
Improved Lower Bounds for the Online Bin Stretching Problem

Michaël Gabaya,∗, Nadia Braunera, Vladimir Kotovb

aGrenoble-INP / UJF-Grenoble 1 / CNRS, G-SCOP UMR5272 Grenoble, F-38031, France
bBelarusian State University, FPMI DMA department, 4 Nezavisimosti avenue 220030 Minsk Belarus

Abstract

We use game theory techniques to automatically compute improved lower bounds on the competitive ratio
for the bin stretching problem. Using these techniques, we improve the best lower bound for this problem
to 19/14. We explain the technique and show that it can be generalized to compute lower bounds for any
online or semi-online packing or scheduling problem.

Keywords: Bin Stretching, Scheduling, Online Algorithms, Lower Bounds

1. Introduction

In the online bin stretching problem, we are given a sequence of items de�ned by their weights wi ∈ [0; 1].
They all have to be packed into m bins with in�nite capacities. We know in advance that all the items
can be packed into m bins with unit size. The items are available and packed in the order of the sequence,
without any knowledge on the number of remaining items and their weights. The value of a solution is
equal to the size of the most stretched bin, which is the maximum between 1 and the size of the largest bin.
An algorithm with stretching factor c for the online bin stretching problem is an online algorithm which
successfully packs into m bins of size c, any sequence of items �tting into m unit sized bins. That is, for any
instance I, the algorithm outputs a solution with value at most c. The aim is to �nd an algorithm having
a stretching factor as small as possible.

This problem is equivalent to the scheduling problem Pm|online− list|Cmax where we additionally know
that the optimal makespan is smaller than or equal to a given value C (Pm|online−list, known−OPT |Cmax

is a subcase of this problem). The parameter online − list means that, as soon as a job is presented, all
its characteristics are known (its processing time in our case) and this job has to be scheduled before the
next job is seen. The reader can refer to Borodin and El-Yaniv (1998); Fiat and Woeginger (1998) for more
details about online algorithms and computation and to Pruhs et al. (2004) for online scheduling problems.

The bin stretching problem has been introduced by Azar and Regev (2001). They proposed an algorithm
of stretching factor 1.625 and proved that 4/3 is the optimal stretching factor with two bins. Other algorithms
with improved stretching factor have then been proposed by Kellerer and Kotov (2013); Gabay et al. (2013,
2015); Böhm et al. (2015) who respectively proposed algorithms with stretching factors 11/7 ≈ 1.5714,
26/17 ≈ 1.5294 and then 1.5. The best known upper bound with 3 bins is 1.375 and is due to Böhm et al.
(2015).

The upper bound on the competitive ratio (the stretching factor) for this problem has been improved
while, in the meantime, the best known lower bound remained the same: 4/3. In this paper, we present a
computational approach to derive improved lower bounds for this problem. We use this approach to obtain
a new lower bound with value 19/14 ≈ 1.3571. This lower bound has been proven for instances with 3 or 4

∗Corresponding author
Email addresses: michael.gabay@g-scop.grenoble-inp.fr (Michaël Gabay), nadia.brauner@g-scop.grenoble-inp.fr

(Nadia Brauner), kotovvm@bsu.by (Vladimir Kotov)

October 17, 2015

bins, leaving a gap of 1/56 ≈ 0.018 between the best known lower bound and upper bound for this problem
with 3 bins and 1/7 ≈ 0.143 with 4 or more bins.

In the following section, we de�ne worst-case competitive analysis and present the classical 4/3 lower
bound.

1.1. A lower bound

An online algorithm A is c-competitive if, for any instance I, algorithm A provides a solution with value
at most c times greater than the optimal value, i.e. for all instance I, we have A(I) ≤ c×OPT (I). For the
bin stretching problem, this yields A(I) ≤ c (we are guaranteed that OPT (I) = 1).

Our objective is to improve lower bounds on c for a given problem. Ultimately, the aim is to �nd the small-
est competitive ratio c∗ among all online algorithms for the problem. This corresponds to �nding the largest
value c∗ such that for any online algorithm A, there exists an instance I for which A(I) ≥ c∗ ×OPT (I).

We now present the classical online scheduling lower bound for makespan minimization, adapted to the
bin stretching problem. Consider the problem with 2 bins (m = 2) and the two following sequences of items
in the input:

π =

(
1

3
,
1

3
,
2

3
,
2

3

)
π′ =

(
1

3
,
1

3
, 1

)
Obviously, both of these sequences of items can be packed into two unit sized bins. Consider a c-competitive
deterministic online algorithm A for the bin stretching problem. Algorithm A must pack both of these
sequences of items with stretching factor at most c.

Either A packs both of the �rst two items, of size 1
3 ,

1
3 , in the same bin or in di�erent bins. In the �rst

case, with the sequence π, the smallest bin is �lled to at least 4/3, hence c ≥ 4
3 . Otherwise, with sequence

π′, the smallest bin is �lled to at least 4/3, hence c ≥ 4
3 . In both cases, c ≥ 4

3 . Therefore, the stretching
factor of any online algorithm is greater than or equal to 4

3 .
Azar and Regev (2001) generalized this bound to any number of bins. This bound, however, has not

been improved ever since. We remark that the lower bound from Azar and Regev (2001) can be extended
to prove a lower bound of 7/6 for any randomized algorithms for the bin stretching and with any number of
bins larger than or equal to two. This bound can be obtained by applying a uniform probability distribution
on the two inputs considered by the authors.

Our aim is to improve the 4/3 lower bound. Obviously, one cannot work with all possible algorithms
and instances. Yet, in order to prove that a lower bound is valid, it has to be proven for all deterministic
algorithms. We remark that on a given input, considering all assignments for all items is the same as
considering all algorithms. In the following, we model the problem of �nding lower bounds as a game and
restrict the choices of the adversary. This restriction limits the set of considered instances.

1.2. Contribution

We derive a new worst-case lower bound, with value 19/14 ≈ 1.3571. In order to obtain this bound,
we model the problem as a request-answer game against an adaptive o�-line adversary (Ben-David et al.,
1994). That is, the problem is modeled as a two-player, zero-sum game. Then, we use the so-called adversary
method in which a malicious, omnipotent, adversary is playing against the algorithm to derive improved
lower bounds. In online scheduling literature, layering techniques are often used to derive lower bounds
for deterministic algorithms, see e.g. Albers (1999); Bartal et al. (1994); Rudin and Chandrasekaran (2003).
However, since the optimum is known in advance in the bin stretching problem, this approach is very unlikely
to work. We use an automated approach based on the minimax algorithm (Neumann, 1928), with alpha-beta
pruning (Pearl, 1982) to solve the game where the adversary has restricted choices on the weights of the
items. Moreover, to comply with the known feasibility of the corresponding bin packing problem with unit
sized bins, we use constraint programming to compute feasible decisions of the adversary.

The algorithm outputs a decision tree as a proof. All decisions of the adversary are provided in this
tree, for all decisions of any algorithm. The proof for the 19/14 lower bound with 3 bins is provided in
Appendix A. The proof with 4 bins is not included in this paper as it is much larger and do not seem to
provide more insights on a possible structure to prove the 19/14 lower bound for any number of bins.

2

Similar approaches have already been applied to other problems (Gormley et al., 2000). This compu-
tational approach relies on several classical tools of computer science and combinatorial optimization and
can be generalized and applied to any online or semi-online problem. In this paper, we demonstrate how we
apply it to the bin stretching problem and how the di�erent components are connected together.

1.3. Outline

In Section 2, we model the problem of �nding lower bounds for bin stretching algorithms as a game.
Then, in Section 3, we present the algorithm and cuts we use to solve this game and compute lower bounds.
Further research directions are proposed in Section 4. Eventually, the proof of the lower bound with 3 bins
is included in Appendix A.

2. The bin stretching game

We model the problem of �nding lower bounds for the bin stretching problem as the following two-player,
zero-sum in�nite game:

BIN STRETCHING GAME

Player 1 chooses a positive integer m. Then, successively, until Player 1 chooses Stop:

1. Player 1 (the adversary) chooses a feasible weight de�ning an item or Stop.

2. Player 2 (the algorithm) selects an integer i ∈ {1, . . . ,m} and packs the item into the bin Bi.

The payo� of Player 1 is equal to max(1, max
i=1,...,m

w(Bi)), where w(Bi) =
∑

j∈Bi

wj .

Let wj be the weight selected by Player 1 on iteration j. The weight wj is feasible if and only if the
bin packing problem with m bins of unit capacities and items with weights w1, . . . , wj is feasible. The
bin packing problem is strongly NP-hard (Garey and Johnson, 1979). However, we can consider that the
adversary is an oracle and can easily compute this problem.

Additionally, this is a game with complete information which means that both players know all the
decisions taken and recall the history of the game.

The payo� of Player 1 is c, the stretching factor, while the payo� of Player 2 is −c. This game is a
minimax game where Player 1 aims at maximizing c while Player 2 aims at minimizing c. An algorithm for
the bin stretching problem de�nes a behavior for Player 2. The worst-case competitive ratio of an algorithm
is equal to the supremum of c when Player 2 acts according to the algorithm. The supremum on the payo�
of Player 1 in this game is equal to the value c∗.

It is easy to see that this game is in�nite since the adversary can provide the input wj = 1/2j ,
for j = 1, . . . ,∞. Hence, we cannot explore all feasible choices of the adversary unless we restrain them. To
cope with this issue, we actually consider that Player 1 has the following behavior: at the beginning of a
game, Player 1 chooses a positive integer C. Then, all the weights chosen by Player 1 are in {1/C, 2/C, . . . , 1}
(and he can choose Stop as well). Considering this subset of adversaries, the game is �nite: Player 1 has at
most mC choices before the game is over.

In order to prove that a value c is a lower bound on c∗, it is �su�cient� to show that for any algorithm,
there is an instance such that the stretching factor of the algorithm is greater than or equal to c. We
cannot consider all algorithms but, on a given instance, there is a �nite number of decisions for Player 2 and
considering all decisions is actually the same as considering all algorithms. Hence, we only need to show
that, for any decision of Player 2, there is a sequence of decisions from Player 1 leading to a solution with
value at least c. Figure 1 illustrates this for the 4/3 lower bound. All decisions from Player 2 are considered
while only one decision for each branch is provided for Player 1.

3

(0, 0)
Next: 1/3

(0, 1/3)
Next: 1/3

(0, 2/3)
Next: 2/3

(2/3, 2/3)
Next: 2/3

(2/3, 4/3)(4/3, 2/3)

(0, 4/3)

(1/3, 1/3)
Next: 1

(1/3, 4/3)(4/3, 1/3)

(1/3, 0)
Next: 1/3

(2/3, 0)
Next: 2/3

(2/3, 2/3)
Next: 2/3

(2/3, 4/3)(4/3, 2/3)

(4/3, 0)

(1/3, 1/3)
Next: 1

(1/3, 4/3)(4/3, 1/3)

Figure 1: 4/3 lower bound decision tree. Player 1 decisions are the �Next: wi�. The pairs (w1, w2) are corresponding to the
space used in the bins.

3. Implementation

In order to solve the game, that is, �nd a strategy for Player 1 maximizing c, we implement the minimax
algorithm (depth-�rst search) for the game previously described. We apply the alpha-beta pruning with
several additional cuts. Remark that considering unit capacities and weights in {1/C, 2/C, . . . , 1} is the
same as considering the capacities of the bins to be C and weights in {1, . . . , C}. Hence, we represent an
item by an integer in {1, . . . , C} and a bin by a list of integers, corresponding to the items in the bin.

3.1. Decisions on item weights and assignments

In order to decide whether an item can be proposed by the adversary, we use lower and upper bounds
on the corresponding bin packing problem, including the additional new item. Some of these bounds are
described in the following paragraphs.

Let w1, . . . , wj be the weights of the items, sorted in non-increasing order. We verify that
∑j

i=1 wi ≤ mC
and wm+wm+1 ≤ C. Let k = max{i|wi > C/2} (k = 0 if there are no such items) and l = max{i|wi = C/2}
(l = k if there are no such items), we also ensure that 2k + l ≤ 2m. If any of the previous inequalities is
not veri�ed, then the weight is infeasible. At this step, we can also compute re�ned lower bounds such
as L2 and L3 from Martello and Toth (1990). However, we choose to not compute these bounds since, in
our experiments, subproblems are small and it is computationally more e�cient to immediately solve these
problems with an exact solver. With larger number of bins, one should consider computing these bounds
before computing the exact solution of the problem.

Then, if the problem was not proven infeasible, we compute the best �t decreasing heuristic on the input.
If it is feasible, then the new item is accepted. Otherwise, we need an exact approach to determine whether
current item is feasible.

In our case, we use constraint programming to solve the bin packing problem. This choice was motivated
by the small sizes of the problems that have to be solved. We did not implement a dedicated approach since
the time spent checking feasibility is dominated by the time spent in the rest of the algorithm.

In general, for a semi-online problem, one can use any approach, including integer programming, branch
and bound or any exact dedicated approach to determine whether a move for the adversary is feasible.
We can also use heuristic approaches with the risk of not being able to �nd a lower bound because of a
missed feasible move. However, when a move is validated, it has to be really feasible in order to ensure the
correctness of the results of the algorithm.

4

Eventually, it is not necessary to verify feasibility for all items: once an item is proven feasible, all smaller
items are feasible as well. Hence, by considering adversary choices by decreasing order of the weights of the
items, we only have to �nd the �rst feasible item; then all other choices are smaller items, hence they are
feasible.

3.2. Cuts

The size of the minimax tree is exponential in m and C. Hence, we have to �nd a way to cut branches
in order to be able to compute optimal solutions of the restricted game. The �rst step to reduce the min-
imax tree is to break symmetries on the game: permutations on the bins are actually corresponding to
identical solutions. Moreover, from Player 2 point of view, the items in the bins do not matter. Only the
bin sizes matter. So, the con�guration ((6, 3), (4, 5), ∅) is actually the same as ((7, 1, 1), ∅, (3, 6)). How-
ever, these two con�guration are di�erent from Player 1 point of view since he needs to ensure that the
resulting bin packing problem is feasible. Yet, to both Player 1 and Player 2, the following con�gurations
are equivalent: ((6, 5, 1, 2), (7, 7), ∅), ((6, 1, 7), (5, 2, 7), ∅). These two nodes can actually be described as:
({(0, 1), (14, 2)}, {(1, 1), (2, 1), (6, 1), (7, 2)}) which is the same node to both players. The �rst set of pairs
gives the weights of the bins and their multiplicities while the second set of pairs denotes the weights of the
items and their multiplicities. All nodes having the same encoding are equivalent.

We use this encoding to represent a (partial) solution and we take advantage of it in two ways: when
Player 2 packs an item, the number of edges to explore is equal to the cardinality of the �rst set of the
pair, which is less than or equal to m. Moreover, we use memoization (Michie, 1968) (and compression) to
store and recall the results of the nodes we have already computed and of bin packing problems which have
already been non-trivially solved. Since we use an alpha-beta pruning, which is further described, we also
have to store the values of α and β on the node, in order to be able to determine whether the value of a
node shall be recomputed when it is recalled.

We apply an alpha-beta pruning to the minimax algorithm. The idea is to maintain a lower bound α and
an upper bound β on the stretching factor. The pruning works as follows: on a maximizer node, once it is
known that the solution of this node will be better than the solution of another node having the same parent
(this parent is a minimizer), it is not necessary to explore any other choice. And similarly for minimizer
nodes.

Since the adversary is computing a solution against all algorithms, we can consider several particular
algorithms. Especially, we can consider the algorithm packing all remaining items into the currently smallest
bin. We do not know the remaining items, but we know that the sum of their weights cannot exceed
mC −

∑j
k=1 wk. Let Bi be the smallest bin, if w(Bi) + mC −

∑j
k=1 wk ≤ α then we can immediately

proceed to a β cut-o�.
Additionally, we are aiming at strictly improving known lower bounds and we know that some competitive

ratio can be achieved by some deterministic algorithms. So, we start the exploration with a lower bound
which is equal to the best known lower bound (α = bCc̃c, where c̃ is the best known lower bound on c∗)
and an upper bound which is equal to the competitive ratio of the best algorithm: β = 26C/17 since 26/17
was the best upper bound available at the time of computation.

For most values, the lower bound will not be increased, so we improve the approach by dividing it into
two steps: in the �rst step, we determine whether the lower bound can be improved. If so, in a second
step, we determine the new best lower bound. Otherwise, we go on to the next value. Thus, we start with
α = bCc̃c and β = bCc̃c + 1; such close values allow very early cut-o�s. When the algorithm is over, the
value is either α or β. In the �rst case, the lower bound cannot be improved for current values of m and C.

It is over, we can try a new set of parameters m, C. In the other case, we know that bCc̃c+1
C is a new,

strictly larger lower bound. We re-run the algorithm with β = 26C/17 to see if this new lower bound can
be further improved.

3.3. Results

We implemented the algorithm in Python and used Choco (Jussien et al., 2008) as a constraint program-
ming solver to solve bin packing problems (we also implemented approaches using integer programming).

5

The source code of our implementation is available online1.
Running the program with parameters m = 3 and C = 14, we obtain the improved lower bound

19/14 ≈ 1.357. We backtracked the results and veri�ed them manually. The proof is provided in Ap-
pendix A. With m = 4 and C = 14, the algorithm also �nds the 19/14 lower bound and proves it. We
suspect that 19/14 is a valid lower bound for any number of bins but could not go further with the algorithm
because of the combinatorial explosion.

We used PyPy interpreter on a computer running Linux and equipped with an Intel Core i7-2600K
Processor (clock speed 3.40GHz) and 8GB of RAM to compute lower bounds with our algorithm. Some
experimental results are presented in Table 1. Using our approach, we were able to compute the results for
m = 3 and C up to 20, and m = 4 and C up to 14. With larger values of m, we are only able to compute
results with small C and we do not get improved lower bounds. For larger values of C, the number of nodes
is too large. We remark that the limiting factor is the combinatorial explosion (see column #nodes, Table 1)
and not any algorithmic factor. Optimizing the code or running it on faster computers would barely allow
to compute solutions for the next values of C.

The results presented in Table 1 (except the last column) concern the single step approach, with pruning
parameters initialized to α = b4C/3c and β = 26C/17. The last column gives the number of nodes in the
�rst stage of the two-steps approach, with α = bCc̃c and β = bCc̃c+ 1.

The column #calls corresponds to the number of times an item feasibility was veri�ed. The column
#exact is the number of calls to the exact method (that is when the item was not proven to be feasible or
infeasible by a heuristic or a lower bound). The combinatorial explosion is very well illustrated in column
#nodes where we can see that even with many e�cient cuts, we cannot tackle much larger problems. Table 1
also shows that the time spent verifying items feasibility is negligible compared to the whole time spent.
Time spent is approximately linear in the number of nodes.

Note that for the largest values of C (m = 4 and C = 13, 14), we limited the amount of memoized data
(using an lru cache) and ran computations with the single step approach only. So the number of nodes
displayed in the table is actually larger than the number of nodes that would be obtained with unlimited
memory. For m = 5, we used a server with 32GB of RAM and also limited the number of memoized nodes
(to 6× 107 nodes).

In order to improve this algorithm, one could use a breadth-�rst search and for each depth, use a heuristic
to select a sample of least promising nodes. Exploring these nodes in depth, will allow some early cut-o�s.
Another approach is to set C = 1 and select random weights in]0; 1]. Then, we can run the algorithm on
many random samples of items, hopefully resulting in an improved lower bound. We ran several tests using
random weights distributions but we did not obtain improved lower bounds with this approach.

4. Conclusion

By modeling the bin stretching problem as a game and solving this game with computer science techniques
we provided a �rst improved lower bound and proved it is valid with both 3 and 4 bins. For the case with
3 bins, the new 19/14 lower bound reduces the gap between lower and upper bounds by more than a factor
of two compared to the 4/3 lower bound.

Based on the tree, it is not obvious to �nd out whether this bound can be generalized to any number of
bins m ≥ 5. Yet, the bound is valid for both 3 and 4 bins so it is likely that it remains valid with more bins.

The approach can be generalized and applied to many other packing or scheduling, online or semi-online
problems. Compared to layering techniques, for multiple bins problem, there is however a trade-o� on the
generality of the bound: the lower bound cannot easily be generalized to any number of bins.

Because of the initial knowledge that all items can be packed into m unit sized bins, there is little hope
that layering techniques could work. Future research could focus on �nding more general lower bounds. For
instance, by trying to design a computational approach whose results could be generalized for all values of

1https://github.com/mgabay/Bin-Stretching-Lower-Bounds

6

https://github.com/mgabay/Bin-Stretching-Lower-Bounds

m C c feasibility check overall �rst step

#calls #exact time (s) #nodes time (s) #nodes
3 10 � 4,687 37 0.4 49,055 1.4 41,753

11 � 14,802 141 1.2 168,380 3.4 141,176
12 � 9,125 63 0.5 118,925 2.2 98,186
13 � 32,538 209 1.1 458,183 5.8 384,052
14? 19/14 82,868 644 2.2 1,240,619 14.0 286,845
15 � 55,929 344 1.2 890,291 10.1 702,449
16 � 196,835 1142 3.3 3,384,144 35.5 2,901,483
17 23/17 207,133 1,804 4.0 3,728,386 40.8 1,620,468
18 � 303,725 1,646 4.3 5,692,383 57.2 4,652,427
19 � 1,045,692 4,958 21.0 21,262,246 1225.1 18,653,870
20 27/20 977,992 6,191 21.9 20,283,070 1046.7 11,446,232

4 7 � 6,622 50 0.4 50,642 1.6 39,946
8 � 28,099 182 1.1 254,344 4.5 193,474
9 � 30,991 98 0.8 331,112 4.8 266,926
10 � 127,063 721 2.6 1,442,281 19.5 1,106,147
11 � 503,560 3114 7.5 6,365,822 81.7 5,195,618
12 � 491,497 1974 5.8 6,718,232 89.7 5,158,805
13 � 1,642,949 8103 19.8 24,277,322 344.6 �
14? 19/14 4,139,364 ≈18300 54.0 69,421,282 1503.4 �

5 14 ? >182900 >46,962,700,000 >1,095,060 �

Table 1: Numerical results on few inputs. Column 3, c is the best lower bound on the competitive ratio obtained for the
instance. ��� means that the 4/3 lower bound was not improved. In the last column, ��� means that only the �rst step was
computed (so the actual number of nodes in the �rst step is in column overall #nodes)

m. One could also consider reducing the search space by exploring the search tree for particular families of
algorithms.

Another subject for further research is to �nd good distributions of randomized item weights. By
imposing a structure on the distribution of the weights of the items and running the algorithm on many
inputs it is maybe feasible to improve the lower bounds. A critical factor to improve lower bounds is that
the chosen weights can sum up to 1 in many di�erent ways. This is best achieved with fractions of the same
integer but the whole range of numerators might not be needed.

Acknowledgments

This research has been partially supported by project ICS No 5379 and Belarusian BRFFI grant (Project
F13K-078). The research of the �rst and the second author has been partially supported by the LabEx
PERSYVAL-Lab (ANR�11-LABX-0025).

References

Albers, S., 1999. Better bounds for online scheduling. SIAM Journal on Computing 29 (2), 459�473.
Azar, Y., Regev, O., 2001. On-line bin-stretching. Theoretical Computer Science 268 (1), 17�41.
Bartal, Y., Karlo�, H., Rabani, Y., 1994. A better lower bound for on-line scheduling. Information Processing Letters 50 (3),

113�116.
Ben-David, S., Borodin, A., Karp, R., Tardos, G., Wigderson, A., 1994. On the power of randomization in on-line algorithms.

Algorithmica 11 (1), 2�14.
Borodin, A., El-Yaniv, R., 1998. Online computation and competitive analysis. Vol. 53. Cambridge University Press.
Böhm, M., Sgall, J., van Stee, R., Veselý, P., 2015. Better algorithms for online bin stretching. In: Bampis, E., Svensson, O.

(Eds.), Approximation and Online Algorithms. Vol. 8952 of Lecture Notes in Computer Science. pp. 23�34.
Fiat, A., Woeginger, G. J., 1998. Online algorithms: The state of the art. Springer Berlin Heidelberg.
Gabay, M., Kotov, V., Brauner, N., 2013. Semi-online bin stretching with bunch techniques. Les Cahiers Leibniz 208, 1�10.

7

Gabay, M., Kotov, V., Brauner, N., 2015. Online bin stretching with bunch techniques. Theoretical Computer Science 602, 103
� 113.

Garey, M. R., Johnson, D. S., 1979. Computers and Intractability: A Guide to the Theory of NP-completeness. WH Freeman
and Company, New York.

Gormley, T., Reingold, N., Torng, E., Westbrook, J., 2000. Generating adversaries for request-answer games. In: Proceedings
of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics,
pp. 564�565.

Jussien, N., Rochart, G., Lorca, X., et al., 2008. Choco: an open source java constraint programming library. In: CPAIOR'08
Workshop on Open-Source Software for Integer and Contraint Programming (OSSICP'08). pp. 1�10.

Kellerer, H., Kotov, V., 2013. An e�cient algorithm for bin stretching. Operations Research Letters 41 (4), 343�346.
Martello, S., Toth, P., 1990. Lower bounds and reduction procedures for the bin packing problem. Discrete Applied Mathematics

28 (1), 59�70.
Michie, D., 1968. Memo functions and machine learning. Nature 218 (5136), 19�22.
Neumann, J. v., 1928. Zur theorie der gesellschaftsspiele. Mathematische Annalen 100 (1), 295�320.
Pearl, J., 1982. The solution for the branching factor of the alpha-beta pruning algorithm and its optimality. Communications

of the ACM 25 (8), 559�564.
Pruhs, K., Sgall, J., Torng, E., 2004. Online scheduling. In: Leung, J. Y. (Ed.), Handbook of scheduling: algorithms, models,

and performance analysis. CRC Press.
Rudin, J., Chandrasekaran, R., 2003. Improved bounds for the online scheduling problem. SIAM Journal on Computing 32 (3),

717�735.

Appendix A. Proof of the lower bound

The following tree proves the 19/14 lower bound for the bin stretching problem with 3 bins. This lower
bound was obtained using our algorithm with parameters m = 3 and C = 14.

In the proof, a single decision of the adversary is provided for each decision of the algorithm. We do
not explore branches where the algorithm packs the item in a bin, making it larger than or equal to 19.
Moreover, we stop exploring a branch when there is a feasible item making all algorithms fail. We denote
these latter nodes by �cut: Wmin+wj>=UB�. We recall the input sequence on the leaves. The next items
are not added to this sequence. For instance, for a leaf �input: [2,1,7] / cut: Wmin + 3 >= UB� the
whole input sequence is (2,1,7,3).

In order to make the proof easier to read, we divide the tree in two levels: the �rst level is a root tree
and the second level is a set of subtrees, one for each leaf of the root tree.

8

Name: Root
Next weight: 2

Next weight: 1
bins: [2, 0, 0]

Next weight: 3
bins: [3, 0, 0]

Next weight: 1
bins: [2, 1, 0]

Next weight: 6
bins: [6, 0, 0]

Next weight: 4
bins: [3, 3, 0]

Next weight: 3
bins: [7, 3, 0]

Next weight: 2
bins: [3, 3, 4]

Next weight: 2
bins: [3, 1, 0]

Next weight: 5
bins: [2, 2, 0]

Next weight: 6
bins: [2, 1, 1]

Next weight: 4
bins: [3, 3, 0]

Next weight: 6
bins: [5, 1, 0]

Next weight: 4
bins: [3, 1, 2]

Next weight: 3
bins: [7, 3, 0]

Next weight: 4
bins: [3, 3, 4]

Next weight: 5
bins: [7, 1, 2]

Next weight: 5
bins: [3, 1, 6]

Next weight: 2
bins: [3, 5, 2]

Figure A.2: Root tree

Next weight: 6
bins: [6, 0, 0]

Next weight: 11
bins: [12, 0, 0]

Next weight: 14
bins: [6, 6, 0]

Next weight: 11
bins: [12, 11, 0]

input: [2, 1, 3, 6, 11, 11]
cut: Wmin + 8 >= UB

bins: [12, 11, 11]

input: [2, 1, 3, 6, 14]
cut: Wmin + 14 >= UB

bins: [6, 6, 14]

Figure A.3: Subtree 1, layout [6, 0, 0], items (2,1,3).

9

Next weight: 3
bins: [7, 3, 0]

Next weight: 10
bins: [10, 3, 0]

Next weight: 14
bins: [7, 6, 0]

Next weight: 4
bins: [7, 3, 3]

Next weight: 10
bins: [10, 13, 0]

Next weight: 10
bins: [10, 3, 10]

input: [2, 1, 3, 4, 3, 10, 10]
cut: Wmin + 9 >= UB

bins: [10, 13, 10]

input: [2, 1, 3, 4, 3, 10, 10]
cut: Wmin + 9 >= UB

bins: [10, 13, 10]

input: [2, 1, 3, 4, 3, 14]
cut: Wmin + 14 >= UB

bins: [7, 6, 14]

Next weight: 9
bins: [11, 3, 3]

Next weight: 13
bins: [7, 7, 3]

Next weight: 8
bins: [11, 12, 3]

input: [2, 1, 3, 4, 3, 4, 9, 8]
cut: Wmin + 8 >= UB

bins: [11, 12, 11]

input: [2, 1, 3, 4, 3, 4, 13]
cut: Wmin + 12 >= UB

bins: [7, 7, 16]

Figure A.4: Subtree 2, layout [7, 3, 0], items (2,1,3,4).

10

N
e
x
t

w
e
ig

h
t:

 2
b
in

s:
 [

3
,

3
,

4
]

N
e
x
t

w
e
ig

h
t:

 2
b
in

s:
 [

3
,

3
,

6
]

N
e
x
t

w
e
ig

h
t:

 2
b
in

s:
 [

5
,

3
,

4
]

N
e
x
t

w
e
ig

h
t:

 4
b
in

s:
 [

3
,

3
,

8
]

N
e
x
t

w
e
ig

h
t:

 1
4

b
in

s:
 [

5
,

3
,

6
]

N
e
x
t

w
e
ig

h
t:

 8
b
in

s:
 [

3
,

3
,

1
2

]
N

e
x
t

w
e
ig

h
t:

 1
2

b
in

s:
 [

7
,

3
,

8
]

N
e
x
t

w
e
ig

h
t:

 8
b
in

s:
 [

1
1

,
3

,
1

2
]

in
p
u

t:
 [

2
,

1
,

3
,

4
,

2
,

2
,

4
,

8
,

8
]

cu
t:

 W
m

in
 +

 8
 >

=
 U

B
b
in

s:
 [

1
1

,
1

1
,

1
2

]

in
p
u

t:
 [

2
,

1
,

3
,

4
,

2
,

2
,

4
,

1
2

]
cu

t:
 W

m
in

 +
 1

2
 >

=
 U

B
b
in

s:
 [

7
,

1
5

,
8

]

in
p
u

t:
 [

2
,

1
,

3
,

4
,

2
,

2
,

1
4

]
cu

t:
 W

m
in

 +
 1

4
 >

=
 U

B
b
in

s:
 [

5
,

1
7

,
6

]

N
e
x
t

w
e
ig

h
t:

 4
b
in

s:
 [

7
,

3
,

4
]

N
e
x
t

w
e
ig

h
t:

 1
4

b
in

s:
 [

5
,

3
,

6
]

N
e
x
t

w
e
ig

h
t:

 1
4

b
in

s:
 [

5
,

5
,

4
]

N
e
x
t

w
e
ig

h
t:

 8
b
in

s:
 [

1
1

,
3

,
4

]
N

e
x
t

w
e
ig

h
t:

 1
2

b
in

s:
 [

7
,

3
,

8
]

N
e
x
t

w
e
ig

h
t:

 1
2

b
in

s:
 [

7
,

7
,

4
]

N
e
x
t

w
e
ig

h
t:

 8
b
in

s:
 [

1
1

,
3

,
1

2
]

N
e
x
t

w
e
ig

h
t:

 8
b
in

s:
 [

1
1

,
1

1
,

4
]

in
p
u

t:
 [

2
,

1
,

3
,

4
,

2
,

2
,

4
,

8
,

8
]

cu
t:

 W
m

in
 +

 8
 >

=
 U

B
b
in

s:
 [

1
1

,
1

1
,

1
2

]

in
p
u

t:
 [

2
,

1
,

3
,

4
,

2
,

2
,

4
,

8
,

8
]

cu
t:

 W
m

in
 +

 8
 >

=
 U

B
b
in

s:
 [

1
1

,
1

1
,

1
2

]

in
p
u

t:
 [

2
,

1
,

3
,

4
,

2
,

2
,

4
,

1
2

]
cu

t:
 W

m
in

 +
 1

2
 >

=
 U

B
b
in

s:
 [

7
,

1
5

,
8

]

in
p
u

t:
 [

2
,

1
,

3
,

4
,

2
,

2
,

4
,

1
2

]
cu

t:
 W

m
in

 +
 1

2
 >

=
 U

B
b
in

s:
 [

7
,

7
,

1
6

]

in
p
u

t:
 [

2
,

1
,

3
,

4
,

2
,

2
,

1
4

]
cu

t:
 W

m
in

 +
 1

4
 >

=
 U

B
b
in

s:
 [

5
,

1
7

,
6

]

in
p
u

t:
 [

2
,

1
,

3
,

4
,

2
,

2
,

1
4

]
cu

t:
 W

m
in

 +
 1

4
 >

=
 U

B
b
in

s:
 [

5
,

5
,

1
8

]

Figure A.5: Subtree 3, layout [3, 3, 4], items (2,1,3,4).

11

Next weight: 3
bins: [7, 3, 0]

Next weight: 10
bins: [10, 3, 0]

Next weight: 14
bins: [7, 6, 0]

Next weight: 5
bins: [7, 3, 3]

Next weight: 10
bins: [10, 13, 0]

Next weight: 10
bins: [10, 3, 10]

input: [2, 1, 1, 2, 4, 3, 10, 10]
cut: Wmin + 9 >= UB

bins: [10, 13, 10]

input: [2, 1, 1, 2, 4, 3, 10, 10]
cut: Wmin + 9 >= UB

bins: [10, 13, 10]

input: [2, 1, 1, 2, 4, 3, 14]
cut: Wmin + 14 >= UB

bins: [7, 6, 14]

Next weight: 8
bins: [12, 3, 3]

Next weight: 12
bins: [7, 8, 3]

Next weight: 8
bins: [12, 11, 3]

input: [2, 1, 1, 2, 4, 3, 5, 8, 8]
cut: Wmin + 8 >= UB

bins: [12, 11, 11]

input: [2, 1, 1, 2, 4, 3, 5, 12]
cut: Wmin + 12 >= UB

bins: [7, 8, 15]

Figure A.6: Subtree 4, layout [7, 3, 0], items (2,1,1,2,4).

Next weight: 4
bins: [3, 3, 4]

Next weight: 4
bins: [3, 3, 8]

Next weight: 4
bins: [7, 3, 4]

Next weight: 8
bins: [3, 3, 12]

Next weight: 12
bins: [7, 3, 8]

Next weight: 8
bins: [11, 3, 12]

input: [2, 1, 1, 2, 4, 4, 4, 8, 8]
cut: Wmin + 8 >= UB

bins: [11, 11, 12]

input: [2, 1, 1, 2, 4, 4, 4, 12]
cut: Wmin + 12 >= UB

bins: [7, 15, 8]

Next weight: 8
bins: [11, 3, 4]

Next weight: 12
bins: [7, 3, 8]

Next weight: 12
bins: [7, 7, 4]

Next weight: 8
bins: [11, 3, 12]

Next weight: 8
bins: [11, 11, 4]

input: [2, 1, 1, 2, 4, 4, 4, 8, 8]
cut: Wmin + 8 >= UB

bins: [11, 11, 12]

input: [2, 1, 1, 2, 4, 4, 4, 8, 8]
cut: Wmin + 8 >= UB

bins: [11, 11, 12]

input: [2, 1, 1, 2, 4, 4, 4, 12]
cut: Wmin + 12 >= UB

bins: [7, 15, 8]

input: [2, 1, 1, 2, 4, 4, 4, 12]
cut: Wmin + 12 >= UB

bins: [7, 7, 16]

Figure A.7: Subtree 5, layout [3, 3, 4], items (2,1,1,2,4).

12

Next weight: 6
bins: [5, 1, 0]

Next weight: 11
bins: [11, 1, 0]

Next weight: 14
bins: [5, 7, 0]

Next weight: 14
bins: [5, 1, 6]

Next weight: 11
bins: [11, 12, 0]

Next weight: 11
bins: [11, 1, 11]

input: [2, 1, 1, 2, 6, 11, 11]
cut: Wmin + 8 >= UB

bins: [11, 12, 11]

input: [2, 1, 1, 2, 6, 11, 11]
cut: Wmin + 8 >= UB

bins: [11, 12, 11]

input: [2, 1, 1, 2, 6, 14]
cut: Wmin + 14 >= UB

bins: [5, 7, 14]

input: [2, 1, 1, 2, 6, 14]
cut: Wmin + 14 >= UB

bins: [5, 15, 6]

Figure A.8: Subtree 6, layout [5, 1, 0], items (2,1,1,2).

Next weight: 5
bins: [7, 1, 2]

Next weight: 9
bins: [12, 1, 2]

Next weight: 14
bins: [7, 1, 7]

Next weight: 14
bins: [7, 6, 2]

Next weight: 10
bins: [12, 1, 11]

Next weight: 9
bins: [12, 10, 2]

input: [2, 1, 1, 2, 4, 5, 9, 10]
cut: Wmin + 8 >= UB

bins: [12, 11, 11]

input: [2, 1, 1, 2, 4, 5, 9, 9]
cut: Wmin + 9 >= UB

bins: [12, 10, 11]

input: [2, 1, 1, 2, 4, 5, 14]
cut: Wmin + 13 >= UB

bins: [7, 15, 7]

input: [2, 1, 1, 2, 4, 5, 14]
cut: Wmin + 13 >= UB

bins: [7, 6, 16]

Figure A.9: Subtree 7, layout [7, 1, 2], items (2,1,1,2,4).

13

Next weight: 5
bins: [3, 1, 6]

Next weight: 9
bins: [3, 1, 11]

Next weight: 14
bins: [8, 1, 6]

Next weight: 14
bins: [3, 6, 6]

Next weight: 10
bins: [12, 1, 11]

Next weight: 9
bins: [3, 10, 11]

input: [2, 1, 1, 2, 4, 5, 9, 10]
cut: Wmin + 8 >= UB

bins: [12, 11, 11]

input: [2, 1, 1, 2, 4, 5, 9, 9]
cut: Wmin + 9 >= UB

bins: [12, 10, 11]

input: [2, 1, 1, 2, 4, 5, 14]
cut: Wmin + 13 >= UB

bins: [8, 15, 6]

input: [2, 1, 1, 2, 4, 5, 14]
cut: Wmin + 13 >= UB

bins: [17, 6, 6]

Figure A.10: Subtree 8, layout [3, 1, 6], items (2,1,1,2,4).

Next weight: 6
bins: [2, 1, 1]

Next weight: 4
bins: [8, 1, 1]

Next weight: 4
bins: [2, 7, 1]

Next weight: 10
bins: [12, 1, 1]

Next weight: 14
bins: [8, 5, 1]

Next weight: 10
bins: [12, 11, 1]

input: [2, 1, 1, 6, 4, 10, 10]
cut: Wmin + 8 >= UB

bins: [12, 11, 11]

input: [2, 1, 1, 6, 4, 14]
cut: Wmin + 14 >= UB

bins: [8, 5, 15]

Next weight: 10
bins: [2, 11, 1]

Next weight: 14
bins: [6, 7, 1]

Next weight: 14
bins: [2, 7, 5]

Next weight: 10
bins: [12, 11, 1]

Next weight: 10
bins: [2, 11, 11]

input: [2, 1, 1, 6, 4, 10, 10]
cut: Wmin + 8 >= UB

bins: [12, 11, 11]

input: [2, 1, 1, 6, 4, 10, 10]
cut: Wmin + 8 >= UB

bins: [12, 11, 11]

input: [2, 1, 1, 6, 4, 14]
cut: Wmin + 14 >= UB

bins: [6, 7, 15]

input: [2, 1, 1, 6, 4, 14]
cut: Wmin + 14 >= UB

bins: [16, 7, 5]

Figure A.11: Subtree 11, layout [2, 1, 1], items (2,1,1).

14

N
e
x
t

w
e
ig

h
t:

 2
b
in

s:
 [

3
,

5
,

2
]

N
e
x
t

w
e
ig

h
t:

 4
b
in

s:
 [

3
,

7
,

2
]

N
e
x
t

w
e
ig

h
t:

 1
4

b
in

s:
 [

5
,

5
,

2
]

N
e
x
t

w
e
ig

h
t:

 2
b
in

s:
 [

3
,

5
,

4
]

N
e
x
t

w
e
ig

h
t:

 9
b
in

s:
 [

3
,

1
1

,
2

]
N

e
x
t

w
e
ig

h
t:

 1
4

b
in

s:
 [

7
,

7
,

2
]

N
e
x
t

w
e
ig

h
t:

 1
3

b
in

s:
 [

3
,

7
,

6
]

N
e
x
t

w
e
ig

h
t:

 9
b
in

s:
 [

1
2

,
1

1
,

2
]

N
e
x
t

w
e
ig

h
t:

 9
b
in

s:
 [

3
,

1
1

,
1

1
]

in
p
u

t:
 [

2
,

1
,

1
,

2
,

4
,

2
,

4
,

9
,

9
]

cu
t:

 W
m

in
 +

 8
 >

=
 U

B
b
in

s:
 [

1
2

,
1

1
,

1
1

]

in
p
u

t:
 [

2
,

1
,

1
,

2
,

4
,

2
,

4
,

9
,

9
]

cu
t:

 W
m

in
 +

 8
 >

=
 U

B
b
in

s:
 [

1
2

,
1

1
,

1
1

]

in
p
u

t:
 [

2
,

1
,

1
,

2
,

4
,

2
,

4
,

1
4

]
cu

t:
 W

m
in

 +
 1

2
 >

=
 U

B
b
in

s:
 [

7
,

7
,

1
6

]

in
p
u

t:
 [

2
,

1
,

1
,

2
,

4
,

2
,

4
,

1
3

]
cu

t:
 W

m
in

 +
 1

3
 >

=
 U

B
b
in

s:
 [

1
6

,
7

,
6

]

in
p
u

t:
 [

2
,

1
,

1
,

2
,

4
,

2
,

1
4

]
cu

t:
 W

m
in

 +
 1

4
 >

=
 U

B
b
in

s:
 [

5
,

5
,

1
6

]

N
e
x
t

w
e
ig

h
t:

 4
b
in

s:
 [

3
,

7
,

4
]

N
e
x
t

w
e
ig

h
t:

 1
4

b
in

s:
 [

3
,

5
,

6
]

N
e
x
t

w
e
ig

h
t:

 1
4

b
in

s:
 [

5
,

5
,

4
]

N
e
x
t

w
e
ig

h
t:

 8
b
in

s:
 [

3
,

1
1

,
4

]
N

e
x
t

w
e
ig

h
t:

 1
2

b
in

s:
 [

3
,

7
,

8
]

N
e
x
t

w
e
ig

h
t:

 1
2

b
in

s:
 [

7
,

7
,

4
]

N
e
x
t

w
e
ig

h
t:

 8
b
in

s:
 [

3
,

1
1

,
1

2
]

N
e
x
t

w
e
ig

h
t:

 8
b
in

s:
 [

1
1

,
1

1
,

4
]

in
p
u

t:
 [

2
,

1
,

1
,

2
,

4
,

2
,

2
,

4
,

8
,

8
]

cu
t:

 W
m

in
 +

 8
 >

=
 U

B
b
in

s:
 [

1
1

,
1

1
,

1
2

]

in
p
u

t:
 [

2
,

1
,

1
,

2
,

4
,

2
,

2
,

4
,

8
,

8
]

cu
t:

 W
m

in
 +

 8
 >

=
 U

B
b
in

s:
 [

1
1

,
1

1
,

1
2

]

in
p
u

t:
 [

2
,

1
,

1
,

2
,

4
,

2
,

2
,

4
,

1
2

]
cu

t:
 W

m
in

 +
 1

2
 >

=
 U

B
b
in

s:
 [

1
5

,
7

,
8

]

in
p
u

t:
 [

2
,

1
,

1
,

2
,

4
,

2
,

2
,

4
,

1
2

]
cu

t:
 W

m
in

 +
 1

2
 >

=
 U

B
b
in

s:
 [

7
,

7
,

1
6

]

in
p
u

t:
 [

2
,

1
,

1
,

2
,

4
,

2
,

2
,

1
4

]
cu

t:
 W

m
in

 +
 1

4
 >

=
 U

B
b
in

s:
 [

1
7

,
5

,
6

]

in
p
u

t:
 [

2
,

1
,

1
,

2
,

4
,

2
,

2
,

1
4

]
cu

t:
 W

m
in

 +
 1

4
 >

=
 U

B
b
in

s:
 [

5
,

5
,

1
8

]

Figure A.12: Subtree 9, layout [3, 5, 2], items (2,1,1,2,4).

15

N
e
x
t

w
e
ig

h
t:

 5
b
in

s:
 [

2
,

2
,

0
]

N
e
x
t

w
e
ig

h
t:

 3
b
in

s:
 [

7
,

2
,

0
]

N
e
x
t

w
e
ig

h
t:

 5
b
in

s:
 [

2
,

2
,

5
]

N
e
x
t

w
e
ig

h
t:

 1
1

b
in

s:
 [

1
0

,
2

,
0

]
N

e
x
t

w
e
ig

h
t:

 1
4

b
in

s:
 [

7
,

5
,

0
]

N
e
x
t

w
e
ig

h
t:

 4
b
in

s:
 [

7
,

2
,

3
]

N
e
x
t

w
e
ig

h
t:

 1
0

b
in

s:
 [

1
0

,
1

3
,

0
]

N
e
x
t

w
e
ig

h
t:

 1
0

b
in

s:
 [

1
0

,
2

,
1

1
]

in
p
u

t:
 [

2
,

1
,

1
,

5
,

3
,

1
1

,
1

0
]

cu
t:

 W
m

in
 +

 9
 >

=
 U

B
b
in

s:
 [

1
0

,
1

3
,

1
0

]

in
p
u

t:
 [

2
,

1
,

1
,

5
,

3
,

1
1

,
1

0
]

cu
t:

 W
m

in
 +

 9
 >

=
 U

B
b
in

s:
 [

1
0

,
1

2
,

1
1

]

in
p
u

t:
 [

2
,

1
,

1
,

5
,

3
,

1
4

]
cu

t:
 W

m
in

 +
 1

4
 >

=
 U

B
b
in

s:
 [

7
,

5
,

1
4

]

N
e
x
t

w
e
ig

h
t:

 9
b
in

s:
 [

1
1

,
2

,
3

]
N

e
x
t

w
e
ig

h
t:

 1
4

b
in

s:
 [

7
,

2
,

7
]

N
e
x
t

w
e
ig

h
t:

 1
3

b
in

s:
 [

7
,

6
,

3
]

N
e
x
t

w
e
ig

h
t:

 9
b
in

s:
 [

1
1

,
2

,
1

2
]

N
e
x
t

w
e
ig

h
t:

 9
b
in

s:
 [

1
1

,
1

1
,

3
]

in
p
u

t:
 [

2
,

1
,

1
,

5
,

3
,

4
,

9
,

9
]

cu
t:

 W
m

in
 +

 8
 >

=
 U

B
b
in

s:
 [

1
1

,
1

1
,

1
2

]

in
p
u

t:
 [

2
,

1
,

1
,

5
,

3
,

4
,

9
,

9
]

cu
t:

 W
m

in
 +

 8
 >

=
 U

B
b
in

s:
 [

1
1

,
1

1
,

1
2

]

in
p
u

t:
 [

2
,

1
,

1
,

5
,

3
,

4
,

1
4

]
cu

t:
 W

m
in

 +
 1

2
 >

=
 U

B
b
in

s:
 [

7
,

1
6

,
7

]

in
p
u

t:
 [

2
,

1
,

1
,

5
,

3
,

4
,

1
3

]
cu

t:
 W

m
in

 +
 1

3
 >

=
 U

B
b
in

s:
 [

7
,

6
,

1
6

]

N
e
x
t

w
e
ig

h
t:

 1
0

b
in

s:
 [

2
,

2
,

1
0

]
N

e
x
t

w
e
ig

h
t:

 1
4

b
in

s:
 [

7
,

2
,

5
]

N
e
x
t

w
e
ig

h
t:

 9
b
in

s:
 [

1
2

,
2

,
1

0
]

in
p
u

t:
 [

2
,

1
,

1
,

5
,

5
,

1
0

,
9

]
cu

t:
 W

m
in

 +
 9

 >
=

 U
B

b
in

s:
 [

1
2

,
1

1
,

1
0

]

in
p
u

t:
 [

2
,

1
,

1
,

5
,

5
,

1
4

]
cu

t:
 W

m
in

 +
 1

4
 >

=
 U

B
b
in

s:
 [

7
,

1
6

,
5

]

Figure A.13: Subtree 10, layout [2, 2, 0], items (2,1,1).

16

	Introduction
	A lower bound
	Contribution
	Outline

	The bin stretching game
	Implementation
	Decisions on item weights and assignments
	Cuts
	Results

	Conclusion
	Proof of the lower bound

