg
Uniqueness Pair if µ ∈ AC(Γ) is such that µ̂ = 0 on Λ, then µ = 0.

The aim of this paper is to provide new tools to establish this property. To do so, we will
reformulate the fact that µ̂ vanishes on Λ in terms of an invariance property of µ induced
by Λ. This leads us to a dynamical system on Γ generated by Λ. The investigation of
this dynamical system allows us to establish that (Γ,Λ) is a Heisenberg Uniqueness Pair.
This way we both unify proofs of known cases (circle, parabola, hyperbola) and obtain
many new examples. This method also allows to have a better geometric intuition on why
(Γ,Λ) is a Heisenberg Uniqueness Pair.

1. Introduction

The aim of this paper is to contribute to the study of Fourier uniqueness sets of measures
supported on planar curve. More precisely, in the terminology introduced by Hendenmalm
and Montes-Rodŕıguez in [HMR], we will provide new tools for proving that a piecewise
smooth curve Γ and a set Λ of lines through the origin form a Heisenberg Uniqueness Pairs
(HUP).

The concept of HUP is an extension of the notion of annihilating pairs for the Fourier
transform on L2(R) to the setting of measures see e.g. [AB, Be], Havin and Jöricke’s book
[HJ] or the survey [FS]. Its original motivations comes from sets of uniqueness of PDEs
(in particular for the Klein-Gordon equation). We will show that the problem can be
reformulated in terms of a dynamical system on Γ. This will allow us to find new proofs
for many existing results as well as to find many new cases that seemed out of reach with
the methods used so far.

Let us now be more precise. If µ denotes a finite complex-valued Borel measure in the
plane R2. The Fourier transform of µ is defined by

µ̂(x, y) =

∫

R2

e−i(xs+yt) dµ(s, t).
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For Γ ⊂ R2 that is the finite union of smooth curves that are disjoint (except possibly for
the endpoints), denote by M(Γ) the set of finite complex-valued Borel measures supported
in Γ. Moreover, we denote by AC(Γ) the subset of M(Γ) that consists of measures that
are absolutely continuous with respect to arc length on Γ.

Definition. Let Λ ⊂ R2 and Γ a finite union of smooth disjoint curves. Then (Γ,Λ) is a

Heisenberg Uniqueness Pair if µ ∈ AC(Γ) and µ̂
∣∣∣
Λ
= 0 implies Λ = 0.

Clearly, some of the invariance properties of the Fourier transform transfer to HUPs,
namely:

[Inv 1] Fix (s0, t0), (x0, y0) ∈ R2. Then
(
Γ,Λ

)
is a HUP if and only if

(
Γ − (s0, t0),Λ −

(x0, y0)
)
is a HUP.

[Inv 2] Fix T a linear invertible transformation R2 → R2 and denote by T ∗ its adjoint.
Then

(
Γ,Λ

)
is a HUP if and only if

(
T−1(Γ), T ∗(Λ)

)
is a HUP.

This notion was introduced by Hendenmalm and Montes-Rodŕıguez [HMR] who consid-
ered the case where Γ is a hyperbola {(x, y ∈ R2 : xy = 1} and Λ = αZ×{0}∪{0}×βZ is
the lattice cross i.e. a discrete set included in two lines. The case of Γ an ellipse and Λ two
lines was soon after settled independently by Sjölin [Sj] and Lev [Le]. Finally Sjölin [Sj]
considered the case where Γ is a parabola, thus completing the study of quadratic curves.

Our aim here is to give more geometric proofs of the results of Sjölin and Lev that allow
us to extend their results to case where Γ is a rather general curve and Λ is a union of
two intersecting lines. According to the invariance properties we can assume that the lines
intersect at the origin and write ℓθ = {(t cos θ, t sin θ), t ∈ R} for θ ∈ [0, π).

Our starting point was Sjölin’s proof that parabolas and two well chosen lines form an
HUP. In particular, Sjölin used a simple change of variable that directly reformulates as

Lemma 2.1-Corollary 2.2 in our case. These results show that if µ ∈ AC(Γ) and µ̂
∣∣∣
Λ
= 0

then there is a mapping Φ : Γ → Γ that leaves µ invariant and this mapping a simple geo-
metric interpretation. We will then be able to deduce from the properties of the dynamical
system generated by Φ (existence of a wandering set, existence of attractive points and
ergodicity) that (Γ,Λ) form a Heseinberg Uniqueness Pair. Note that dynamical systems
already play a crucial role in [HMR, CMHMR].

Let us here summarize our main results:

Main Theorem. Let Γ be any of the following curves:

(i) the graph of ψ(t) = |t|α, α > 0;
(ii) a hyperbola;

(iii) a polygon;

(iv) an ellipse.

Then there exists a set E ⊂ (−π/2, π/2)× (−π/2, π/2) of positive measure such that, if

θ1 6= θ2 ∈ E, (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness Pair.

The actual results are both more general and more precise. For i, the case α ≥ 1 is
covered by Corollary 3.3 while the case 0 < α < 1 is covered by Lemma 3.4. We refer
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to Proposition 3.6 for iii). To prove those results we show that the dynamical system
generated by Φ has many wandering sets. We prove ii) in Theorem 3.5 by first transferring
the problem to the circle (using a simple transform from projective geometry) in order
to prove that here too the dynamical system generated by Φ has many wandering sets.
Finally, the case iv is proved in Theorem 4.1 using ergodic theory. In this case, the map
Φ is an irrational rotation. Our technique shows that the same result holds if Γ is any
smooth convex closed curve such that the map Φ has irrational rotation number. However
we are also able to construct an example of a smooth convex closed curve and a set of two
lines that form a HUP though the map Φ has rational rotation number.

Let us conclude this introduction by explaining how our results apply to PDEs.
Let p be a polynomial of two variables and let Γ = {(s, t) ∈ R2 : p(s, t) = 0}. Then

p(i∂x, i∂y)µ̂(x, y) =

∫

R2

e−i(xs+yt)p(s, t) dµ(s, t). (1.1)

Therefore, if µ ∈ AC(Γ) then F = µ̂ solves the PDE

p(i∂x, i∂y)F = 0. (1.2)

Now (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness pair if and only if for every solution F of
(1.2) such that F = µ̂ with µ ∈ AC(Γ), F (x, x cotan θ1) = F (x, x cotan θ2) = 0 for every x
implies F = 0.

We can than reformulate our results in terms of solutions of certain PDEs (and more
generally for certain pseudo-differential equations). We obtain the following

Theorem. Let θ1 6= θ2 ∈ (0, π), aj = cotan θj and α > 0. Assume that F ∈ C2(R2) satisfy
one of the following equations:

(i) Shrödinger Equation

i∂xF ± |∆y|α/2F = 0

then denote Γ = {(t, |t|α), t ∈ R};
(ii) Helmholtz equation

∂2xF + ∂2yF = −α2F

then denote Γ = {(x, y) ∈ R2 : x2+y2 = α2} and further assume that
θ1 − θ2
π

/∈ Q;

(iii) Klein-Gordon equation
∂2xF − ∂2yF = α2F.

then denote Γ = {(x, y) ∈ R2 : x2 − y2 = α2} and further assume that |θ1 − θ2| 6=
π/2.

If F = µ̂ with µ ∈ AC(Γ) and F (x, a1x) = F (x, a2x) = 0 for all x ∈ R, then F = 0.

One would of course like to relax the condition F = µ̂ with µ ∈ AC(Γ) to F = µ̂ with µ
a bounded measure on R2 (which would then necessarily be supported in Γ). It would be
natural to say that (Γ, ℓθ1 ∪ ℓθ2) is a strong Heisenberg Uniqueness Pair in that case.

The remaining of the paper is organized as follows. The following section is devoted to
the technical lemmas we will need. In particular, Section 2.3 contains the three technical
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lemmas linking HUPs and properties of the dynamical system generated by Φ. Section 3 is
then devoted to cases where the dynamical system has many wandering sets, in particular
establishing ??) to iii of the Main theorem in four consecutive subsections. The last section
is devoted to closed curves when the map Φ has a rotation number.

2. Technical Lemmas

2.1. Notation and key lemma. Throughout this paper, I will be a finite union of disjoint
intervals and Γ = {γ(s), s ∈ I} will be a smooth curve in the plane parametrized by a
function γ : I → R2 that is assumed to be one-to-one (except possibly for the end points
of I).

For θ ∈ S1 the unit circle of R2 denote by θ⊥ be the vector in S1 directly orthogonal to
θ. We will use the common abuse of notation by identifying θ with its the angle with the
horizontal axes, θ = (cos θ, sin θ). Let ℓθ = {tθ, t ∈ R} be the line spanned by θ and define
πθx = 〈x, θ〉 so that x → πθ(x)θ is the orthogonal projection of x on ℓθ.

Given µ ∈ AC(Γ) i.e. a measure that is absolutely continuous with respect to arc length
on Γ we write µ(s) = gµ(s)‖γ′(s)‖ds = fµ(s) ds, with fµ ∈ L1(I).

We are now in position to prove the following simple but key lemma:

Lemma 2.1. Assume that Γ, θ are such that there exists a finite partition of I =
⋃N

k=1 Ik
of intervals that are disjoint (up to the endpoints) such that s → πθγ(s) is one-to-one on
each Ik.

Let µ ∈ AC(Γ). Then µ̂(ξ) = 0 for ξ ∈ ℓθ if and only if, for almost every ζ ∈ R

∑

s∈πθγ−1(ζ)

fµ(s)

πθγ′(s)
= 0. (2.3)

Proof. Note that (πθγ)
′ = πθγ

′. Then

µ̂(tθ) =

∫

I

gµ(s)‖γ′(s)‖e−it〈γ(s),θ〉 ds

=

N∑

k=1

∫

Ik

gµ(s)‖γ′(s)‖e−itπθγ(s) ds

=

N∑

k=1

∫

πθγ−1(Ik)

gµ
(
πθγ

−1(ζ)
)∥∥γ′

(
πθγ

−1(ζ)
)∥∥e−itζ dζ

πθγ′
(
πθγ−1(ζ)

)

with the change of variable s = πθγ
−1(ζ) on each Ik. It follows that

µ̂(tθ) =

∫

R

N∑

k=1

1πθγ−1(Ik)(u)
fµ
(
πθγ

−1(ζ)
)

πθγ′
(
πθγ−1(ζ)

)e−itζ dζ

=

∫

R

∑

s∈πθγ−1(ζ)

fµ(s)

πθγ′(s)
e−itζ dζ.



A DYNAMICAL SYSTEM APPROACH TO HEISENBERG UNIQUENESS PAIRS 5

This is now an ordinary Fourier transform so that µ̂(tθ) = 0 for every t if and only if (2.3)
is satisfied. �

Remark.

— If γ is contained in a half place {
〈
x, θ⊥

〉
≥ α} or {

〈
x, θ⊥

〉
≤ α}, then it is enough to

assume that µ̂(tθ) = 0 for t ∈ E a set of finite positive measure for (2.3) to hold.

This follows immediately from the previous proof and the well known fact (see e.g. [HJ,
Page 36]) that if f ∈ L1(R) is such that supp f ⊂ [0,+∞) and if

∫

R

log |f̂(ξ)|
1 + |ξ|2 dξ = −∞

(in particular if f̂ is compactly supported) then f = 0.
— Further, if Γ is contained in a strip {−α ≤

〈
x, θ⊥

〉
≤ α} then we may further restrict

E to be a discrete set of density ≥ α
2π
.

From now on, we will restrict our attention to curves for which (πθγ)
−1(ζ) contains at

most two points. More precisely, the following is a direct reformulation of Lemma 2.1:

Corollary 2.2. Let γ : I → R2 be a piecewise smooth function and θ ∈ [0, 2π). Assume
that we may split I = I0 ∪ I− ∪ I+ in such a way that

(i) πθγ is one-to-one on each interval I0, I+, I−.
(ii) let σ ∈ I and ζ = πθγ(σ) and consider the equation πθγ(s) = ζ. Then

– if σ ∈ I0 this equation has as unique solution s = σ;
– if σ ∈ I− (resp. I+) this equation has two solutions σ± with σ− = σ ∈ I− and

σ+ ∈ I+ (resp. σ+ = σ ∈ I+ and σ− ∈ I−). In this case, we denote πθγ
−1
± (ζ) = σ±

Let µ ∈ AC(Γ). Then µ̂(ξ) = 0 for ξ ∈ ℓθ if and only if,

(i) fµ = 0 on I0
(ii) for every s− ∈ I−, s+ ∈ I+, with πθγ(s−) = πθγ(s+) —that is s+ = πθγ

−1
+

(
πθγ(s−)

)

and s− = πθγ
−1
−

(
πθγ(s+)

)
—

fµ(s+)

πθγ′(s+)
= − fµ(s−)

πθγ′(s−)
. (2.4)

Moreover, if α+, β+ ∈ I+ and α−, β− ∈ I− are such that πθγ(α+) = πθγ(α−), πθγ(β+) =
πθγ(β−) then ∫ β−

α−

fµ(s−) ds− = −
∫ β+

α+

fµ(s+) ds+. (2.5)

and ∣∣∣∣
∫ β−

α−

|fµ(s−)| ds−
∣∣∣∣ =

∣∣∣∣
∫ β+

α+

|fµ(s+)| ds+
∣∣∣∣. (2.6)

Note that (2.5)-(2.6) follows directly from (2.4) if we change variable s+ = πθγ
−1
− (s−) in

the second integral.
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s∈I− s∈I+

s∈I0

✲

✻

θ⊥

θ

πθγ(s−)=πθγ(s+)γ(s−)

s−=πθγ
−1

−

(
πθγ(s)

)
s+=πθγ

−1

+

(
πθγ(s)

)

γ(s+)

Figure 1. The notation of Corollary 2.2

Notation : If γ, θ satisfy the hypothesis of Corollary 2.2 we may define the map

Φθ : I− ∪ I+ → I− ∪ I+, Φθ(s±) = s∓.

This map has a nice geometric interpretation: Consider a point γ(s) with s ∈ I and
draw a line orthogonal to θ starting at γ(s). This line will intersect Γ again in γ

(
Φθ(s)

)
.

Let us now give a first application:

Proposition 2.3. Let ψ : R → R be a continuous piecewise C1 function, such that ψ is
concave on R− and convex on R+ and that ψ has a left and a right derivative in 0 Let
Γ =

{(
s, ψ(s)

)
, s ∈ R

}
be the graph of ψ. Then there is a θ0 such that, if 0 ≤ θ < θ0,

(Γ, ℓθ) is a Heisenberg Uniqueness Pair.

Proof. Let γ(s) =
(
s, ψ(s)

)
, θ ∈ (−π/2, π/2]. Then ϕ(s) := πθγ(s) = s cos θ + ψ(s) sin θ.

We have to show that ϕ is one-to-one, but ϕ′(s) = cos θ + ψ′(s) sin θ. As sin θ ≥ 0,
the convexity hypothesis on ψ implies that ϕ′(s) ≥ cos θ + ψ′(0−) sin θ for s < 0 and
ϕ′(s) ≥ cos θ + ψ′(0+) sin θ for s > 0. Thus, if θ is small enough, ϕ′(s) > 0 for all s thus
πθγ = ϕ is one-to-one.

In the notation of Corollary 2.2, I0 = R. The result follows. �

Example. Let α > 0, Γ = {(s, sign(s)|s|α), s ∈ R}. If α ≥ 1 and θ ∈ [0, π/2] or 0 < α ≤ 1
and θ ∈ [−π/2, 0], then (Γ, ℓθ) is a Heisenberg Uniqueness Pair.

2.2. The regularity of Φθ. The aim of this section is to establish the regularity of the
map Φθ. This is only needed when we investigate closed curves and the reader may skip
this section when first reading the paper.

We will devote this section to prove the following proposition. The result may be ex-
tended to more general curves but, as we will not need it, we will refrain from doing
so.

Proposition 2.4. Let Γ be a closed convex curve with non vanishing curvature and let
γ : [0, 1) → R2 be a parametrization of Γ such that γ′ does not vanish. Assume that γ is
of class Ck. For every θ ∈ R, let Φθ : [0, 1] → [0, 1) be defined by the fact that, for every
s ∈ [0, 1], πθγ

−1
(
γ(s)

)
= {s,Φθ(s)} with the understanding that Φθ(s) = s if πθγ

−1
(
γ(s)

)

is a singleton.
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Then Φθ is well defined, one-to-one on [0, 1), of class Ck−1 in s and θ.

Proof. In this proof it will be convenient to consider θ as being the unit vector (cos θ, sin θ).
First note that, as Γ is a convex curve, a line through a point γ(s) ∈ Γ, orthogonal to

θ, either intersects Γ in two distinct points and the second point is γ
(
Φθ(s)

)
or this line

tangent to Γ. In this case, as the curvature of Γ does not vanish, the tangent to Γ at γ(s)
intersects Γ only in γ(s) and Φθ(s) = s. Note that Φθ is an involution, Φθ

(
Φθ(s)

)
= s.

Now fix θ0 and s
0
− ∈ [0, 1] and let s0+ = Φθ0(s

0
−). Then Φθ is defined implicitly as follows:

let F (s, t, θ) := πθγ(s)− πθγ(t) then{
Φθ0(s

0
−) = s0+

F (s,Φθ(s), θ) = 0
.

Note that
∂F

∂t
= −πθγ′(t) and

∂F

∂θ
= F (s, t, θ⊥). Further πθ0γ

′(s0+) = 0 means that θ0

(resp. θ⊥0 ) is normal (resp. tangent) to Γ at γ(s0+). The previous discussion then shows that
γ(s0+) = γ(s0−) i.e s

0
+ = s0−. Next, F (s0,Φθ0(s0), θ

⊥
0 ) = 0 means that πθ⊥

0
γ(s0−) = πθ⊥

0
γ(s0+).

As πθ0γ(s
0
−) = πθ0γ(s

0
+), this again implies that γ(s0+) = γ(s0−) thus θ0 is not normal to Γ

at γ(s0−).
Using the Implicit Function Theorem, we deduce that, if θ0 is not normal to Γ at γ(s0−),

there exists a neighborhood V ×W of (s0−, θ0) on which (s, θ) → Φθ(s) is of class Ck and

∂Φθ0

∂s
(s−) =

πθ0γ
′(s−)

πθ0γ
′(s+)

. (2.7)

while
∂Φθ

∂θ
(s0−) = − πθγ

′(s0−)

F (s0−,Φθ(s
0
−), θ

⊥)
. (2.8)

Let us now explore what happens in a neighborhood of a point where θ0 is normal to Γ.
First, given θ ∈ S1, the curvature asumption implies that there is exactly one point γ(s)

in Γ such that 〈θ, γ′(s)〉 = 0 and 〈θ, γ′′(s)〉 > 0. Denote by s(θ) this point. As the curvature

at the point γ(s) is given by κ(s) =
| det[γ′(s), γ′′(s)]|

‖γ′(s)‖3 and as 〈θ, γ′(s)〉 = 0, 〈θ, γ′′(s)〉 6= 0.

It follows from the implicit function theorem implies that θ → s(θ) is of class Ck−1 with

∂s(θ)

∂θ
= −

〈
γ′(s), θ⊥

〉

〈γ′′(s), θ〉 .

It remains to prove that s → Φθ(s) is of class Ck−1 in the neighbourhood of s(θ). To
do so, we will appeal to the following simple lemma. The proof is a classical exercise on
Taylor expansions:

Lemma 2.5. Let ψ : V → R2 be of class Ck in a neighborhood V of 0. Assume that the
Taylor expansion of ψ is of the form ψ(s) = (a0 + a1s+ a2s

2 + · · ·+ aks
k, b0 + b2s

2 + · · ·+
bks

k) + o(sk). Then there is a neighborhood W of 0 such that ψ is two-to-one on W : if
s ∈ W , there is exactly one ϕ(s) ∈ W such that ϕ(s) 6= s and ψ

(
ϕ(s)

)
= ψ(s). Moreover,

the map s→ ϕ(s) is of class Ck−1 with ϕ(s) = −s+ o(s).
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Write

γ
(
s(θ) + s

)
= γ

(
s(θ)

)
+ sπθ⊥γ

′(s(θ)
)
+
s2

2

[
πθ⊥γ

′(s(θ)
)
+ πθγ

′(s(θ)
)]

+ o(s2)

where the o(s2) = s2χθ(s) with χθ(s) → 0 uniformly in θ (since s(θ) is smooth). Applying
Lemma 2.5 (in the basis θ, θ⊥ and at the point s(θ) instead of the standard basis and the
point 0), we obtain that Φθ

(
s(θ) + s

)
= s(θ) − s + o(s) with a o(s) that is uniform in

θ. Therefore, Φθ is of class C1 both in s and θ. If we use the fact that γ has a Taylor
expansion of order k, Lemma 2.5 implies that Φθ is of class Ck−1 both in s and θ. �

2.3. Two lines: a dynamical system approach. We will now consider Heisenberg
Uniqueness Pairs of the form (Γ, ℓθ1 ∪ ℓθ2) where Γ = {γ(s), s ∈ I} is a piecewise smooth
curve, and θ1 6= θ2 ∈ [−π/2, π/2) are two angles. Assume that for both angles, Γ is as in
Corollary 2.2. We thus have two splittings I = I10 ∪ I1+ ∪ I1− = I20 ∪ I2+ ∪ I2− and two maps
Φj = Φθj , j = 1, 2. Write Γj

ε, j = 1, 2, ε = 0,+,− for the corresponding parts of Γ.
Let µ ∈ AC(Γ) and assume that µ̂(ξ) = 0 for ξ ∈ ℓθ1 ∪ ℓθ2. According to Corollary 2.2,

fµ = 0 on I10 ∪ I20 . It follows that µ ∈ AC
(
Γ \ (Γ1

0 ∪ Γ2
0)
)
. Without loss of generality, we

may now assume that I10 = I20 = ∅.
From (2.6) we deduce that, for every interval J ⊂ I,

∫

Φj(J)

|fµ(s)| ds =
∫

J

|fµ(s)| ds. (2.9)

This is direct if J ⊂ Ij± and otherwise, we write J as a disjoint union J = J+ ∪ J− with

J± = J ∩ Ij± and write (2.6) for each of J±. As Φj is one-to-one, Φj(J−) and Φj(J+) are
disjoint so that (2.9) is just the sum of (2.6) for J− and J+. Note that Φj(J) is also an
interval.

The fact that (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness Pair will depend on the properties
of the dynamical system generated by the map Φ = Φ2 ◦ Φ1. We will denote by Φn the
n-th iterate of Φ.

We will now prove three lemmas that will allow us to establish Heisenberg Uniqueness.

Lemma 2.6. Let J ⊂ I be an interval and assume that J is wandering for Φ := Φ2 ◦ Φ1,
that is for every j ≥ 1 Φj(J)∩J = ∅ (up to a set of measure 0). If µ ∈ AC(Γ) is such that

µ̂ = 0 on ℓθ1 ∪ ℓθ2 then fµ = 0 on
∞⋃

j=0

Φj(J).

Proof. According to (2.9), for every interval J
∫

Φ2

(
Φ1(J)

) |fµ(s)| ds =
∫

Φ1(J)

|fµ(s)| ds =
∫

J

|fµ(s)| ds

and more generally, for every k ≥ 0
∫

Φk(J)

|fµ(s)| ds =
∫

J

|fµ(s)| ds.
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But as the interval J is wandering and fµ ∈ L1(I)

+∞ >

∫
⋃

∞

j=0 Φ
j(J)

|fµ(s)| ds =
∞∑

j=0

∫

Φj(J)

|fµ(s)| ds

=
∞∑

j=0

∫

J

|fµ(s)| ds

so that 0 =

∫

J

|fµ(s)| ds =
∫

Φk(J)

|fµ(s)| ds thus fµ = 0 on Φk(J). �

Lemma 2.7. Let J ⊂ I be an interval and assume that J is attractive for Φ := Φ2 ◦ Φ1,
that is, there exists k such that Φk(J) ⊂ J . If µ ∈ AC(Γ) is such that µ̂ = 0 on ℓθ1 ∪ ℓθ2
then supp fµ ∩ J ⊂

⋂

n≥1

Φnk(J).

Proof. As in the previous proof∫

J

|fµ(s)| ds =
∫

Φk(J)

|fµ(s)| ds

so that, if Φk(J) ⊂ J , fµ = 0 on J \Φk(J). The result follows by noting that Φ(n+1)k(J) ⊂
Φnk(J). �

The last lemma only applies to closed curves. In this case, we can parametrize γ with a
function γ : [0, 1] → R2 with γ(1) = γ(0) and γ is one-to-one on [0, 1). A rotation of angle
α is then the map t→ t + αmod 1.

Lemma 2.8. Assume further that Γ is a closed curve. Assume that there is a diffeomor-
phism h such that Φ is conjugated by h to a rotation Rα with α ∈ R \Q: Φ = h−1 ◦Rα ◦h.
Then (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness Pair.

Proof. As previously, but using (2.5) instead of (2.6), for every interval I,
∫

Φ(I)

fµ(s) ds =

∫

I

fµ(s) ds

thus, changing variable s = h−1(t) in both integrals we get
∫

h−1(I)

fµ
(
h−1(R−αt)

)

h′
(
h−1(R−αt)

) dt =

∫

Rαh−1(I)

fµ
(
h−1(t)

)

h′
(
h−1(t)

) dt =

∫

h−1(I)

fµ
(
h−1(t)

)

h′
(
h−1(t)

) dt.

As this holds for every I,

fµ
(
h−1(R−αt)

)

h′
(
h−1(R−αt)

) =
fµ
(
h−1(t)

)

h′
(
h−1(t)

) a.e. (2.10)

But then
fµ
(
h−1(t)

)

h′
(
h−1(t)

) =
1

n

n∑

k=1

fµ
(
h−1(Rk

−αt)
)

h′
(
h−1(Rk

−αt)
) →

∫ 1

0

fµ
(
h−1(t)

)

h′
(
h−1(t)

) dt
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for almost every t, according to Birkhoff’s Ergodic Theorem. In particular,
fµ

(
h−1(t)

)

h′

(
h−1(t)

) is a

constant, but (2.4) shows that it is sign changing, thus fµ = 0.
�

3. Heisenberg Uniqueness pairs obtained with the help of wandering sets

3.1. Graphs of functions that go to +∞ in ±∞.

Theorem 3.1. Let ψ be a piecewise smooth function and let θ1 6= θ2 ∈ (0, π) be such that
– ψ(s) sin θi + s cos θi → +∞ when t→ ±∞
– ψ(s) sin θi + s cos θi → +∞ has a unique local minimum.
Let Γ =

{(
s, ψ(s)

)
, s ∈ R

}
be the graph of ψ. Then (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg

uniqueness pair.

Before proving the theorem, Let us make a few comments on the hypothesis on ψ.
First, (Γ, ℓ0) is a Heisenberg uniqueness pair according to corollary 2.2.
Next, the requirements of Theorem 3.1 are commonly met as shows the following lemma:

Lemma 3.2. Let χ be a smooth function such that |t|−1χ(t) → +∞ when t→ ±∞. Then
there exists −π/2 < α < β < π/2 such that, for θ /∈ (α, β), the function ψ defined by
ψ(t) = χ(t) sin θ+ t cos θ is such that ψ(t) → +∞ when t→ ±∞ and ψ has a unique local
minimum.

Proof of Lemma 3.2. The first part of the theorem is obvious and it follows that ψ has
at least one local minimum. To see that this minimum is unique, it is enough to check
that ψ′ has a unique zero. But, the mean value theorem implies that χ′(t) → +∞ when
t → +∞ and χ′(t) → −∞ when t → −∞ thus there is an interval [α, β] such that
ψ′(t) := χ′(t) sin θ + cos θ = 0 has no solution if θ is outside [α, β]. �

a) The graph of b) The rotation of The graph of
χ(t) = t2(t2 − 1) c) the graph of t χ(t) + t

Figure 2. In a), an horizontal line may cross the graph more than twice
while in b) and c) it crosses the graph at most twice.

Remark. This lemma has a geometric meaning namely, if Γ is the graph of a function χ
that goes sufficiently fast to +∞ in ±∞ then there is an interval I such that, if θ ∈ I, one
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may rotate by θ the graph in such a way that an horizontal line intersects the graph at
most twice. The following figure illustrates this in the case χ(t) = t2(t2 − 1) and θ = π/4.

We are now in position to prove the theorem.

Proof of Theorem 3.1. As noticed above, the result is trivial if θ1 = 0 or θ2 = 0. We will
thus exclude this case.

Let γ(s) =
(
s, ψ(s)

)
and let σ0 be the unique local minimum of 〈γ(s), θ1〉 = s cos θ1 +

ψ(s) sin θ1. Note that if γ is smooth this is the unique point such that θ1 is normal to Γ
thus θ⊥1 is tangent to Γ. Without loss of generality, using the invariance property (Inv1),
we may assume that σ0 = 0 and γ(0) = (0, 0). Using (Inv2) we may further assume that

θ1 = −π/2 so that θ⊥1 =~i := (1, 0).
The hypothesis on Γ and θ1 ensure that we may apply Corollary 2.2. In the notation of

Section 2.3, I10 = ∅, I1− = (−∞, 0] and I1+ = [0,+∞) and the map Φ1 : R → R is the map

such that, for every s 6= 0, sΦ1(s) < 0 and ψ
(
Φ1(s)

)
= ψ(s). Note that ψ is decreasing on

I1− and increasing on I1+.
Now 〈γ(s), θ2〉 = s cos θ2 + γ(s) sin θ2 has also a unique local minimum at s2. Up to

a symmetry T : (x, y) → (−x, y), the invariance property (Inv2) shows that we may
assume that s2 ≥ 0 (note that this implies that 0 < θ⊥2 < π/2). Thus in the notation of
Section 2.3, I20 = ∅, I2− = (−∞, s2] and I

2
+ = [s2,+∞) and the map Φ2 : R → R is such

that Φ2(I
2
±) = I2∓ and Γ ∩

(
γ(s) + Rθ⊥2

)
=

{
γ(s), γ

(
Φ2(s)

)}
. Note that ψ(s) + s sin θ2 is

decreasing on I2− and increasing for I2+.
Let us first assume that s2 > 0 and let σ0 = 0.
Next, define σ1 = Φ2(σ) > s2 > 0 and, for k ≥ 1, σk+1 = Φ2

(
Φ1(σk)

)
. We assert that

[σ1, σ2] is a wandering set for Φ = Φ2 ◦ Φ1 and
⋃

k≥1[σk, σk+1] = [σ1,+∞).
Before proving this assertion, let us show that the conclusion of Theorem 3.1 follows.

Indeed, according to Lemma 2.6, fµ = 0 on [σ1,+∞). Appealing to Corollary 2.2 for Φ2,
(2.4) reduces to fµ = 0 on (−∞, 0] = Φ−1

2

(
[σ1,+∞)

)
and then, appealing to Corollary 2.2

for Φ1, (2.4) reduces to fµ = 0 on [0,+∞) as well.

✲θ
⊥
1

θ1
✻t = γ(s)

σ0

σ1

σ2

Figure 3. The construction of σk

Let us now show that σk is strictly increasing. This follows from a simple geometric
consideration: since 0 < θ⊥2 < π/2, if we start at a point A ∈ Γ in the plane, moving



12 PHILIPPE JAMING & KARIM KELLAY

horizontally to the left till we reach Γ again in some point B and then to the right in
direction θ⊥2 , we are moving upward and can therefore only reach Γ again on the right of
A.

More precisely, let sk := Φ1(σk) < 0 < σk so that ψ(sk) = ψ(σk). Then, for t > 0 if
s = sk + t(σk − sk),

ψ(s)





< ψ(sk) if 0 < t < 1

= ψ(σk) if t = 1

> ψ(sk) if t > 1

since ψ decreases on [sk, 0] and increases on R+. On the other hand, for t > 0 ψ(sk) +
t(σk − sk) sin θ2 > ψ(sk) = ψ(σk). Thus if ψ(sk) + t(σk − sk) sin θ2 = ψ(s) then t > 1 that
is s > σk. But, by definition, s = Φ2(sk) = Φ2

(
Φ(σk)

)
= σk+1.

Finally, the only possible finite limit of σk is a fix point of Φ2 ◦ Φ1 that is 0. As
σk > σ1 > s2 ≥ 0, this is not possible.

In the case s2 = 0, it is enough to take σ0 < 0 and then σ1 = Φ2(σ0) > 0. The same
reasonning works and shows that fµ = 0 on R \ [σ0, σ1]. But as σ0 is arbitrary, we let
σ0 → 0 and s2 = 0 implies σ1 → 0 as well. �

Corollary 3.3. Let p ≥ 1 and Γ = {(s, |s|p), s ∈ R}. Let θ1 6= θ2 ∈ [−π/2, π). Then
(Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness Pair.

The case p > 1 is covered by Theorem 3.1. The case p = 2 is due to P. Sjölin [Sj] and
the previous proof is inspired by his work.

Proof. It remains to prove the case p = 1. For |θ− π/2| > π/4, Corollary (2.2) shows that
(Γ, ℓθ) is a Heisenberg Uniqueness Pair since then I0 = R.

If |θ1 − π/2|, |θ2 − π/2| < π/4, then we may again apply Theorem 3.1.
It remains to consider the case θ1 = π/4 or 3π/4 and |θ2 − π/2| ≤ π/4. We will only

consider the case θ1 = π/4, the other case being similar.
Let γ(s) = |s|, and µ = fµ ds. Write f±

µ for the restriction of fµ to R±. If µ̂ = 0 on ℓπ/4
then, for every t ∈ R

0 =

∫

R

fµ(s)e
−i(s+|s|)t/

√
2 dt =

∫

R−

f(s) ds+ f̂+
µ (

√
2t).

Thus

∫

R−

f(s) ds = −f̂+
µ (

√
2t). Riemann-Lebesgue’s Lemma then implies that

∫

R−

f(s) ds =

0 thus f̂+
µ (

√
2t) = 0 thus f+

µ = 0. Now, if θ2 6= π/4 and µ̂ = 0 on ℓθ2 then

0 =

∫

R−

fµ(s)e
−i(cos θ2−sin θ2)st ds = f̂µ

(
(cos θ2 − sin θ2)t

)

for every t ∈ R and as cos θ2 − sin θ2 6= 0, fµ = 0. �
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3.2. Cusps.

Lemma 3.4. Let γ− : (−∞, 0] → R be a smooth strictly convex function such that γ−(0) =

0, γ−(t) → +∞ when t → −∞ and γ(t)
t

→ −∞ when t → 0 and let γ+ : [0,+∞) → R be
a smooth strictly concave function such that γ+(0) = 0, γ+(t) → +∞ when t → +∞ and

γ(t)
t

→ +∞ when t→ 0. Finally let γ(t) =

{(
t, γ−(t)

)
if t < 0(

t, γ+(t)
)

if t > 0
and Γ = {γ(t), t ∈ R}.

Let θ1 6= θ2 ∈ [−π/2, π/2), then (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness Pair.

s+0
fµ = 0 s+0

Figure 4. The wandering set in case of a cusp

Proof. This curve does not exactly fit the hypothesis of Section 2.3
First note that if θ1 = 0 then Γ satisfies the hypothesis of Corollary 2.2 with I0 = R so

that (Γ, ℓ0) is a Heisenberg Uniqueness Pair.
Let Γ− =

{(
s, γ−(s)

)
, s ≤ 0

}
and Γ+ =

{(
s, γ+(s)

)
, s ≥ 0

}

Assume first that −π
2
≤ θ2 < θ1 < 0. Observe that θ⊥j is transverse to Γ− and more

precisely, for every s > 0, there exists a unique s−j < 0 such that
(
γ(s) + Rθ⊥j

)
∩ Γ− =

{γ(s−j )}. Denote by Φ−
j the map s→ s−j .

Let s+0 be the unique s > 0 such that 〈γ′(s), θ1〉 = 0 i.e. the tangent to Γ at γ(s) is
directed by θ1. Note that s+0 always exists if γ′(s) → 0. If this s does not exist, we set
s+0 = +∞. Let s−0 = Φ−

1 (s
+
0 ). Now, for s < s−0 , s /∈ Φ−

j (R
+) so that s ∈ I10 and fµ(s) = 0.

Observe now that, since θ2 < θ1, if s > s+0 Φ−
2 (s) < s−0 so that (2.4) reduces to fµ(s) = 0.

If we write Γ0 = {γ(s), s ∈ [s−0 , s
+
0 ]} then µ ∈ AC(Γ0). Note that Γ0 now satisfies the

conditions of Section 2.3. Moreover, define the map Φ+
2 : [s−0 , 0] → [0, s+0 ] as Φ+

2 being

the unique s ∈ [0, s+0 ] such that
(
γ(s) + Rθ⊥2

)
∩ Γ+ = {γ(s)}. Define

{
s+k+1 = Φ+

2 (s
−
k )

s−k+1 = Φ−
1 (s

+
k )

.

Note that the assumption on θ1 implies that γ−
(
Φ−

1 (s)
)
< γ(s) and γ+

(
Φ+

2 (s)
)
< γ−(s).

It follows that γ+(s
+
k+1) < γ+(s

+
k ) thus s+k+1 < s+k . This implies that s+k converges to

the unique fixed point of Φ+
2 ◦ Φ−

1 , that is 0. Similarily, s−k is strictly decreasing and
converges to 0. As a consequence [s+k+1, s

+
k ] is wandering for Φ+

2 ◦ Φ−
1 and [s−k , s

−
k+1] is

wandering for Φ−
1 ◦ Φ+

2 . According to Lemma 2.6, fµ = 0 on
⋃
[s+k+1, s

+
k ] = (0, s+0 ) and on⋃

[s−k , s
−
k+1] = [s−0 , 0].
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The case 0 < θ2 < θ1 ≤ π
2
is similar, exchanging the roles of Γ+ and Γ−. It remains

to treat the case −π/2 < θ1 < 0 < θ2 < π/2. Define s±0 as previously and again fµ is
supported in [s−0 , s

+
0 ]. Define s̃−0 to be the unique s < 0 such that 〈γ′(s), θ1〉 = 0 (if it

exists and s−0 = −∞ otherwise) and for s < 0 define Φ+
2 (s) as the unique s+ > 0 such that(

γ(s) +Rθ⊥2
)
∩Γ+ = {γ(s+)}. Let s̃+0 = Φ+

2 (s̃
−
0 ). As previously, fµ is supported in [s̃−0 , s̃

+
0 ]

thus in [max(s−0 , s̃
−
0 ),min(s+0 , s̃

+
0 )]. The remaining of the proof is similar. �

Example. Let 0 < α < 1 and Γ = {(s, |s|α, s ∈ R}. Let θ1 6= θ2 ∈ (−π/2, π/2]. Then
(Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness Pair.

3.3. Hyperbolas. Let Γ be the hyperbola

Γ = {(u, v) ∈ R2 : v2 − u2 = 1}.
Let I = (0, 1/2) ∪ (1/2, 1) and γ : I → R2 be a parametrization of Γ given by

γ(s) = (cotan(2πs), 1/ sin(2πs)).

Theorem 3.5. Let Γ be the hyperbola Γ = {γ(s), s ∈ I}. Then (Γ, ℓ±π/4) is a Heisenberg
Uniqueness Pair. Moreover if θ1 6= θ2 ∈ (−π/2, π/2). Then (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg
Uniqueness Pair if and only if θ1 6⊥ θ2.

Remark. In [HMR], the authors give a necessary and sufficient conditions for a lattice
cross Λ in ℓ+π/4 ∪ ℓ−π/4 to form a Heisenberg uniqueness pair (Γ,Λ).

Proof. If θ = ±π
4
than any line orthogonal to θ intersects Γ in at most one point. That is,

in the notation of Corollary 2.2 I0 = I and the theorem follows.

✻v

✲u

U=γ(s)

V=γ(Φ1(s)) θ1

✲T

✻

✲u

T (U)

T (V )

(− tan θ1,0)

Let Φj = Φθj , j = 1, 2 be the maps defined in section 2.3. Consider the transforma-
tion1 T : (u, v) → (u/v, 1/v). Notice that T is a one-to-one map from Γ onto the circle
T∗ = S1\{(−1, 0), (1, 0)} and moreover the image of any line orthogonal to θ is a line L
through the point (− tan θ, 0).

1This transformation has a natural interpretation in projective geometry.
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Let Φ̃j : T∗ → T∗ be a map defined as follows: Φ̃j(α) is the unique β ∈ T∗\{α} such
that the line L(α,β) joining α and β contains the point (− tan θj , 0). Note that

T (γ(Φj(s))) = Φ̃j(T (γ(s))), j = 1, 2.

This transformation allows to transfer the dynamical system generated by Φ = Φ1 ◦Φ2 on

Γ to a new dynamical system on T∗ generated by Φ̃ = Φ̃1 ◦ Φ̃2. In particular we will cover

T∗ by wandering sets for Φ̃. As T is a bijection, I will thus be covered by wandering sets
for Φ. The theorem then follows from lemma 2.6.

We distinguish two cases:

✻v

✲u

a) b)

A B

✻v

✲uA B

Figure 5. a) θ1 > π/4 and b) 0 < θ1 < π/4 ,θ2 = θ1 − π
2

First case. θ1 6∈ (−π/4, π/4)

Using the invariance property (Inv2), we assume without loss of generality that θ1 ∈
(π/4, π/2) and that θ2 < θ1. Thus tan θ1 > 1 and tan θ2 < tan θ2. Let A = (− tan θ1, 0)
and note that, since | tan θ1| > 1, A is in the “exterior” of T∗. Let

T± = {z ∈ T∗ : ± Im z > 0}
and α± ∈ T± the unique point α ∈ T± such that the line L(α,A) is tangent to T. Note that
Re α± = −1/ tan θ1. For ǫ1, ǫ2 = ±1, let

Tǫ1,ǫ2 = {z ∈ Tǫ2 : ǫ1Re z > −1/ tan θ1}.
Note that Φ̃1 is a bijection for Tǫ1,ǫ2 onto T−ǫ1,ǫ2 while Φ̃2 is a bijection for Tǫ onto T−ǫ.

We need the following observation. Let α ∈ T−,+ and β = Φ̃(α) and let ϕ —resp. ψ—
be the angle between the real axis and the line L(A,α) —resp. L(B,α). Then :

• if − tan θ1 < − tan θ2 < −1/ tan θ1, then |ϕ| > |ψ|;
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• if − tan θ2 = −1/ tan θ1, hence θ1 ⊥ θ2 and then ϕ = −ψ;
• if tan θ2 > −1/ tan θ1 then |ϕ| < |ψ|.

So if θ1 6⊥ θ2, then the absolute value of the angles between the real axis and L(A,Φ̃k(α))

is strictly monotonic. Therefore [α, Φ̃(α)] is wandering.

If θ1 ⊥ θ2 the Φ̃k(α) is 2–periodic. Since θ1 ∈ (π/4, π/2), we can define

xθ1 =
1√

sin2 θ1 − cos2 θ1
(− cos θ1, sin θ1) ∈ Γ.

Note that this point is defined by α+ = T (xθ1). Let s0 ∈ [0, 1/2) be such that xθ1 = γ(s0)
and Γ0 = {γ(s), s ∈ (0, s0]}. Let f be any function f ∈ L1(Γ0). We will now extend f to
L1(Γ) as follows:

– first, for s1+ ∈ (s0, 1/2), there is a unique s1− ∈ (0, s0) such that the line joining γ(s1−)
to γ(s1+) is orthogonal to θ1 and we define f(s1+) via Equation 2.4 for θ1:

f(s1+)

πθ1γ
′(s1+)

=
f(s1−)

πθ1γ
′(s1−)

. (3.11)

– Next, for every s2+ ∈ (1/2, 1) there is a unique s2− ∈ (0, 1/2) such that the line joining
γ(s2−) to γ(s

2
+) is orthogonal to θ2 and we define f(s2+) via Equation 2.4 for θ2:

f(s2+)

πθ2γ
′(s2+)

=
f(s2−)

πθ2γ
′(s2−)

. (3.12)

We will denote by s1 = (s0)−+2.
– Finally, for s1+ ∈ (1/2, s1), there is a unique s1− ∈ (s1, 1/2) such that the line joining

γ(s1−) to γ(s
1
+) is orthogonal to θ1 and one easily checks that (3.11) is satifyed.

Let µ = f ds ∈ AC(Γ). According to Corollary 2.2, µ̂ = 0 on ℓθ1 ∪ ℓθ2 . Moreover, every
µ ∈ AC(Γ) such that µ̂ = 0 on ℓθ1 ∪ ℓθ2 can be constructed this way.

Second case. θ1, θ2 ∈ (−π/4, π/4).
Without loss of generality, we assume that θ2 < θ1 thus −1 < tan θ2 < tan θ1 < 1. Let

{α±} = {z ∈ T± : Re z = − tan θ1}
be two point at the vertical of A and define T±,± as previously. Let α ∈ T+,+ and let ϕ
(resp. ψ) be the angle of L(α,A) (resp. L(Φ̃(α),A)) with the real axis, then ψ > ϕ. Again this

implies that [α, Φ̃(α)] is wandering. The other case are similar.
�

3.4. Closed convex curves with a corner point. Let Γ = {γ(s), s ∈ [0, 1]} be a closed
convex curve and assume that γ is piecewise smooth 1-periodic and that γ′ has a jump
singularity at 0 i.e. Γ has a corner point at γ(0). Without loss of generality γ(0) = 0
and let γ′±(0) the vectors defining the two half tangents to Γ at 0. Let H0 be a supporting
hyperplane of Γ at 0. As 0 is a corner point of Γ, this supporting hyperplane is not unique
and we may assume that H0 ∩ Γ = {0}. Up to a rotation, we may assume that H0 is the
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vertical axes. Up to a symmetry, we may also assume that γ covers Γ in counter-clockwise
order.

The fact that 0 is a corner point implies that H0 and γ′±(0) define two positive open
cones C± with C+ in the upper half right quadrant and C− in the lower half right quadrant.
Let C∗

± be the dual cone of C± (i.e. θ⊥ ∈ C+ if and only if θ ∈ C∗
+.

Let θ1, θ2 ∈ C∗
− ∪C∗

+and assume that Γ does not contain a face normal to θ1 nor to θ2, so
that Γ, θi satisfy the hypothesis of Corollary 2.2. We will first treat the case θ1 ∈ C∗

+ and
θ2 ∈ C∗

− and θ1 < θ2 ∈ C∗
+. The case θ1 6= θ2 ∈ C∗

− is obtained by a symmetry with respect
to the horizontal axis.

H0 C+

C∗
+

C−
C∗
−

H1C̃+
Γ+

Γ−

Figure 6. Closed curve with a corner point

Now, there is a unique s ∈ (0, 1) that we denote by s∗ such that the line through γ(s)
directed by θ⊥1 is a supporting line for Γ. Define Γ+ = {γ(s), s ∈ (0, s∗)} and Γ− =
{γ(s), s ∈ (s∗, 1)}. Observe that, due to the convexity of Γ, every line issued from a point
A ∈ Γ+ directed by θ⊥1 will intersect Γ again in a point B ∈ Γ−. Further, a line through
B directed by θ⊥2 will then intersect Γ again in a point C ∈ Γ+. The assumption on the
angles imply that we go from A to C along Γ clockwise. In the language of Section 2.3,
the mapping Φ is strictly decreasing on (0, s∗). But then, for every s ∈ (0, s∗) the interval
[Φ(s), s] is wandering for Φ. According to Lemma 2.6, if µ ∈ AC(Γ) is such that µ̂ = 0 on
ℓθ1 ∪ ℓθ2 , then fµ = 0 on [Φ(s), s]. As s is arbitrary in (0, s∗), fµ = 0 on (0, s∗). Using the
fact that Φ is strictly increasing on (s∗, 1) we obtain that fµ = 0 on (s∗, 1) as well.

If θ1, θ2 are both in C+, a slight adaptation is needed. Without loss of θ1 < θ2. Then
the same geometric argument shows that the map Φ is still strictly decreasing and again
fµ = 0 on (0, s∗). Let s∗ be defined

(
γ(1/2) + Rθ−

)
∩ Γ = {γ(1/2), γ(s∗)} (note that we

might have s∗ = 1/2). Corollary 2.2-(2.4) for θ− shows that fµ = 0 on (s∗, 1). Let s+ be
the

We have thus proved the following:

Proposition 3.6. With the above notation, if θ1 ∈ C∗
+ and θ2 ∈ C∗

− assume that Γ has no
face normal to θ1 nor to θ2. Then (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness Pair.
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Remark. In the case γ(1/2) is also a corner point, the previous proof may easily be
extended to prove the following: Let again C± be the previous cones and define C̃± to be
the analogous cones for γ(1/2), translated to have there summit at the origin. C̃+ is in the
upper left quadrant and C̃− in the lower left one.

Then, if θ1 6 θ2 are in C+ ∪ C− ∪ C̃+ ∪ C̃−, (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness Pair.

Example. If Γ is a convex polygon, then for almost every θ1, there is an open interval of
θ2’s such that (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness Pair. In the case of a regular n-gon,
this interval has length π/n.

4. Heisenberg Uniqueness Pairs and rotation numbers

4.1. The ellipse revisited. Let Γ be an ellipse. According to the invariance properties
(Inv1)-(Inv2) there is no loss of generality in assuming that Γ is the circle centered at 0 of
radius 1, Γ = {γ(t) = (cos 2πt, sin 2πt), t ∈ [0, 1)}.2 Let θ1 6= θ2 be two angles. Without
loss of generality θ1 = 0 and θ2 ∈ [0, π). Let Φ1,Φ2 be the maps associated to them as
in Section 2.3. It is easy to see that Φj is the orthogonal symmetry with respect to the
line through 0 directed by θj , in particular Φ1(s) = −smod 1 while Φ2(s) =

θ2
π
− smod1.

Throughout the remaining of Section 4.1 all functions on Γ will be lifted as 1-periodic
functions on R.

Then, according to Corollary 2.2, µ ∈ AC(Γ) is such that µ̂ = 0 on ℓ0 ∪ ℓθ2 if and only
if fµ(−s) = −fµ(s) and fµ(θ2/π − s) = −fµ(s). In particular, fµ(θ2/π + s) = fµ(s). Note
that conversely, if fµ(θ2/π+s) = fµ(s) and fµ(−s) = −fµ(s), then fµ(θ2/π−s) = −fµ(s).

According to Lemma 2.8, (Γ, ℓθ1∪ℓθ2) is a Heisenberg Uniqueness Pair if θ2 /∈ Q. Assume

now that
θ2
π

=
p

q
, p, q ∈ N, p, q coprime. Then every integer j may be written in the

form j = kp + ℓq so that, if fµ is both 1-periodic and p/q-periodic, then fµ(s + j/q) =
fµ(s + kp/q + ℓ) = fµ(s + kp/q) = fµ(s) i.e. fµ is also 1/q-periodic. The converse is
trivial. Thus µ̂ = 0 on ℓ0 ∪ ℓθ2 if and only if fµ is both odd and 1/q-periodic. Such
functions are all constructed in the following way: take any fµ on (0, 1/2q), extend it into
an odd function on (−1/2q, 1/2q) and then to a 1/q-periodic function on R (thus also to a
1-periodic function).

This gives a more geometric and constructive proof of the following result:

Theorem 4.1 (Lev [Le] and Sjolin [Sj]). Let Γ be a circle and let θ1, θ2 ∈ R Then (Γ, ℓθ1 ∪
ℓθ2) is a Heisenberg Uniqueness Pair if and only if

1

π
(θ2 − θ1) /∈ Q .

For a general ellipse the condition is a bit more complicated. First let a and b the major
and minor semi-axes of the ellipse So that, if we denote by L(x, y) = (x, ay/b) then there
is a rotation Rθ such that LRθΓ is a circle C of radius a. According to the invariance
properties, (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg uniqueness pair if and only if (C, ℓϕ1

∪ ℓϕ2
) with

ℓϕj
= (R−1

θ )∗(L−1)∗ℓθj . It follows that ϕ2 − ϕ1 = arcsin b sin θ2√
a2+b2

− arcsin b sin θ1√
a2+b2

.

2This parametrization has been chosen to be coherent with the usual definition of rotation numbers in
the next section.
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Figure 7. Ellipse

4.2. An extension. Let −π/2 < θ1 6< 0 < θ2 < π/2 be two angles and let ℓ = −2 tan θ1+
2 tan θ2. Define Γ = {γ(t), t ∈ [0, 1]} as follows:

γ(t) =





(
ℓ+ cos 4π(t− 1/8), sin 4π(t− 1/8)

)
for t ∈ [0, 1/4]

(ℓ(2− 4t), 1) for t ∈ [1/4, 1/2](
cos 4π(t− 3/8), sin 4π(t− 3/8)

)
for t ∈ [1/2, 3/4]

(ℓ(−3 + 4t),−1) for t ∈ [3/4, 1]

and write Γ = C+ ∪ S+ ∪ C− ∪ S− for the four corresponding pieces of Γ.

C− C+

S+

S−

Γ1

Γ2

Γ3

Γ4

✲✛2 tan θ2 ✲✛ 2 tan θ1

Figure 8. The domain Γ
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In other words, Γ is a circle of radius 1, cut into two halves, the two halves are then
separated by a distance ℓ and glued together by a rectangle of length ℓ and height 2. This
length is chosen so that the following holds

– take a point Γ1 in C+, and draw a line orthogonal to θ1 and assume this line intersects
S− in a point Γ2. (Otherwise it intersects C+ in a point Γ̃1)

– From Γ2, draw a line orthogonal to θ2. This line will intersect S+ in a point Γ3.
– From Γ3, draw a line orthogonal to θ1. This line will intersect C− in a point Γ4.
Then Γ4 is the translate by (−ℓ, 0) of the point Γ̃4 that is the intersection of C− + (ℓ, 0)

with the line orthogonal to θ1 starting at Γ1.
We may of course exchange C+ and C− that is, to go backwards in the above argument.

Moreover, we can replace θ1 by θ2 (this is needed if, at the first step, we go from Γ1 to Γ̃1).
Define sj, j = 1, . . . , 4 so that γ(sj) = Γj .
Now let µ ∈ AC(Γ) be such that µ̂ = 0 on ℓθ1 ∪ ℓθ2 . Then (2.3) for θ1 in (4.13), then for

θ2 in (4.14) and for θ1 again in (4.15) shows that:

fµ(s1)

πθ1γ
′(s1)

= − fµ(s2)

πθ1γ
′(s2)

= − fµ(s2)

πθ2(4ℓ, 0)

πθ2(4ℓ, 0)

πθ1(4ℓ, 0)
(4.13)

=
fµ(s3)

πθ2(−4ℓ, 0)

πθ2(4ℓ, 0)

πθ1(4ℓ, 0)
=

fµ(s3)

πθ1(−4ℓ, 0)
(4.14)

=
fµ(s4)

πθ1γ
′(s4)

. (4.15)

A similar identity holds if we replace θ1 by θ2.
Let us now define ν a measure on the unit sphere {(cos 2πt, sin 2πt), t ∈ [−1/4, 3/4]} by

fν(t) =

{
fµ(t/2 + 1/8) for t ∈ [−1/4, 1/4]

fµ(t/2 + 3.8) for t ∈ [1/4, 3/4]
.

In other words, ν is µ restricted to the two half-circles (when glued back together).
From the discussion above, we see that (4.15) is (2.3) for fν and θ1. The same holds for

θ2. Therefore, ν̂ = 0 on ℓθ1 ∪ ℓθ2 . But, according to Theorem 4.1, ν = 0, that is fµ = 0 on
[0, 1/4] ∪ [1/2, 3/4]. It follows from (4.13)-(4.14) that fµ = 0 on [1/4, 1/2] ∪ [3/4, 1].

We have thus proved:

Proposition 4.2. Let θ1, θ2, Γ be as above. Then (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness
Pair.

4.3. Rotation numbers. Till the end of section 4.3, we will assume that Γ is a Ck-smooth,
k ≥ 4 closed curve with non vanishing curvature. We parametrize Γ = {γ(s), s ∈ R} where
γ is one-to-one and 1-periodic. Let θ1 6= θ2 be two angles and assume that Γ satisfies the
hypothesis of Corollary 2.2 for both θ1 and θ2. Let Φj = Φθj be the corresponding maps
and write Φθ1,θ2,Γ or simply Φ for Φ = Φ2 ◦ Φ1.

Note that Φ is of class Ck−1 and, as Φ1 and Φ2 are orientation reverting, Φ is orientation
preserving. We denote by Φ̃ a Ck−1 lifting of Φ as a map from R → R.
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We need a bit more notation. All results mentioned in here are standard facts in the
theory of dynamical systems and can be found in [He1, Yo] which also give precise references
for them.

The rotation number of Φ̃ is defined as ρ(Φ̃) = lim Φ̃n(x)−x
n

. As is well known, this limit

exists and does not depend on x. Moreover, we define ρ(Φ) = ρ(Φ̃)mod 1 and this number

does not depend on the choice of lifting Φ̃.
Notation : We will write ρ(Γ; θ1, θ2) = ρ(Φ) to stress the dependence on θ1, θ2 and Γ.

Recall that ρ(Φ) is rational if and only if Φ has a periodic orbit. On the other hand if
α = ρ(Φ) is irrational, it is known that Φ is conjugated to the rotation of angle α (for this
we only need Φ to be of class C2 but C1 may not suffice). However this conjugation may
not be regular, even though Φ is of class C∞. In order to obtain a regular map, we need
more. Recall that α ∈ R \ Q is called diophantian of order β (in α ∈ Cβ) if there exists

C > 0 such that |α− p/q| ≥ C/q2+β for every p/q ∈ Q. Note that
⋃

β≥0

Cβ has full Lebesgue

measure. We will use the following theorem:

Theorem 4.3 (Yoccoz [Yo]). If Φ is of class Ck−1, k ≥ 4, and assume that α := ρ(Φ) ∈ Cβ
with k > 2(β + 1). Then there exists a diffeomorphism h of class Ck−β−2−ε for every ε > 0
such that Φ = h−1 ◦Rα ◦ h where Rα is the rotation of angle α, Rα(t) = t + α mod 1.

Together with Lemma 2.8 we obtain the following

Corollary 4.4. Let β ≥ 0, k ≥ min(4, β + 3, 2β + 2). Let Γ be a Ck smooth closed convex
curve with non-vanishing curvature and θ1, θ2 be two angles. Assume that ρ(Γ; θ1, θ2) ∈ Cβ
then (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness Pair.

Unfortunately, computing the rotation number ρ(Γ; θ1, θ2) is practically impossible. Nev-
ertheless, if we assume that

a ≤ Φ̃(x)− x ≤ b (4.16)

i.e. if we bound the “displacement” of Φ then

na ≤ Φ̃n(x)− x =
n∑

j=1

Φ̃j(x)− Φ̃j−1(x) ≤ nb

thus a ≤ ρ(Γ; θ1, θ2) ≤ b. Note that it is enough to obtain the bound (4.16) for x ∈ [0, 1].

Write t = Φ̃1(x) thus x = Φ̃1(t), since Φ̃−1
1 = Φ̃1, so that (4.16) is equivalent to

a ≤ Φ̃2(t)− Φ̃1(t) ≤ b.

Now, from this, it is obvious that ρ(Γ; θ1, θ2) → 0 when θ2 → θ1. On the other hand,
ρ(Γ; θ1, θ2) 6= 0 since Φ1(x) 6= Φ2(x) (otherwise θ1 6= θ2 would both be normal to Γ) thus

min[0,1](Φ̃1(x) − Φ̃2(x)) > 0 by continuity of Φ1,Φ2. In particular ρ(Γ; θ1, θ2) is not a
constant function of θ1 nor of θ2.

We will appeal to the following
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Theorem 4.5 (Herman [He2]). Let Ψt be a family of diffeomorphisms of [0, 1) of class C3

such that the dependence in the parameter t is of class C1. Then either the rotation number
ρ(Φt) does not depend on t or there exists a set E of positive Lebesgue measure such that,
for every t ∈ E, Φt is conjugated by a C1 diffeomorphisms to a rotation with irrational
angle.

The above comment with the regularity of Φ1 and Φ2 established in Proposition 2.4
imply the following result:

Corollary 4.6. Let Γ be a C4 smooth closed convex curve with non-vanishing curvature.
Then there exists a set of positive Lebesgue measure E ⊂ (−π/2, π/2)2 such that, for almost
every (θ1, θ2) ∈ E, (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness Pair.

4.4. Rational rotation number is compatible with Heisenberg Uniqueness. Let
us conclude with an example of a smooth curve Γ and angles θ1, θ2 such that ρ(Φ) is rational
but such that (Γ, ℓθ1 ∪ ℓθ2) is not a Heisenberg uniqueness pair.

First, let χ be a 1-periodic C∞ function on R such that suppχ = [0, 1/4]+Z, 0 < χ(s) <
1/2 on (0, 1/8) and χ(s) < 0 on (1/8, 1/4). Let γ(s) =

(
1 + χ(s)

)
(cos 2πs, sin 2πs). Note

that γ : [0, 1] → R2 has the following properties

(1) γ is C∞-smooth,
(2) γ(s) = (cos 2πs, sin 2πs) for s ∈ [1/4, 1] i.e. Γ contains 3/4 of the circle C centered

at 0 and radius 1.
(3) |γ(s)| < 1 for s ∈ (0, 1/8) and |γ(s)| > 1 for s ∈ (1/8, 1/4). In other words the part

of Γ in the first quadrant is inside the disc below the diagonal and outside the disc
above the diagonal.

(4) If
(
1 + χ(s)

)2
+ χ′(s)2 − 2

(
1 + χ(s)

)
χ′′(s) ≥ 0 then Γ is convex.

Let θ1 = 0 and θ2 =
π

2
and consider the associated maps Φ1,Φ2 and Φ as in Section

2.3. Note that k/8, k ∈ Z are 2-periodic points of Φ thus Φ has rotation number 1/2.
Then, for s ∈ [1/4, 3/4], Φ(s) = s+ 1/2. For s ∈ (3/4, 7/8), s− 1/2 < Φ(s) < 3/8 and for
s ∈ (7/8, 1), Φ(s) < s− 1/2. As a consequence, if a ∈ (1/4, 3/8) Φ2k(a) is increasing and
bounded, therefore it converges. The limit is a fixed point of Φ and the only possible one
is 3/8. Similarly, if b ∈ (3/8, 1/2), Φ2k(b) is decreasing and bounded and converges to 3/8
as well. It follows that (a, b) is attractive for Φ.

According to Lemma 2.7, if µ ∈ AC(Γ) is such that µ̂ = 0 on ℓ0 ∪ ℓπ/2, then supp fµ ∩
(a, b) ⊂ ⋂

n≥0[Φ
2k(a),Φ2k(b)] = {3/8}. As a is arbitrary in (1/4, 3/8) and b is arbitrary

in (3/8, 1/2), fµ = 0 on (1/4, 1/2). Using Corollary 2.2-(2.4) for Φ1, Φ2, we deduce that
fµ = 0 on (0, 3/2) and using it again for Φ1 or Φ2 we deduce that fµ = 0.

We have thus proved the following:

Proposition 4.7. There exists a smooth closed curve and two angles θ1, θ2 such that
ρ(Γ; θ1, θ2) is rational and (Γ, ℓθ1 ∪ ℓθ2) is a Heisenberg Uniqueness Pair.
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