N
N

N

HAL

open science

Improved Lower Bounds for the Online Bin Stretching
Problem
Michaél Gabay, Nadia Brauner, Vladimir Kotov

» To cite this version:

Michaél Gabay, Nadia Brauner, Vladimir Kotov. Improved Lower Bounds for the Online Bin Stretch-

ing Problem. 2013. hal-00921663v3

HAL Id: hal-00921663
https://hal.science/hal-00921663v3

Preprint submitted on 6 Jun 2015 (v3), last revised 11 Jul 2023 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00921663v3
https://hal.archives-ouvertes.fr

Improved Lower Bounds for the Online Bin Stretching Problem

Michaél Gabay®*, Nadia Brauner®, Vladimir Kotov?

% Grenoble-INP / UJF-Grenoble 1 / CNRS, G-SCOP UMR5272 Grenoble, F-38031, France
b Belarusian State University, FPMI DMA department, 4 Nezavisimosti avenue 220030 Minsk Belarus

Abstract

We use game theory techniques to automatically compute improved lower bounds on the competitive ratio
for the bin stretching problem. Using these techniques, we improve the best lower bound for this problem
to 19/14. We explain the technique and show that it can be generalized to compute lower bounds for any
online or semi-online packing or scheduling problem. We also present a lower bound, with value 7/6, on the
expected competitive ratio of randomized algorithms for the bin stretching problem.

Keywords: Bin Stretching, Scheduling, Online Algorithms, Lower Bounds

1. Introduction

In the online bin stretching problem, we are given a sequence of items defined by their weights w; € [0;1].
They all have to be packed into m bins with infinite capacities. We know in advance that all the items
can be packed into m bins with unit size. The items are available and packed in the order of the sequence,
without any knowledge on the number of remaining items and their weigths. The value of a solution is
equal to the size of the most stretched bin, which is the maximum between 1 and the size of the largest bin.
An algorithm with stretching factor c¢ for the online bin stretching problem is an online algorithm which
successfully packs into m bins of size ¢, any sequence of items fitting into m unit sized bins. That is, for any
instance I, the algorithm outputs a solution with value at most ¢. The aim is to find an algorithm having
a stretching factor as small as possible.

This problem is equivalent to the scheduling problem Pm|online —list|C),q, where we additionally know
that the optimal makespan is smaller than or equal to a given value C' (Pm|online—list, known—OPT|Cpax
is a subcase of this problem). The parameter online — list means that, as soon as a job is presented, all
its characteristics are known (its processing time in our case) and this job has to be scheduled before the
next job is seen. The reader can refer to Borodin and El-Yaniv (1998); Fiat and Woeginger (1998) for more
details about online algorithms and computation and to Pruhs et al. (2004) for online scheduling problems.

The bin stretching problem has been introduced by Azar and Regev (2001). They proposed an algorithm
of stretching factor 1.625 and proved that 4/3 is the optimal stretching factor with two bins. Other algorithms
with improved stretching factor have then been proposed by Kellerer and Kotov (2013); Gabay et al. (2013);
Bohm et al. (2014) who respectively proposed algorithms with stretching factors 11/7 ~ 1.5714, 26/17 =~
1.5294 and then 1.5. The best known upper bound with 3 bins is 1.375 and is due to Bohm et al. (2014).

The upper bound on the competitive ratio (the stretching factor) for this problem has been improved
while, in the meantime, the best known lower bound remained the same: 4/3. In this paper, we present new
lower bounds for this problem, for both deterministic and randomized algorithms.

For the deterministic problem we derive a lower bound of value 19/14 = 1.3571 with 3 or 4 bins, leaving
a gap of 1/56 ~ 0.018 between the best known lower bound and upper bound for this problem. For the
randomized case, we present a lower bound with value 7/6. This lower bounds holds for any number of bins
greater than or equal to 2.

*Corresponding author

June 6, 2015

In the following section, we define worst-case competitive analysis and present the classical 4/3 lower
bound.

1.1. A lower bound

An online algorithm A is c-competitive if, for any instance I, A provides a solution with value at most
¢ times greater than the optimal value, i.e. for all instance I, we have A(I) < ¢ x OPT(I). For the bin
stretching problem, this yields A(I) < ¢ (we are guaranteed that OPT(I) = 1).

Our objective is to improve lower bounds on ¢ for a given problem. Ultimately, the aim is to find the small-
est competitive ratio ¢* among all online algorithms for the problem. This corresponds to finding the largest
value ¢* such that for any online algorithm A, there exists an instance I for which A(I) > ¢* x OPT(I).

We now present the classical online scheduling lower bound for makespan minimization, adapted to the
bin stretching problem. Consider the problem with 2 bins (m = 2) and the two following sequences of items

in the input:
_ (1122 (11
T=\3333 T=\33

Obviously, both of these sequences of items can be packed into two unit sized bins. Consider a c-competitive
deterministic online algorithm A for the bin stretching problem. Algorithm A must pack both of these
sequences of items with stretching factor at most c.

Either A packs both of the first two items, of size %, %, in the same bin or in different bins. In the first
case, with the sequence 7, the smallest bin is filled to at least 4/3, hence ¢ > 4. Otherwise, with sequence
7, the smallest bin is filled to at least 4/3, hence ¢ > %. In both case, ¢ > Therefore, the stretching
factor of any online algorithm is greater than or equal to %.

Azar and Regev (2001) generalized this bound to any number of bins. This bound, however, has not
been improved ever since.

Our aim is to improve this lower bound. Obviously, we cannot work with all possible algorithms and
instances. Yet, in order to prove that a lower bound is valid, we need to prove that it is valid for all
deterministic algorithms. We remark that on a given input, considering all assignments for all items is the
same as considering all algorithms. In the following, we model the problem of finding lower bounds as a
game and restrict the choices of the adversary. This restriction limits the set of considered instances.

[N

§.

1.2. Contribution

We derive a new worst-case lower bound, with value 19/14 ~ 1.3571. In order to obtain this bound,
we model the problem as a request-answer game against an adaptive off-line adversary (Ben-David et al.,
1994). That is, the problem is modeled as a two-player, zero-sum game. Then, we use the so-called adversary
method in which a malicious, omnipotent, adversary is playing against the algorithm to derive improved
lower bounds. In online scheduling litterature, layering techniques are often used to derive lower bounds for
deterministic algorithms Albers (1999); Bartal et al. (1994); Rudin and Chandrasekaran (2003). However,
since the optimum is known in advance in the bin stretching problem, this approach is very unlikely to
work. We use an automated approach based on the minimax algorithm (Neumann, 1928), with alpha-beta
pruning (Pearl, 1982) to solve the game where the adversary has restricted choices on the weights of the
items. Moreover, to comply with the known feasibility of the corresponding bin packing problem with unit
sized bins, we use constraint programming to compute feasible decisions of the adversary.

The algorithm outputs a decision tree as a proof. All decisions of the adversary are provided in this
tree, for all decisions of any algorithm. The proof for the 19/14 lower bound with 3 bins is provided in
Appendix A.

Similar approaches have already been applied to other problems (Gormley et al., 2000). This compu-
tational approach relies on several classical tools of computer science and combinatorial optimization and
can be generalized and applied to any online or semi-online problem. In this paper, we demonstrate how we
apply it to the bin stretching problem and how the different components are connected together.

By applying Yao’s minimax principle (Yao, 1977), we also obtain a lower bound with value 7/6 for the
expected competitive ratio of any randomized algorithm on the bin stretching problem. The reader can refer
to Epstein and van Stee (2003) for several applications of Yao’s principle on scheduling problems.

2

1.8. Outline

In Section 2, we model the problem of finding lower bounds for bin stretching algorithms as a game.
Then, in Section 3, we present the algorithm and cuts we use to solve this game and compute lower bounds.
Finally, in Section 4, we present a lower bound on randomized algorithms for the bin stretching problem.

2. The bin stretching game

We model the problem of finding lower bounds for the bin stretching problem as the following two-player,
zero-sum infinite game:

BIN STRETCHING GAME

Player 1 chooses a positive integer m. Then, successively, until Player 1 chooses Stop:

1. Player 1 (the adversary) chooses a feasible weight defining an item or Stop.
2. Player 2 (the algorithm) selects an integer ¢ € {1,...,m} and packs the item into the bin B;.

The payoff of Player 1 is equal to max(1, max w(B;)), where w(B;) = > wj.
i=1,...,m JEB;

Let w; be the weight selected by Player 1 on iteration j. The weight w; is feasible if and only if the
bin packing problem with m bins of unit capacities and items with weights wi,...,w; is feasible. The
bin packing problem is strongly N'P-hard (Garey and Johnson, 1979). However, we can consider that the
adversary is an oracle and can easily compute this problem.

Additionally, this is a game with complete information which means that both players know all the
decisions taken and recall the history of the game.

The payoff of Player 1 is ¢, the stretching factor, while the payoff of Player 2 is —c. This game is a
minimax game where Player 1 aims at maximizing ¢ while Player 2 aims at minimizing ¢. An algorithm for
the bin stretching problem defines a behavior for Player 2. The worst-case competitive ratio of an algorithm
is equal to the supremum of ¢ when Player 2 acts according to the algorithm. The supremum on the payoff
of Player 1 in this game is equal to the value c¢*.

It is easy to see that this game is infinite since the adversary can provide the input w; = 1/27,
for 5 =1,...,00. Hence, we cannot explore all feasible choices of the adversary unless we restrain them. To
cope with this issue, we actually consider that Player 1 has the following behavior: at the beginning of a game,
Player 1 chooses a positive integer C. Then, all the weights choosen by Player 1 are in {1/C,2/C,...,1}
(and he can choose Stop as well). Considering this subset of adversaries, the game is finite: Player 1 has at
most mC' choices before the game is over.

In order to prove that a value c is a lower bound on c*, it is “sufficient” to show that for any algorithm,
there is an instance such that the stretching factor of the algorithm is greater than or equal to c¢. We
cannot consider all algorithms but, on a given instance, there is a finite number of decisions for Player 2 and
considering all decisions is actually the same as considering all algorithms. Hence, we only need to show
that, for any decision of Player 2, there is a sequence of decisions from Player 1 leading to a solution with
value at least c. Figure 1 illustrates this for the 4/3 lower bound. All decisions from Player 2 are considered
while only one decision for each branch is provided for Player 1.

3. Implementation

In order to solve the game, that is, find a strategy for Player 1 maximizing ¢, we implement the minimax
algorithm (depth-first search) for the game previously described. We apply the alpha-beta pruning with
several additional cuts. Remark that considering unit capacities and weights in {1/C,2/C,...,1} is the
same as considering the capacities of the bins to be C' and weights in {1,...,C}. Hence, we represent an
item by an integer in {1,...,C} and a bin by a list of integers, corresponding to the items in the bin.

(0,0)

Next: 1/3
(1/3,0) (0,1/3)
Next: 1/3 Next: 1/3
(1/3,1/3) (2/3,0) (1/3,1/3) (0,2/3)
Next: 1 Next: 2/3 Next: 1 Next: 2/3

O S O

(4/3,1/3) (1/3,4/3) (4/3,0) (2/3,2/3) (4/3,1/3) (1/3,4/3) (0,4/3) (2/3,2/3)

Next: 2/3 Next: 2/3
(4/3,2/3) (2/3,4/3) (4/3,2/3) (2/3,4/3)

Figure 1: 4/3 lower bound decision tree. Player 1 decisions are the “Next: w;”. The pairs (w1, w2) are corresponding to the
space used in the bins.

3.1. Decisions on item weights and assignments

In order to decide whether an item can be proposed by the adversary, we use lower and upper bounds
on the corresponding bin packing problem, including the additional new item. Some of these bounds are
described in the following paragraphs. '

Let w1, ..., w; be the weights of the items, sorted in non-increasing order. We verify that Y 7_, w; < mC
and wy, + w1 < C. Let k = max{i|lw; > C/2} (k = 0 if there are no such items) and | = max{i|w; = C/2}
(I = k if there are no such items), we also ensure that 2k + [< 2m. If any of the previous inequalities is
not verified, then the weight is infeasible. At this step, we can also compute refined lower bounds such
as Ly and Ls from Martello and Toth (1990). However, we choose to not compute these bounds since, in
our experiments, subproblems are small and it is computationally more efficient to immediately solve these
problems with an exact solver. With larger number of bins, one should consider computing these bounds
before computing the exact solution of the problem.

Then, if the problem was not proven infeasible, we compute the best fit decreasing heuristic on the input.
If it is feasible, then the new item is accepted. Otherwise, we need an exact approach to determine whether
current item is feasible.

In our case, we use constraint programming to solve the bin packing problem. This choice was motivated
by the small sizes of the problems that have to be solved. We did not implement a dedicated approach since
the time spent checking feasibility is dominated by the time spent in the rest of the algorithm.

In general, for a semi-online problem, one can use any approach, including integer programming, branch
and bound or any exact dedicated approach to determine whether a move for the adversary is feasible.
We can also use heuristic approaches with the risk of not being able to find a lower bound because of a
missed feasible move. However, when a move is validated, it has to be really feasible in order to ensure the
correctness of the results of the algorithm.

Eventually, it is not necessary to verify feasibility for all items: once an item is proven feasible, all smaller
items are feasible as well. Hence, by considering adversary choices by decreasing order of the weights of the
items, we only have to find the first feasible item; then all other choices are smaller items, hence they are
feasible.

3.2. Cuts

The size of the minimax tree is exponential in m and C. Hence, we have to find a way to cut branches
in order to be able to compute optimal solutions of the restricted game. The first step to reduce the min-

4

imax tree is to break symmetries on the game: permutations on the bins are actually corresponding to
identical solutions. Moreover, from Player 2 point of view, the items in the bins do not matter. Only the
bin sizes matter. So, the configuration ((6,3),(4,5),0) is actually the same as ((7,1,1),0,(3,6)). How-
ever, these two configuration are different from Player 1 point of view since he needs to ensure that the
resulting bin packing problem is feasible. Yet, to both Player 1 and Player 2, the following configurations
are equivalent: ((6,5,1,2),(7,7),0), ((6,1,7),(5,2,7),0). These two nodes can actually be described as:
({(0,1),(14,2)},{(1,1),(2,1),(6,1),(7,2)}) which is the same node to both players. The first set of pairs
gives the weights of the bins and their multiplicities while the second set of pairs denotes the weights of the
items and their multiplicities. All nodes having the same encoding are equivalent.

We use this encoding to represent a (partial) solution and we take advantage of it in two ways: when
Player 2 packs an item, the number of edges to explore is equal to the cardinality of the first set of the
pair, which is less than or equal to m. Moreover, we use memoization (Michie, 1968) (and compression) to
store and recall the results of the nodes we have already computed and of bin packing problems which have
already been non-trivially solved. Since we use an alpha-beta pruning, which is further described, we also
have to store the values of o and 8 on the node, in order to be able to determine whether the value of a
node shall be recomputed when it is recalled.

We apply an alpha-beta pruning to the minimax algorithm. The idea is to maintain a lower bound « and
an upper bound S on the stretching factor. The pruning works as follows: on a maximizer node, once it is
known that the solution of this node will be better than the solution of another node having the same parent
(this parent is a minimizer), it is not necessary to explore any other choice. And similarly for minimizer
nodes.

Since the adversary is computing a solution against all algorithms, we can consider several particular
algorithms. Especially, we can consider the algorithm packing all remaining items into the currently smallest
bin. We do not know the remaining items, but we know that the sum of their weights cannot exceed
mC — Y7 _, wy. Let B; be the smallest bin, if w(B;) + mC — > 7_, wr < « then we can immediately
proceed to a 3 cut-off.

Additionally, we are aiming at strictly improving known lower bounds and we know that some competitive
ratio can be achieved by some deterministic algorithms. So, we start the exploration with a lower bound
which is equal to the best known lower bound (o = |C¢|, where ¢ is the best known lower bound on c¢*)
and an upper bound which is equal to the competitive ratio of the best algorithm: 5 = 26C/17 since 26/17
was the best upper bound available at the time of computation.

For most values, the lower bound will not be increased, so we improve the approach by dividing it into
two steps: in the first step, we determine whether the lower bound can be improved. If so, in a second
step, we determine the new best lower bound. Otherwise, we go on to the next value. Thus, we start with
a = |C¢| and B = [C¢] + 1; such close values allow very early cut-offs. When the algorithm is over, the
value is either a or §. In the first case, the lower bound cannot be improved for current values of m and C.
It is over, we can try a new set of parameters m, C. In the other case, we know that % is a new,
strictly larger lower bound. We re-run the algorithm with 8 = 26C/17 to see if this new lower bound can
be further improved.

3.3. Results

We implemented the algorithm in Python and used Choco (Jussien et al., 2008) as a constraint program-
ming solver to solve bin packing problems (we also implemented approaches using integer programming).
The source code of our implementation is available online'.

Running the program with parameters m = 3 and C = 14, we obtain the lower bound 19/14 ~ 1.357.
We backtracked the results and verified them manually. The proof is provided in Appendix A. We also
managed to prove that this 19/14 bound is valid with 4 bins (m = 4) using this same algorithm.

We used PyPy interpreter on a computer running Linux and equipped with an Intel Core i7-2600K
Processor (clock speed 3.40GHz) and 8GB of RAM to compute lower bounds with our algorithm. Some

'https://github.com/mgabay/Bin-Stretching- Lower-Bounds

5

https://github.com/mgabay/Bin-Stretching-Lower-Bounds

experimental results are presented in Table 1. Using our approach, we were able to compute the results for
m =3 and C up to 20, and m = 4 and C up to 14. With larger values of m, we are only able to compute
results with small C' and we do not get improved lower bounds. For larger values of C, the number of nodes
is too large. We remark that the limiting factor is the combinatorial explosion (see column #nodes, Table 1)
and not any algorithmic factor. Optimizing the code or running it on faster computers would barely allow
to compute solutions for the next values of C.

The results presented in Table 1 (except the last column) concern the single step approach, with pruning
parameters initialized to o = [4C/3| and 8 = 26C/17. The last column gives the number of nodes in the
first stage of the two-steps approach, with a = |C¢| and g = |C¢] + 1.

The column #calls corresponds to the number of times an item feasibility was verified. The column
#exact is the number of calls to the exact method (that is when the item was not proven to be feasible or
infeasible by a heuristic or a lower bound). The combinatorial explosion is very well illustrated in column
#nodes where we can see that even with many efficient cuts, we cannot tackle much larger problems. Table 1
also shows that the time spent verifying items feasibility is negligible compared to the whole time spent.
Time spent is approximately linear in the number of nodes.

Note that for the largest values of C' (m =4 and C' = 13 and 14), we limited the amount of memoized
data (using an Iru cache) and ran computations with the single step approach only. So the number of nodes
displayed in the table is actually larger than the number of non-equivalent nodes.

m C c feasibility check overall first step
#calls #Hexact time #nodes time #nodes

3 10 — 4,687 37 0.4 49,055 1.4 41,753
11 — 14,802 141 1.2 168,380 3.4 141,176

12 — 9,125 63 0.5 118,925 2.2 98,186

13 — 32,538 209 1.1 458,183 5.8 384,052

14* 19/14 82,868 644 2.2 1,240,619 14.0 286,845

15 — 55,929 344 1.2 890,291 10.1 702,449

16 — 196,835 1142 3.3 3,384,144 35.5 2,901,483

17 23/17 207,133 1,804 4.0 3,728,386 40.8 1,620,468

18 — 303,725 1,646 4.3 5,692,383 57.2 4,652,427

19 — 1,045,692 4958 21.0 21,262,246 1225.1 18,653,870

20 27/20 977,992 6,191 219 20,283,070 1046.7 11,446,232

4 7 6,622 50 0.4 50,642 1.6 39,946
8 — 28,099 182 1.1 254,344 4.5 193,474
9 — 30,991 98 0.8 331,112 4.8 266,926
10 — 127,063 721 2.6 1,442,281 19.5 1,106,147
11 — 503,560 3114 7.5 6,365,822 81.7 9,195,618
12 — 491,497 1974 5.8 6,718,232 89.7 9,158,805
13 — 1,642,949 8103 19.8 24,277,322 344.6 —

14* 19/14 4,139,364 ~18300 54.0 69,421,282 1503.4 —

Table 1: Numerical results on few inputs. Column 3, c is the best lower bound on the competitive ratio obtained for the
instance. “—" means that the 4/3 lower bound was not improved.

In order to improve this algorithm, one could use a breadth-first search and for each depth, use a heuristic
to select a sample of least promising nodes. Exploring these nodes in depth, will allow some early cut-offs.
Another approach is to set C = 1 and select random weights in]0;1]. Then, we can run the algorithm on
many random samples of items, hopefully resulting in an improved lower bound. We ran several tests using
random weights distributions but we did not obtain improved lower bounds with this approach.

4. Lower bound on randomized algorithms

In this section, we present a lower bound on the expected competitive ratio for any randomized algorithm
for the bin stretching problem. This bound is a simple generalization of the results from the 4/3 deterministic
lower bound of Azar and Regev (2001).

We recall that a randomized algorithm can take its decisions randomly, according to probability distri-
butions. While the previous worst case analysis holds, when designing a random algorithm, the aim is to
minimize the expected competitive ratio rather than the worst case competitive ratio.

Theorem 1. Any randomized algorithm for the online bin stretching problem, has an expected competitive
ratio of at least 7/6, for any number of bins m > 2.

Proof. We use Yao’s minimax principle and consider a randomized adversary against a deterministic algo-
rithm. Yao’s principle states that a lower bound ¢ for the competitive ratio of deterministic algorithms on
a fixed distribution over inputs is also a lower bound for any randomized algorithms.

Let m be the number of bins. We consider the input from Azar and Regev (2001), with an additional
distribution of probabilities:

e with probability p, the input is m items of weight 1/3, followed by m item of weight 2/3;
e with probability 1 — p, the input is m items of weight 1/3, followed by an item of weight 1.

Both of these inputs are obviously feasible.

Any deterministic algorithm either packs the m first items in different bins or at least two of them are in
the same bin. In the first case, the first input yields solutions with value at least 1, while the second input
yields solutions with value at least 4/3. Otherwise, the first input yields solutions with value at least 4/3,
while the second input yields solutions with value at least 1.

Hence, the performance of any deterministic algorithm packing the m first items in different bins is
at least p x 1 4+ (1 — p) x 4/3, while the other deterministic algorithms yield solutions with value at least
p x4/3+ (1 —p) x 1. The minimum of both of these values is maximized for p = 1/2. In such case, the
performance of any deterministic algorithm is at least 7/6 on this input.

Hence, by Yao’s principle, 7/6 is a lower bound on the competitive ratio of any randomized algorithm
for the online bin stretching problem. O

5. Conclusion

By modeling the bin stretching problem as a game and solving this game with computer science techniques
we provided a first improved lower bound and proved it is valid with both 3 and 4 bins. For the case with
3 bins, the new 19/14 lower bound reduces the gap between lower and upper bounds by more than a factor
of two compared to the 4/3 lower bound.

Based on the tree, it is not obvious to find out whether this bound can be generalized to any number of
bins m > 5. Yet, the bound is valid for both 3 and 4 bins so it is likely that it remains valid with more bins.

We also presented a first lower bound for randomized algorithms for the bin stretching problem. This
bound of 7/6 holds for any number of bins m > 2.

The approach can be generalized and applied to many other packing or scheduling, online or semi-online
problems. Compared to layering techniques, for multiple bins problem, there is however a trade-off on the
generality of the bound: the lower bound cannot easily be generalized to any number of bins.

Because of the initial knowledge that all items can be packed into m unit sized bins, there is little hope
that layering techniques could work. Future research could focus on finding more general lower bounds. For
instance, by trying to design a computational approach whose results could be generalized for all values of
m. One could also consider reducing the search space by exploring the search tree for particular families of
algorithms. Another subject for further research is to find good ditributions of randomized item weights.
By imposing a structure on the distribution of the weights of the items and running the algorithm on many
input it is maybe feasible to improve the lower bounds.

7

Acknowledgments

This research has been partially supported by project ICS No 5379 and Belarusian BRFFI grant (Project
F13K-078). The research of the first and the second author has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025).

References

Albers, S., 1999. Better bounds for online scheduling. STAM Journal on Computing 29 (2), 459-473.

Azar, Y., Regev, O., 2001. On-line bin-stretching. Theoretical Computer Science 268 (1), 17-41.

Bartal, Y., Karloff, H., Rabani, Y., 1994. A better lower bound for on-line scheduling. Information Processing Letters 50 (3),
113-116.

Ben-David, S., Borodin, A., Karp, R., Tardos, G., Wigderson, A., 1994. On the power of randomization in on-line algorithms.
Algorithmica 11 (1), 2-14.

Bo6hm, M., Sgall, J., van Stee, R., Vesely, P., 2014. Better algorithms for online bin stretching. arXiv:1404.5569.

Borodin, A., El-Yaniv, R., 1998. Online computation and competitive analysis. Vol. 53. Cambridge University Press.

Epstein, L., van Stee, R., 2003. Lower bounds for on-line single-machine scheduling. Theoretical Computer Science 299 (1),
439-450.

Fiat, A., Woeginger, G. J., 1998. Online algorithms: The state of the art. Springer Berlin Heidelberg.

Gabay, M., Kotov, V., Brauner, N., 2013. Semi-online bin stretching with bunch techniques. Les Cahiers Leibniz 208, 1-10.

Garey, M. R., Johnson, D. S.; 1979. Computers and Intractability: A Guide to the Theory of NP-completeness. WH Freeman
and Company, New York.

Gormley, T., Reingold, N., Torng, E., Westbrook, J., 2000. Generating adversaries for request-answer games. In: Proceedings
of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics,
pp. 564-565.

Jussien, N., Rochart, G., Lorca, X., et al., 2008. Choco: an open source java constraint programming library. In: CPATOR’08
Workshop on Open-Source Software for Integer and Contraint Programming (OSSICP’08). pp. 1-10.

Kellerer, H., Kotov, V., 2013. An efficient algorithm for bin stretching. Operations Research Letters 41 (4), 343-346.

Martello, S., Toth, P., 1990. Lower bounds and reduction procedures for the bin packing problem. Discrete Applied Mathematics
28 (1), 59-70.

Michie, D., 1968. Memo functions and machine learning. Nature 218 (5136), 19-22.

Neumann, J. v., 1928. Zur theorie der gesellschaftsspiele. Mathematische Annalen 100 (1), 295-320.

Pearl, J., 1982. The solution for the branching factor of the alpha-beta pruning algorithm and its optimality. Communications
of the ACM 25 (8), 559-564.

Pruhs, K., Sgall, J., Torng, E., 2004. Online scheduling. In: Leung, J. Y. (Ed.), Handbook of scheduling: algorithms, models,
and performance analysis. CRC Press.

Rudin, J., Chandrasekaran, R., 2003. Improved bounds for the online scheduling problem. SIAM Journal on Computing 32 (3),
717-735.

Yao, A. C.-C., 1977. Probabilistic computations: Towards a unified measure of complexity. In: 18th Annual Symposium on
Foundations of Computer Science. pp. 222-227.

Appendix A. Proof of the lower bound

The following tree proves the 19/14 lower bound for the bin stretching problem with 3 bins. This lower
bound was obtained using our algorithm with parameters m = 3 and C' = 14.

In the proof, a single decision of the adversary is provided for each decision of the algorithm. We do
not explore branches where the algorithm packs the item in a bin, making it larger than or equal to 19.
Moreover, we stop exploring a branch when there is a feasible item making all algorithms fail. We denote
these latter nodes by “cut: Wmin+w;>=UB”. We recall the input sequence on the leaves. The next items
are not added to this sequence. For instance, for a leaf “input: [2,1,7] / cut: Wmin + 3 >= UB” the
whole input sequence is (2,1,7,3).

In order to make the proof easier to read, we divide the tree in two levels: the first level is a root tree
and the second level is a set of subtrees, one for each leaf of the root tree.

Next weight: 6
bins: [6, 0, 0]

Next weight: 3
bins: [7, 3, 0]

Name: Root
Next weight: 2

Next weight: 1
bins: [2, 0, 0]

Next weight: 1
bins: [2, 1, 0]

Next weight: 2
bins: [3, 1, 0]

Next weight: 5
bins: [2, 2, 0]

Next weight: 4
bins: [3, 3, 0]

Next weight: 6
bins: [5, 1, 0]

Next weight: 4
bins: [3, 3, 4]

Next weight: 5
bins: [7, 1, 2]

Figure A.2: Root tree

Next weight: 11
bins: [12, 0, 0]
Next weight: 11
bins: [12, 11, 0]

input: [2, 1, 3, 6, 11, 11]
cut: Wmin + 8 >= UB
bins: [12, 11, 11]

Next weight: 14
bins: [6, 6, 0]

input: [2, 1, 3, 6, 14]
cut: Wmin + 14 >= UB
bins: [6, 6, 14]

Figure A.3: Subtree 1, layout [6,0, 0], items (2,1,3).

Next weight: 4
bins: [3, 1, 2]

Next weight: 5
bins: [3, 1, 6]

Next weight: 6
bins: [2, 1, 1]

Next weight: 3
bins: [7, 3, 0]

Next weight: 10
bins: [10, 3, 0]

Next weight: 14
bins: [7, 6, 0]

Next weight: 4
bins: [7, 3, 3]

input: [2, 1, 3, 4, 3, 14]
cut: Wmin + 14 >= UB
bins: [7, 6, 14]

Next weight: 10
bins: [10, 13, 0]

Next weight: 10
bins: [10, 3, 10]

Next weight: 9
bins: [11, 3, 3]

Next weight: 13
bins: [7, 7, 3]

input: [2, 1, 3, 4, 3, 10, 10]
cut: Wmin + 9 >= UB
bins: [10, 13, 10]

input: [2, 1, 3, 4, 3, 10, 10]
cut: Wmin + 9 >= UB
bins: [10, 13, 10]

input: [2, 1, 3, 4, 3, 4,13]
cut: Wmin + 12 >= UB
bins: [7, 7, 16]

Next weight: 8
bins: [11, 12, 3]

input: [2, 1, 3, 4, 3, 4,9, 8]
cut: Wmin + 8 >= UB
bins: [11, 12, 11]

Figure A.4: Subtree 2, layout [7,3,0], items (2,1,3,4).

10

[8T 'S ‘sl isuq
an =< pT + ulWm :3nd>
[Tz 2y '€ T 2] anduy

[v ‘s ‘sl :suiq
T UBRM XN

vt

[4

[9 21 ‘) isuiq
an =< T + uwm nd

[4

14

€

[21'v ‘2"z v '€ 'T ‘2] ‘anduy

(2T 1T ‘11) suiq
an =< 8 + UM 3N
[8'8'v ‘2 'z 'y '€ T ‘2] :andul

[8 ST L] suiq
an =< ZT + uwm 3nd>
21y 'z 2"y '€ 'T ‘2] andul

[9T 'L “£]suiq
8N =< ZT + UM 30

[v '€ ‘TT] s

(8 ‘€ 4] suiq I
8 13yblem XN

2T :ybrom xaN

[v L 2] suq
ZT :ybrem xaN

T 'zl anduy

[9 '€ ‘s :sulq
T 3UBIRM XN

[y ‘€ ‘] suiq
¥ UBIRM XN

[¥ '€ 'Sl ssuiq
Z :ybrom xaN

[v '€ €] suiq
T :yblaM IXaN

[t ‘TT ‘T1] :sulq
8 1Bl M IXaN

[zT 11118
aNn =< 8 + UM :3nd
[8'8 'y ‘22 'y '€ T ‘2] :anduy

[T ‘€ ‘TT] ssuiq
8 ybIaM IXaN

[9 L1 ‘) isuiq
an =< pT + UM 3N
[vT 22 v €T ‘2] :andul

[9 ‘€ ‘s :suiq
T UBRM XN

[9 ‘€ ‘€] suig
Z ybram IXeN

[zT 11 ‘11 isuq
8N =< 8 + UM :3nd
[8'8 'y ‘2 'Z 'y '€ T 2] andu

[8 ST £]:suiq
an =< ZT + UM 3nd
(2T 'y ‘22 'y '€ 'T ‘2] anduy

[T ‘€ ‘TT] :suq
8 1Bl M IXaN

(8 '€ 4] suiq
2T :ybrom xaN

[8 ‘€ ‘€] :suiq
¥ UBIRM XN

11

tems (2,1,3,4).

Subtree 3, layout [3,3,4], i

Figure A.5

Next weight: 3
bins: [7, 3, 0]

Next weight: 10
bins: [10, 3, 0]

Next weight: 14
bins: [7, 6, 0]

Next weight: 5
bins: [7, 3, 3]

input: (2, 1,1, 2, 4, 3, 14]
cut: Wmin + 14 >= UB
bins: [7, 6, 14]

Next weight: 10
bins: [10, 13, 0]

Next weight: 10
bins: [10, 3, 10]

Next weight: 8
bins: [12, 3, 3]

Next weight: 12
bins: [7, 8, 3]

input: [2, 1, 1, 2, 4, 3, 10, 10]
cut: Wmin + 9 >= UB
bins: [10, 13, 10]

input: [2, 1, 1, 2, 4, 3, 10, 10]
cut: Wmin + 9 >= UB
bins: [10, 13, 10]

input: [2,1,1,2,4,3,5,12]
cut: Wmin + 12 >= UB
bins: [7, 8, 15]

Next weight: 8
bins: [12, 11, 3]

input: [2,1,1,2,4,3,5,8, 8]
cut: Wmin + 8 >= UB
bins: [12, 11, 11]

Figure A.6: Subtree 4, layout [7,3,0], items (2,1,1,2,4).

Next weight: 4
bins: [3, 3, 4]

Next weight: 4
bins: [3, 3, 8]

Next weight: 12
bins: [7, 3, 8]

input: 2,1, 1, 2, 4, 4,4,12)
cut: Wmin + 12 >= UB
bins: [7, 15, 8]

Next weight: 8
bins: [3, 3, 12]
Next weight: 8
bins: [11, 3,12]

input: (2,1, 1,2, 4, 4, 4,8,8]
cut: Wmin + 8 >= UB
bins: [11, 11, 12]

Next weight: 8
bins: [11, 3, 4]
Next weight: 8
bins: [11, 11, 4]

input: (2,1, 1,2,4,4,4,8,8]
cut: Wmin + 8 >= UB
bins: [11, 11, 12]

Next weight: 12
bins: [7, 3, 8]

input: [2,1, 1,2, 4,4,4,12]
cut: Wmin + 12 >= UB
bins: [7, 15, 8]

Next weight: 12
bins: [7, 7, 4]

input: [2,1, 1, 2, 4, 4,4,12]
cut: Wmin + 12 >= UB
bins: [7, 7, 16]

Next weight: 8
bins: [11, 3, 12]

input: (2,1, 1,2, 4,4,4,8,8]
cut: Wmin + 8 >= UB
bins: [11, 11, 12]

Figure A.7: Subtree 5, layout [3,3,4], items (2,1,1,2,4).

12

Next weight: 6
bins: [5, 1, 0]

Next weight: 11
bins: [11, 1, 0]

Next weight: 14
bins: [5, 7, 0]

Next weight: 14
bins: [5, 1, 6]

input: [2, 1, 1, 2, 6, 14]
cut: Wmin + 14 >= UB
bins: [5, 7, 14]

input: [2, 1, 1, 2, 6, 14]
cut: Wmin + 14 >= UB
bins: [5, 15, 6]

Next weight: 11
bins: [11, 12, 0]

Next weight: 11
bins: [11, 1, 11]

input: [2, 1, 1, 2, 6, 11, 11]
cut: Wmin + 8 >= UB
bins: [11, 12, 11]

input: [2, 1,1, 2, 6, 11, 11]
cut: Wmin + 8 >= UB
bins: [11, 12, 11]

Figure A.8: Subtree 6, layout [5,1,0], items (2,1,1,2).

Next weight: 5
bins: [7, 1, 2]

Next weight: 9
bins: [12, 1, 2]

Next weight: 14
bins: [7, 1, 7]

Next weight: 14
bins: [7, 6, 2]

input: [2, 1,1, 2, 4, 5, 14]
cut: Wmin + 13 >= UB
bins: [7, 15, 7]

input: [2, 1, 1, 2, 4, 5, 14]
cut: Wmin + 13 >= UB
bins: [7, 6, 16]

Next weight: 10
bins: [12, 1, 11]

Next weight: 9
bins: [12, 10, 2]

input: [2, 1,1, 2,4, 5,9, 10]
cut: Wmin + 8 >= UB
bins: [12, 11, 11]

input: [2,1,1,2,4,5,9,9]
cut: Wmin + 9 >= UB
bins: [12, 10, 11]

Figure A.9: Subtree 7, layout [7,1,2], items (2,1,1,2,4).

13

Next weight: 5
bins: [3, 1, 6]

Next weight: 9
bins: [3, 1, 11]

Next weight: 14
bins: [8, 1, 6]

Next weight: 14
bins: [3, 6, 6]

input: [2, 1,1, 2, 4, 5, 14]
cut: Wmin + 13 >= UB
bins: [8, 15, 6]

input: [2, 1,1, 2, 4, 5, 14]
cut: Wmin + 13 >= UB
bins: [17, 6, 6]

Next weight: 10
bins: [12, 1, 11]

Next weight: 9
bins: [3, 10, 11]

input: [2, 1,1, 2,4,5,9,10]
cut: Wmin + 8 >= UB
bins: [12, 11, 11]

input: [2,1,1,2,4,5,9,9]
cut: Wmin + 9 >= UB
bins: [12, 10, 11]

Figure A.10: Subtree 8, layout [3,1, 6], items (2,1,1,2,4).

Next weight: 6
bins: [2, 1, 1]

Next weight: 4 Next weight: 4
bins: [8, 1, 1] bins: [2, 7, 1]
Next weight: 10 Next weight: 14 Next weight: 10 Next weight: 14 Next weight: 14
bins: [12, 1, 1] bins: [8, 5, 1] bins: [2, 11, 1] bins: [6, 7, 1] bins: [2, 7, 5]
Next weight: 10
bins: [12, 11, 1]

input: [2,1, 1, 6, 4, 14]
cut: Wmin + 14 >= UB
bins: [8, 5, 15]

input: [2, 1, 1, 6, 4, 14]
cut: Wmin + 14 >= UB
bins: [6, 7, 15]

input: (2,1, 1, 6, 4, 14]
cut: Wmin + 14 >= UB
bins: [16, 7, 5]

Next weight: 10 Next weight: 10
bins: [12, 11, 1] bins: [2, 11, 11]

input: [2, 1, 1, 6, 4, 10, 10]
cut: Wmin + 8 >= UB
bins: [12, 11, 11]

input: [2, 1,1, 6, 4, 10, 10]
cut: Wmin + 8 >= UB
bins: [12, 11, 11]

input: [2, 1, 1, 6, 4, 10, 10]
cut: Wmin + 8 >= UB
bins: [12, 11, 11]

Figure A.11: Subtree 11, layout [2,1,1], items (2,1,1).

14

[91 ‘£ *]:suig
8N =< ZT + uwm
[21'p 22"y 'z "1 "1 ‘2] andu

[8 L ‘ST :suig

[81 ' ‘5] =
8N =< pT + WM 3
[vT 22 'y 21T ‘2] andut

[CRA T
8N =< pT + WM an
[vT'2'2'y "2 1T ‘2] andu

[t L L] :suq
[ARTETERCIY

[8 L ‘€] :suiq
21 :3ubleMm XaN

[y ‘s ‘] suiq
1 4B M XN

[9's ‘€] suiq
T 13Ul M XN

v °L ‘€l suiq
 3uBIRM XN

[y 's ‘€] sug
U1 M BN

(21 1T '11] :suiq
80 =<8 + Uwm N>
[8'8 v ‘Z'2 'y ‘2 1T ‘z) anduy

an =< ZT + uwm 3n
21"y 2’2"y ‘21T ‘2l aanduy

[11 ‘T1] sug
8 ybleM XN

[y 1T ‘€] ssuig
8 :UblRM XN

[91 's '] isuiq
8N =< pT + UWm 3
[v1°2 'y ‘2 1T ‘2] anduy

[2's ‘5] suq
YT ybIeM IXaN

[z 'S ‘€] sulq
Z :13uble M XN

et 1ttt
an =< g + uwm an
[8°'8'v 2’2"y 2 1T 2] andul

uiq
8 :ublom XN

(€'Y '2'y 2 1T ‘2] andut

[91 *2 ‘L) :suig

[z 'L 1) suq
T :3UBIOM XN

[z €] sug
v ubRM XN

8N =< ZT + UWm 3
[v1'v 2y ‘21T ‘2] Aanduy

[TT 1T ‘z1) ssulq
N =<8 + UM 3N
[6'6'v ‘2 'y 21T ‘2] anduy

(11 11 ‘€] ssuig
6 3ybIRM XN

[2 1T ‘€] isui
6 :UBlIM 33N

[TT 11 ‘z1) :sulq
N =< g + UM 3
[6'6'v ‘2 'y 2T T ‘2] anduy

[z 11 ‘21l suiq
6 Bl M 1N

15

tems (2,1,1,2,4).

Subtree 9, layout [3,5,2], i

Figure A.12

[zt 11 11l suiq
an =< g + ulwm am
[6°6 % '€’S T T 'zl andul

[zt 1T '11] suiq
an =< g + uwm am
[6°6 % '€ 'S T T ‘2] :andu

[0T ‘1T "zl suiq
an =<6 + UlWm :Ind
[6°0T 'S 'S T T ‘2] :anduy

[9T ‘9 “£]suiq
an =< €1 + UlWm :In
[ET v '€ 'S ‘T 'T ‘2] :andul

[£9T L] suiq
an =< ZT + ulwm :3m
[vT ‘v '€ 'S T T ‘2] :anduy

[TT ‘2T '01] 'suiq
an =<6 + UWMm N
[0T ‘TT '€ 'S T ‘T ‘7] anduy

[0T ‘€T ‘0T] 'suiq
an =< 6 + UlWpA 13N
[0T ‘TT '€ 'S T ‘T ‘7] anduy

[€ 1T ‘TT] 'suiq
6 :3ybleM XN

[21 'z 11]suq
6 :3ybleM IXaN

[s 91 “£] suiq
an =< pT + ulWwm nd
[pT 'S 'S ‘T 'T ‘2] anduy

[vT s L]suq
an =< pT + UlWm :nd
[¥T € 'S ‘T T ‘7] :anduy

[ot 'z et

[£°2'L]suq
T UBIPM XN

[TT ‘2 '0T) 'suiq
0T :3ybram IxaN

[0 ‘€T ‘0T] sulq
0T :34BI2M IxXeN

6 :34BoM 1xoN

[0z 01] suiq
TT “yBrom IxaN

[0S "L suq
T :yblom IxaN

[€ 'z L] suq
¥ :3yblam IxaN

[0T ‘2 ‘7] suiq
0T :3ybrom IxaN

[s ‘2 1] suq
T :3uBIdM IXN

[s ‘¢ ‘2] suiq
G :yblEM IXaN

[0z ‘2] sulq
€ 3UBIIM AN

(02 ‘2] ssuig
S B M XN

16
Subtree 10, layout [2, 2, 0], items (2,1,1).

Figure A.13

	Introduction
	A lower bound
	Contribution
	Outline

	The bin stretching game
	Implementation
	Decisions on item weights and assignments
	Cuts
	Results

	Lower bound on randomized algorithms
	Conclusion
	Proof of the lower bound

