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Abstract

In optics the nonlinear Schrodinger equation (NLSE) whinbdelize wave propagation in an
optical fiber is the most widely solved by the Symmetric Sgliep method. The practicaffe
ciency of the Symmetric Split-Step method is highly dependa the computational grid points
distribution along the fiber, therefore afiieient adaptive step-size control strategy is mandatory.
The most common approach for step-size control is the “dbling” approach. It provides an
estimation of the local error at each computational grichpwi order to set the next grid point
in the best way to match a user predefined tolerance. Thedsteiping approach increases of
around 50 % the computational cost of the Symmetric SpépShethod. Alternatively there
exists in optics literature other approaches based on theradition along the propagation length
of the behavior of a given optical quantity. The step-sizeasth computational step is set so as
to guarantee that the known properties of the quantity aesegoved. These approaches derived
under specific physical assumptions are low cost bfiesfrom a lack of generality. In this pa-
per we present a new method for estimating the local errdrerSymmetric Split-Step method
when solving the NLSE. It conciliates the advantages of tp-doubling approach in term of
generality and rigor but without the drawback of requirirgjgnificant extra computational cost.
The method is related to Embedded Split-Step methods fdin&am evolution problems.

Keywords: Symmetric Split-Step method, adaptive step-size corttohlinear Schrodinger
Equation
2000 MSC:35Q55, 35Q60, 65M99

1. Introduction

The nonlinear Schrodinger equation (NLSE) describes a wl@es of physical phenomena
among which propagation of light in an optical fiber. We areeagrned by the following form of
the NLSE (see [1, 2])
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where the complex valued functighrepresents the slowly varying pulse envelope of a quasi-
monochromatic optical wave at frequenayin a frame of reference moving with the pulse at the
group velocityvg = ¢/ng whereng denotes the group index of the fiberepresents the position
along the fiber and the time in the local frame. In the situation considered h#re optical
wave is assumed to be an electric fi@ddht frequencywo which is linearly polarized along the
vectore, transverse to the propagation’s direct®rdefined by the fiber axis and expressed as a
function of positiorr = (X, y, 2) and timer in the form

E(r,7) = Az t) F(x, y) @D g 2)

whereF(x,Y) is the electric wave transverse representation alsocctike “modal distribution”
andk is the wavenumber. The relation between the “local tirhéi the local frame and the
absolute timerist = 7 — z/vy.

Equation (1) describes wave propagation in a single mode fidéng into account phe-
nomena such as the optical Keffext through the nonlinear cirienty and linear dispersion
through the dispersion ciwientsB,, h = 2,...,N with N € N, N > 2. The co#ficienta
accounts for attenuation or gain during propagation in therfiThe partial dferential equation
(PDE) (1) is to be solved for aflin a given interval [0L] whereL denotes the length of the fiber
and for all “local time”t € R. Itis considered together with the following boundary citiod at
z=0:Vte R, A(0,t) = ag(t), whereay is a given complex valued function.

The most widely used numerical method for solving the NLSBptics is the Symmetric
Split-Step method, see e.g. [3—7], due to its particulap$iity and dficiency. The idea behind
the Symmetric Split-Step method applied to the NLSE (1) ddocompose over each subinterval
of a given subdivision of the fiber length the PDE problem entequence of 3 simpler problems
connected to each others. The first one corresponding taedypiimear PDE over the first half of
the subinterval, the second one over the whole subinteove¢gponding to a nonlinear ordinary
differential equation (ODE) with the time variable as a paramatel the third one a purely
linear PDE over the second half of the subinterval. The Symmo®plit-Step method applied to
the NLSE (1) is detailed in section 2. The interest of this euoal approach for computing an
approximation of the solution to the NLSE (1) is that eacthef3 nested problems can be solved
more easily than equation (1) and when the step-size temdsdd the approximate solution is
likely to converge to the solution of the NLSE (1).

It can be convenient for numerical simulation purposes tsimer a normalized version of
the NLSE (1). This can be achieved by introducing the normedlivariables’” = t/To and
Z = z/Lp whereTy is the half-width of the source slowly varying pulse envel@g and
Lp = T§/|ﬂ2| is known as the dispersion length [1]. When normalizing fbely varying pulse
envelope to the square root of its peak powgrthe new unknowm\'(z,t") is found to satisfy
the following equation
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fort’ e Randz € [0, L/Lp] wherea’ = Lp @, ¥’ = LpPoy andg;, = (Lo/T{) Bn.

Let us now introduce a comprehensive mathematical framevasrthe study of our em-
bedded Split-Step method applied to the NLSE. We denot&ffl, C), p € [1, +oo[ the set
of complex-valued functions over the real intervialwhosep-th powers are integrable and by
H™(1, C) for m e N* the Sobolev space of functionslis#(I, C) with derivatives up to ordemin
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IL%(I, C), see e.g. [8]. For convenience, we will also use the natdfig(l, C) for (I, C) and
L*(I, C) for the space of essentially bounded functions. The SetspgaceH™(l,C), m € N,
are equipped with the usual norms dendlégl. For a functiomA : (z t) € R? — A(z t) € C, we
denote byA(2) the first partial function oAin z,i.e. A(2) : t € R — A(zt) € C. The NLSE (1)
can be reformulated as

a%A(z) = DAQ+N(AR) Vze[o,L] 4)

where the linear operatdD given by
N jn-t
D A@) — ) o AR (5)
n=2 ’

is a unbounded linear operator BA(R, C) with domainHN (R, C) and the non-linear operator
N given by

N :A@2 € LR, C) —> —%aA(z) +iyA@IAQ@)I? € LA(R, C) (6)

is locally Lipschitz continuous on every Sobolev spHEER, C) for all m € N* with additionally
N e C*(H™(R, C), H"(R, C)), see [9]. It can be seen that another splitting for the NI(BEs
possible: the term%aA can be added to the linear operafrinstead of the nonlinear opera-
tor N.

For all k,m) € N2 andl c R, we denote byCk(I;H™(R, C)) the space of functions
u:zel » u@@ e HY(R,C) with continuous derivatives up to ordkr(or just continuous
whenk = 0). WhenN = 2, a comprehensive mathematical framework for the NLSE Xikt®
in the literature [10] and it is known that fap € H?(R, C) there exists a uniqua belonging to
CO(R; H?(R, C)) N CY(R; L3(R, C)) solution of equation (1) satisfyirg(0) = ap. This result has
been extended to an arbitrary valueNin [11]. Namely, denoting for anyn € N by Eqn(1)
the spacg ™" C*(1, H™NK(R, C)), where| s| denotes the integer part s R*, the following
result holds [11].

Theorem 1.1. For all ag € H™(R, C), with m € N*, there exists a unique maximal solution
A € Enn([0, Z[), with Z €]0, +c0], to the NLSH1) with the initial condition A0) = ap atz= 0.
This solution satisfies

IA@)llo = & #*llagllo  forall z € [0, Z]. (7

Moreover, if N is even and ;2 N/2 then the solution is global, i.e. Z +co.

As a corollary of theorem 1.1 we have that wheris an even integer anah € HN(R, C)
the NLSE (1) with the initial conditioA(0) = ap atz = 0 has a unique solution in the space
Co([0, L]; HN(R, €)) N C*([0, L]; LA(R, C)).

Of course, the practicalféciency of a numerical method such as the Symmetric Splip-Ste
method applied to the NLSE (1) highly depends on the didtiidbuof the computational grid
points along the fiber and the use of an adaptive step-sizeot@trategy is mandatory. The
idea behind an adaptive step-size strategy is to introchegrid points during the progress of
the computation taking into account the information ad@at the current computation stage in
order to determine the best suited step size (and therdfeneeixt grid point) so as to maintain
a given predefined accuracy of the approximation. Sinceribtspossible in practice to know
the final global error, the step-size is determined so thaieal error” is lower than a prescribed
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tolerance. In the literature dedicated to optics, a varigtadaptive step-size strategies have
been proposed to be used in conjunction with Split-Step atsthWe can distinguish 2 types of
approaches. The one based on physical concepts (or phiydigibn) where at each grid point
the step-size is chosen so as a "local error” related qyaediimated from a physical quantity
matches the prescribed tolerance value. For instancegindfctalled "nonlinear phase rotation
method” [4] the step-size is chosen so that the phase chareg@adhonlinearity does not exceed
a certain limit. In the "walk-&”" method, the step-size is chosen to be inversely propation
to the product of the absolute value of the dispersion andpleetral bandwidth of the signal
and the method applies to low power, multichannel systerhsIf4[12, 13] a method termed
the “uncertainty principle method” is proposed where thiedrination of the step-size is done
from the values of a parameter derived from an inequalitycivlin quantum mechanics gives
rise to the uncertainty principle between two non commutipgrators. In [14] it is made use
of the conservation of the “optical photon number” to est&relocal error related quantity and
to define an adaptive step-size control strategy termed timséZvation Quantity Error method.
This method applies to low loss fibers.

Another approach for defining adaptive step-size strasagiasists in using purely numerical
concepts. The "local error” is then defined as the error maitggithe numerical scheme when
computing an approximation of the solution at the curreitt goint under the assumption that
the value at the previous grid point was exact. In [4] the axglpropose to use the “step-
doubling” concept (see e.g. [15]) to estimate the local rewben solving the NLSE by the
Symmetric Split-Step method. This approach is closelyteeldao the Step-Doubling method
for local error estimation when numerically solving ordinaifferential equations [16]. The
main advantage of such an approach is that since no assungstithe physical parameters
involved in the equation is made, the step-size strategliespip an arbitrary set of parameters
in the NLSE. However a drawback of the Step-Doubling metlsaléomputational over-cost of
approximatively 50 % (when compared to the same Split-Stefhod with the “optimal” grid
points distribution given in advance).

In this paper we propose an other way of estimating the lacal @ the Symmetric Split-
Step method. The over-cost of the propound method is lowoAghkt Step-Doubling method, 2
approximate solutions of the NLSE corresponding to a “fir@iSon and to a “coarse” solution
are combined in a specific way to deliver a local error eséembtowever, whereas in the Step-
Doubling method the 2 approximate solutions are obtainethbyuse of the Symmetric Split-
Step method on 2 mesh grids, the finest one having twice thdeuaofi grid points of the coarse
one, our method uses the same mesh grid but 2 Split-Step sstafdiferent order: we use the
Symmetric Split-Step scheme which is known to have secoderaf accuracy with a dedicated
first order of accuracy Split-Step scheme. In order to retheever-cost for estimating the local
error, the idea is to re-use some of the computations redjbiréhe Symmetric Split-Step scheme
when computing the coarse solution by the first order SppScheme. The first order Split-
Step scheme is therefore non-conventional and has beagmedsio meet this goal. Although
used in a dferent context, this approach is very similar to the one of exidled Runge-Kutta
method for solving ordinary dtierential equations [17, 18]. It is also related to the emlddd
Split-Step formulae for the time integration of nonlineaoleition equation presented in [19].

The paper is organized as follows. In Section 2 we recall sohtkee features of the Sym-
metric Split-Step method useful for understanding the weeylocal error is estimated in our
embedded Split-Step method. In Section 3 we present a fitst @plit-Step scheme embedded
in the Symmetric Split-Step scheme designed to deliver al leor estimate at a very cheap
cost. In Section 4 the algorithm of our Embedded Split-Stephwd and the underlying step-
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size control strategy are detailed. Finally, in Section Saaleieve a numerical comparison of our
method with the Step-Doubling method on benchmark problerogtics.

2. Overview of the Symmetric Split-Step method

2.1. The Symmetric Split-Step scheme applied to the NLSE

In the Symmetric Split-Step scheme applied to the NLSE {1§,imterval [QL] is divided
into K subintervals where the spatial grid points are denatekl € {0, ..., K}, where 0= 7 <
< <Z1<zZ =L We also denote bl = z1 — z the step-size between grid poirts
andzk+1 and we Sef 1 = % +X% The Symmetric Split-Step method applied to the NLSE (1)
consists of solving over each submterv&l B1] for k € {0,.. ., K — 1}, the following 3 nested
problems with time variableas a parameter and the operatorand N defined as in (5) and (6):

INO=DA@  Vzela g
A (z) = Al[<2—]l(zk)

WhereA‘[(Z_]l(zk) represents the approximate solution at grid pairdomputed by the Symmetric
Split-Step method at stdp- 1;

(8)

%Bk(z) =N{B?)  Vz€ [z, z]

9)
Bk(zk) = A;(Zk+%)
WhereA;(zH%) represents the solution to problem (8) at half grid pqirg%;
0
—A 2 =DA (Z Vze 1, Zis
=A@ = DA (2 o] 10

A (Zey) = Bilz)

where By(z1) represents the solution to problem ([9? at nadg. An approximate solution
to the NLSE (1) at grid node, is then given byAk2 (z+1) = A (z1). The principle of
the Symmetric Split-Step scheme is depicted in figure 1. Thetrmteresting thing of such a
decomposition is that each one of the 3 problems (8), (9) &0} ¢an be solved much more
easily than the NLSE (1) itself considered over the intefgalz,1]. Moreover as detailed later
(see proposition 2.1 p. 7) fbi small enoughAk (z+1) provides an approximation of the solution
to the NLSE (1) at grid point.1. The exponer! in the notation of the approximate solution
refers to the second order of accuracy of the Symmetric-Sppdip method.

2.2. Solving the linear problen{8) and (10)
Problems (8) and (10) are in the form

0
{&u@zpu@ Vze [a b (11)

U@ =¢

whereU (2) denotes the first partial function of the mapplig (zt) € [a,b] xR - U(zt) € C.
It is known, see e.g. [11], that when the initial datés in HN(R, C), problem (11) has a unique
5



Figure 1: Principle of the Symmetric Split-Step scheme (gotational stefx is displayed in the dashed box).

solutionU : z € [a,b] — U(2) belonging toC?([a, b]; HN(R, C)) N C([a, b]; L4(R, C)) which
satisfieg|U (2)|lj = ll¢llj for all j € {O0,..., N}.

The solution to problem (11) can be computed by using thei€otiransform (FT) approach.
For a fixed value of the space varialzlewe introduce the FTU(2) of U(2) with respect to the
time variablet. We denote byF the Fourier operator from.?(R, C) to L?(R, C) defined by
continuous extension of the Fourier Transform definitionifidegrable functions and computed
for all u € L?(R, C) by an improper integral as

T .
VveR F(U)() =T()=_lim f u(t) & dt.
—+oo )T

We also denote by ! the inverse Fourier Transform. From (11) we deducethastisfies

0 ~ —_
{ 500 = 40@ e w2
U@ =9
whered, = iz,’?ﬁ%(z;rv)”. The solution to the linear first order ODE problem (12) reads

U@ = ¢ @3 Therefore we havel(b) = F-{U(b)] = F~[z e*®-I]. As a consequence,
the solution to problem (8) at grid poiq&; reads
2

AG, ) = T Aca(a) €7 (13)

and the solution to problem (10) at grid pomt; reads

A (Zr) = 7 [Bulznn) € 3], (14)

The Fourier transforms can be computed veficently by using the FFTW library [20] that
supports a variety of algorithms and can choose the ondntat&s or measures to be preferable
in particular circumstances.

2.3. Solving the nonlinear problem
Since N is locally Lipschitz continuous offf™(R, C) and continuous ofil™(R, C), the
Cauchy-Lipschitz theorem in Banach spaces gives the latsteace of a unique maximal solu-
tion to the nonlinear ODE problem (9). The solution to probl®) whenN is given by (6) can
6



be computed analytically. First, one can check that it aslthi following integral representation
form:

Vielaaal B -A G o032+ [ BOFL).  a5)
Z

Multiplying each side of the ODE in (9) bBy(2) (the complex conjugate d(2)) and adding
it to the complex conjugate equation deduced from (9) whahlieen previously multiplied by
Bk(2) shows thav'z € [z, z1]

£ B = Bl 2B + Bu(2) 15BW(2) = ~alBu(2) (16)

We first consider the case when= 0. It turns out from (16) that the integrand in (15) is a
constant function and we obtain

Vze [zl B(@) = Al(Z) exp(iv(z— 2)IANZ )P

In the general case when# 0, it follows from (16) that for alk € [z, z1] we have|By(2)[? =
A (Z,1)I” €. Then, from (15) we deduce that for @lE [z, Z1]

BU(D) = A1) oxp(- 52~ 20 - LI G P - ).

Thus an analytical expression for the solution to the naainproblem (9) is known and in
particular at grid poink,; we have

Al Gisy) exp(iyhd A G y)P) if @ =0

A7) eXp(—%hk—%|A|J<r(zk+%)|2(e_“hk—1)) fazo U7

Bi(zc+1) =

2.4. Error behavior for the Symmetric Split-Step scheme

The convergence of Split-Step methods applied to variousdof the Schrodinger equation
is widely documented in the literature, see e.g. [21-23]re/tlee authors prove that the conver-
gence order of the Symmetric Split-Step method is 2. Nanmelthe situation considered here
the following result holds (see proposition 3.1 of [11]).

Proposition 2.1. Let A denote the solution to the NL$E) and for all k € {0,...,K — 1} let
A‘[(Z] (z+1) denote its approximation at grid point,z computed by solving the 3 nested problems

(8)~(9)~(10) with the initial condition A7 (z) = A(z) assumed to be iH*N*1(R, C). Then, for
hg in a neighborhood 0® we have the following estimate (R, C):

Azci1) = A (2e) + O(h).

3. Atruncated first order Split-Step scheme

3.1. First-order Lie-Trotter Split-Step scheme
As propound in [19], a local error estimate can be obtainedidiyig the first order Lie-
Trotter Split-Step scheme together with the SymmetrictSftiep one. The Lie-Trotter Split-Step
7



scheme is defined for dlle {1, ..., K — 1} by:
0
SAD=DA@D  Vze [z ]
Alz) = A (@)

WhereA,[}_]l(zk) represents the approximate solution at previous gridtpRisomputed at step
k-1;and

(18)

{aﬁz B(d = NBIQD  Vze [zl 19

Bi(z) = A(2c1)

whereA;(z.1) represents the solution to problem (18) at paipt. The approximate solution to

equation (1) at grid poir1 is thenAl (zc1) = Bi(z1). The main drawback in using the Lie-

Trotter Split-Step scheme is that the computations leatdittige approximate solution cannot be
factorized with the one of the Symmetric Split-Step scheiflee consequence is a significant
extra cost for estimating the local error in this way, makihg method not competitive when
compared to the Step-Doubling method. In the next sectioprapose another first-order Split-
Step scheme where most of the computations required fon&tad) the first order approximate
solution is also required for evaluating the Symmetric tSptep approximate solution. The
overall cost of this method for evaluating the local errdhisrefore very low.

3.2. The first-order Split-Step scheme
We consider the following Split-Step scheme defined fokall{1, ..., K — 1} by:
0
a—ZAE(Z) =DN@D  Vze[a. 7,1l
AL (2) = ALY (@)

WhereAI[(l_]l(zk) represents the approximate solution at previous gridtppisomputed at step
k-1;and

(20)

%Bk(z) =NB)(@2  Vze[n,zu1]

Bk(zk) = Al:(szr%)
WhereA;(szr%) represents the solution to problem (20) at half grid qup%. The approximate

solution to equation (1) at grid poizt,.1 computed from the approximate solutié{fl(zk) at
grid pointz is obtained by adding tBy(z.1) a corrective term as follows:

(21)

A (@) = Bulzor) + e DAL, ). @)

The exponerit! in the notation of the approximate solution refers to thé irder of accuracy of
the method (this point is justified in the next section). Thagple of this “truncated” Split-Step
scheme is depicted in Fig. 2.
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Figure 2: Principle of the "truncated” Split-Step schemenfputational stef is displayed in the dashed box).

3.3. Error analysis of the truncated Split-Step scheme

Since we are concerned by an analysis of the local error imiheated Split-Step scheme de-
fined by (20)—(21)—(22), we will assume in the following thastagek for all k € {0, ..., K — 1},
the i(ni;ial dataAl (z) is exact, i.e. A" (z) = A(z-1) whereA denotes the solution to equa-
tion (1).

Lemma 3.1. For all k € {0,...,K -1}, let A® be the solution of problert20) with the ini-
tial condition given by A(z) = A(z) assumed to belong H*"*}(R, C). For hy € R% in a
neighborhood 00 we have the following equality (R, C)

1
A;(zk+%) = Az) + Ehk@A(zk) +O(n?).
Proof. A first order Taylor expansion fok; betweerg, andzk+% gives inH*(R, C)

0

A @e1) = A () + %hka—zA,:(zk) +0(h2).

SinceAy is solution to problem (20), we ha\,%A;(zk) = D A (z). Combining the 2 equalities
gives the result under the assumptigf(z) = A(z). O

Lemma 3.2. Forallk € {0,..., K -1}, consider the 2 nested problelf2)- (21) with the initial
condition for problem(20) given by A(z) = A(z) assumed to belong E*N*(R, C). For
hg € R% in a neighborhood 00, the solution B of problem(21) satisfies the following equality
in HY(R, C):

Bil(Zc1) = Alzo) — 1 DA + (1),

Proof. A first order Taylor expansion applied to the soluti®nto problem (21) betweern and
Z.1 gives inHY(R, C):

Bi(z1) = Bi(z) + hk a% Bk(z) + O(h2) = By(z) + h N(BW)(z) + O(hd)
= Al (Z 1) + N (A) (Z 1) + O(h).



Let us then consider a first order Taylor expansion of thetmwito the NLSE (1) betweern
andz1:

AZr1) = Az + he _A(Zk) +0(hY) = Az + he (DAZC) + N(A) () + O(hp).
It follows that
AZir1) = Bil(z) = (A@) = A (Ber2)) + he DA(z)
+ h (N (A)(Z) = N (A (Z.1)) + O(hg). (23)

Now consider a Taylor expansion of the opera’tbbetweerA;(szr%) andA(z) :

NAY@) = NA) ) = N (A (23 A = At (2 1)) + OUIAG) = AL (B IR).
From Lemma 3.1 we deduce th&i(A)(z) — N(A;:)(zk%) = O(hy) so that from (23)

AZ1) — Bil(zt) = (AZ) — A (3, ) + e DA + O(hy).

From Lemma 3.1 again, we conclude tAgti1) — Bi(zw1) = 2he D A(z) + O(h?). O

From Lemmas 3.1 and 3.2 we finally deduce the following reshith states that the Split-
Step scheme (20)—(21)—(22) is first order accurate.

Proposition 3.3. Let A denote the solution to the NLEE under the initial condition £0) = ag
at z= 0 where g is a given function ifHI>N*1(R, C). For all k € {0, ..., K - 1}, let A(zc.1)
be the function given by relatiof22) where R(z.1) is the solution at grid point,z; of the 2
nested problemg&0)~(21) under the initial condition for probler(20) given by A(z) = A(z).
For hy € R* in a neighborhood 00 we have the following equality iH(R, C):

Az1) = A (@) + O(h).

Remark A first order Taylor expansion of the solution to problem (lb@)weenzk+1 andz 1
gives

A (Zer1) = A (Ze 1) + Ak(zk+1) +O(hg) = Bu(Zc+1) o D _Bk(zk+l) +0(h)

and from lemma 3.2 we deduce that

A (Ze,1) = Ac(Ze1) = Bi(Zesr) + = —AE @)+ O(hd).

Therefore the corrective term (22) is nothing but a first offteylor expansion of the solution

to problem (10). A similar first order Taylor expansion cobkl considered instead of solving
problem (8) with a resulting approximation scheme havirgggame order of accuracy, but the
resulting computational procedure would not be anymolig &rhbedded in the Symmetric Split-

Step one, resulting in an increase of the computational cost
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4. The Embedded Split-Step method with adaptive step-sizeoatrol

4.1. Numerical approximation of the local error for the $i8itep scheme

Assuming that the solution value at grid pomtis regarded as exact (because we are con-
cerned by an estimation of the local error), we denotA{ﬁy{resp.AE]) the approximate solution
computed at the current grid poimtby the first order (resp. the second order) above Split-Step
scheme. From propositions 2.1 and 3.3 we deduce that forudaregnough initial condition,
the local error at grid point.1 for each of the 2 schemes is respectively given,Hpin a
neighborhood of 0 andt € R, by

A (1) = A1, ) — Az, 1) = Coch2 + O(hd) (24)
A0 = Az t) — AP (z1,1) = CoxhE + O(h}) (25)

whereC, x andC, denote 2 numbers independentgf By taking the dfference between these
2 relations we obtainyt € R

A2 (ze,1,t) = A (Ze,1, 1) = CrhZ + O(D).

Thus the local error for the first order Split-Step schemeiatgpint z,.; can be approximated,
with an error inO(hﬁ), in the following way:Vt € R

(EL0 ~ Cokhf ~ A (@, 1) - Al @ ). (26)

Performing integration overin R, we obtain the following approximation for ttig-local error
at grid pointz, 1

o ~ ( f AP 21, t) - AN e B dt) ~ [Zl @ ) - AL )| (27)

where, f0r simplicity the last approximation results frtrm use of the rectangle quadrature rule
that the trapezoidal quadrature rule could also be used antthprovide a more accurate result
for the same cost.

We have to point out that relation (26) gives an approxinmatiidhe local error corresponding
to the solution computed with the first order Split-Step metand consequently the size of the
steps delivered by the adaptive step-size control methbdevbptimal for the first order Split-
Step scheme. However, the solution computed by the Synurigtit-Step method is a better
approximation than the one computed by the first order §tép method and it is thus kept as
the approximate solution. This is very common in such a 8dnand it is referred to as "local
extrapolation”.

4.2. The Embedded Split-Step method

The computational sequence for one step of the EmbeddedSep method can be under-
stood as follows. Fok € N, let ul[(ljl denotes the solution at grid poirt., computed by the first
order Split-Step scheme defined at skepy (20)—(21)—(22) and |G]iEl denotes the solution at
grid pointz.; computed by the Symmetric Split-Step method defined atlstgp(8)—(9)—(10).
As mentioned before, the solution computed by the Symm8&ipiit-Step scheme is a better

11



approximation than the one computed by the first order Stép scheme and it is kept as the
approximate solution at each grid point. As a consequehednttial condition in (8) and (20)
is [2_]1(zk) and the 2 linear PDE problems are actually identical. liofes that the 2 problems
(9) and (21) are also identical and the 2 Split-Step schemlggiifer by (10) and (22).

The wayul!l, anduf, are obtained fronf?! (or actually their Fourier Transforma', and

U{kzjl fromULz]) as well as the way the local error is estimated, can be suimetHy the following
computational sequence:

Vi = exp(Edey) x T4 whered, is defined in (12)
vi=F (V)
Rz exp(—%hk - iylV%|2 %) ifa#0
v { vy exp(iyhk|v%|2) ifae=0
Vi = (v1)

(NI

b~
U{(Zjl = exp(idv) XVq

- =
U{(ljl =Vi+ Edv XG{(Z]

2 1 ,
local error = |02, - T |lo (from Parseval's theorem)

relative local error= G2, — T Jlo/I1T, llo
When compared to the standard version of the Symmetric-Sf#ip method, the over-cost
of the above computational procedure for delivering thalecror estimate reduces to the com-
putation of the ternﬁﬁkljl. Since the value o%dv is required when implementing the Symmetric
Split-Step scheme, the over-cost at each step is 1 muéipic and 1 addition times the number
of sampling points in the frequency domain.

4.3. Step-size control

For step-size control, a tolerance “tol” is given as boundttoa local error estimate. A
step-size control strategy consists in rejecting the clistep-size if it gives an estimated local
error “err” higher than the specified tolerance and in adngpghe solution computed with this
step-size if otherwise. When the current step-size is t@jg@ new smaller step-size has to
be chosen to recompute the solution from the current gridtpoDn the contrary, when the
current step-size meets the tolerance requirement footia érror, it has to be scaled up for the
next computation step. We consider the Symmetric Splji-stethod and the Split-Step method
defined respectively by (8)—(9)—(10) and (20)—(21)—(22 we assume that the leading term
in the asymptotic expansion (24) of the local error domis#ite others for the current value of
the step-sizéw. From (24) and (27) there exisBse R* such that(!")lo = C i2. The optimal
step-sizéhgp is the one for which the local error estimate is the closettégrescribed tolerance
tol, i.e.C hgm = tol. By eliminating the constar@ from these 2 relations we obtain

tol
hont = O —.
oPt= Tk Y err

where err= ||€|[(l+]1||o. In the previous relationship it is common to consider ainese for the
relative local error and a relative tolerance “tol”. It ietbhoice we adopt in the following.
12



For robustness the step-size control has to be designedi@r tw respond as smoothly as
possible with real or apparent abrupt changes in behavluat i6 the reason why it is imposed
that the new step-size does not excegdimes the current step-size above andtimes the
current step-size below. In order to avoid situations whteeespecified tolerance is ever exceeded
resulting in rejecting too many steps, a safety factor isouiiced: ity is the value of the step-
size estimated to give a predicted truncation error equilédolerance, then the smaller value
a3 hopt is used instead. Following these requirements, the fotigwiep-size control formula is
considered

. tol
hnew = Max|{ az , minla1, a3 4| —

llerr P (28)

where tol denotes the relative tolerance value specifiechbyuser as a bound on the relative
local error estimated by (27). Suggested constant values; far, andas are respectively D,
0.5 and 09.

4.4. Algorithm for the Embedded Split-Step method

ESS algorithm
Require: Array u containing the input pulse envelope sampled over the titesval
Array [v;]j-1...1 containing the frequency sampling points
Initial step-sizeh and tolerance tol
Ensure: Array [z]k-o...x containing the spatial grid points
Array u containing the output pulse envelope sampled over the titeevial at the fiber end
1: {Initializationg
2. for j=1,...,Jdo
3 dlj] < i ZhL By
4: end for
5:k=0;70] =0
6: U?l «— FFT(u, forward)
7: {Loop over the propagation subinteryal
8: while Zk] < L do
9:  {Solving the first linear problem
100 forj=1,...,Jdo
11: tfexpdj] « exp@d]j])
12: Uy[j] « tfexpd ] x U j]
13:  end for
14: Uy « FFT(U:, backwarg
15: {éolving the nonlinear problem
16: if @ # Othen
17: for j=1,...,Jdo

18: ui[j] < ug[jl x expt-zah - Z(e" - Djug[11%)
19: end for

20: else

21: for j=1,...,Jdo

22: Wil ]« uy[j] x expliyhiuy [j]P°)

23: end for

13



24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

39:

40:
41:
42:
43:
44
45:
46:

47:

48:
49:
50:
51:

end if
Uy « FFT(uy, forward)
{Compute the 2 approximate solutions
fOLH =1,....,.Jdo
WI[j] < Tlj] + 2d[j]u?[j] ({First order approximate solutipn
[j] « tfexpdj] xTi[j] (Second order approximate solutjon
end for
{Step-size control
err<0
normsol < 0
for j=1,...,Jdo
norm.sol « normsol + [G2] j] |2
err — err+ [G2] j] - o[ j])2
end for
err — +err/normsol
hopt = max(0.5, min(2.0 ,0.9 ‘e%'r))h {Optimal step-size for the given prescribed tol-
erance
if err< tol then
{The current local error matches the tolergnce
4k +1] =7kl +h {New grid point is confirmegd
h = min(hop, L — Zk +1])  {New step-size valye
M 0{22] {Initial condition for the next step computatigns
ke—k+1
{The following line can be removed when only the solution atfiber end is required
and placed after the end of while lIgop
u < FFT@P, backwarg {Arrayucontains the time sampled valuég(z. 1, t)]j=1..
of the signal amplitude at grid poiat,; }
else
{The current local error does not match the tolerance
h=hg {New computation fronz with smaller step-sizhg is necessary
end if

52: end while

FFT(u, forward) stands for a call to the Fast Fourier Transform (FFT) atamito compute

the Discrete Fourier Transform (DFT) of array FFT(u, backward stands for a call to FFT
algorithm to compute the inverse DFT of arnay

5. Numerical comparisons on benchmark problems in optics

5.1. The Symmetric Split-Step method with local error ety Step-Doubling

The idea behind the Step-Doubling method for estimatiomefdcal error (widely used for

adaptive step-size control in quadrature methods for ratey ODE [15, 17]) is the following:
the local errofl[fjl for the Symmetric Split-Step method at grid pafat; given by (25) reads

2 = Azw1) — AP (z41) = Cox b + O(hY) (29)
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whereA denotes the exact solution to the NLSE (A[f] denotes the approximate solution com-
puted by the Symmetric Split-Step method &g denotes a positive number independeriiof
Let uk , be the solution at grid poirg,1 computed from grid point, by the Symmetric Split-
Step method using one step of shig and Ietvl[i]1 be the solution computed using two steps of
sizehy/2, in both cases assuming the solution at grid paitd be exact (since we are interested
in the local error). Additionally the following assumptig@made: ¢) “the local error after 2
half steps is twice the local error after one half step” (ahtonsists in an approximation since
the initial data for the second half-step is actually therapjmated solution computed after the
first half-step and not the exact one; such an approximaticglévant here). Then, from (29) we
deduce that

h 3
AZa) - U2 = CoxhB +0(h)  and  A(z) - V2, = 2Csk (Ek) +O(hh

and therefore by diierence between these 2 relations We\&élt uk+l 3 7 Cak h3 +0(hy). Thus
the local error related to the Symmetric Split-Step schetrgeldtp0|ntzk+1 can be approximated,
with an error inO(hy), by

ML

ka1 ~ Cak h¢~ 2 (V{il - u[+1) (30)

We have to point out that relation (30) gives an approxinmatibthe local error corresponding
to the solutionu[i]l computed by the Symmetric Split-Step scheme over the caaidavith
step-sizéh. However the fine mesh grid soluti@ﬁ}l is a better approximation and in practice it
is kept as the approximate solution and propagated alorfipre This process is referred in the
literature as the “local extrapolation mode”. The overtadsestimating the local error in this
way is the cost of the computation of the coarse mesh gridisaland this cost is approximately
half the cost of the computation of the fine mesh grid soluste the step-size is twice as
large. Thus, estimating the local error using the step doglapproach is liable of an extra
computational cost of 50% more than the cost of the compmutati the approximated solution
itself.

5.2. Soliton propagation

Whena = 0 andpB, < 0, the NLSE (1) admits an exact solution known as the optical
soliton [1, 2]. Namely, if the source term is given &y: t — Ns/(+/yLp ch(t/To)) whereNs is
the soliton orderTy is the pulse half-width antlp = —Té/ﬂz is the dispersion length, then the
solution to the NLSE at the soliton periagl= 3 Lp is given by

Ng eizNS/(2LD)
V'}’LD Ch(t/To) ’

We have first considered a 3rd order solitdwy (= 3) with the following physical parame-
ters for the numerical experiment = 7 Lp = 19.80m, 4 = 1550nm,y = 4.3 W tkm™,
B2 = —19.83pskm?, Ty = 0.5ps. For these experimental values, the self-phase mastulat
(SPM) is preeminent and it gives rise to an intensity depetplease shift and induces a spectral
broadening which increases with the propagation distansee e.g. [1]. It is therefore manda-
tory to have a number of sampling points for the FFT compaitatiarge enough to embrace all
the spectrum at any propagation distance. Here it was séB.tdBe initial step-size was set to
0.1 m. Computations were done on a AMD A8 Personal Computer.
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| Method | Tol. [ CPU (s.)| Nb FFT | Nb steps (reject.) | Quad. Err.| Sup. Err. |

E3S [ 10° 172 834 416 (2) 0.0044726| 0.004526
104 531 2618 1308 (1) 0.0010064| 0.0014015
SD 1073 182 1016 | 169(18) / 338 (36)| 0.011662| 0.012961
104 350 1922 320 (0) / 640 (0) | 0.0020821| 0.0022514

Table 1: Comparison of the Embedded Symmetric Split-StS}End the Symmetric Split-Step with Step-Doubling
(SD) methods for solving the NLSE for a 3rd order Soliton. ther Step-Doubling method we have indicated the number
of steps for both the coarse and fine grids.

For comparison purposes we have summarized in Table 1 thefestures of both the Em-
bedded Symmetric Split-Step (E3S) method and the Symneplic-Step with Step-Doubling
(SD) method when applied for solving the normalized NLSENB) the above physical param-
eter values. We provide the CPU time in second, the numbeF®fdehieved, the number of
computational steps with inside the brackets the numbetepsejected by the adaptive step-
size control strategy and the quadratic relative error Aedriaximum relative error at the fiber
end for tolerance values of 1and 10“. For a tolerance set to 1) one can observe that the
E3S method requires a much larger number of computatioepsg@16) than the SD method
(169) but provides a result 2.5 times more accurate for a glrge computation time. Simi-
lar comments can be done in the case when the tolerance wis &t (even if in this latter
case the CPU time for the E3S method 8 fime larger than the CPU time required by the SD
method). In this example, the E3S method selects smallprsites (average size of0278 m
for a tolerance 1@) than the SD method (average size df11 m or actually @655 m since
it is the fine grid solution which is propagated). This bebais confirmed in Fig. 3 where the
evolution of the step-size along the fiber for the 2 methodgpsesented. This can be under-
stood as follows. The adaptive step-size strategy in theri@Bod estimates the local error for
the embedded 1st order Split-Step scheme. This error iy likde higher than the actual local
error corresponding to the propagation of the solution ef 2nd order Symmetric Split-Step
scheme. This local error is more accurately estimated byptap-Doubling method. The local
error in the E3S method is therefore overestimated regyiltira selection of step-sizes smaller
than actually required. This is the reason why the E3S methodld not be used for too small
tolerance values. However, the E3S method counterbalamisadrawback by requiring 3 times
less FFT evaluations per step and we can observe a gain initiygutation time. Indeed, in order
to obtain at the fiber end the same relative quadratic errd&% corresponding to a tolerance
1073 for the E3S method, the SD method should be used with a talerai25 10*. The CPU
time is 172 s for the E3S method versus 258 s for the SD methachwépresents an flierence
of approximatively 50 %. One can infer that whenever the nemah FFT nodes will be larger
than 28 the E3S method will be even moréieient than the SD method (since the cost of each
FFT will increase). On the contrary, when FFT can be compatediower cost (i.e. when the
required number of FFT nodes is lower thaff)2the SD method will be moreficient. This is
confirmed by additional simulations: for instance when thmher of FFT nodes is set td2we
obtain a CPU time of 676 s for the E3S method versus 1065 s éoSh method for a relative
guadratic error of @15% at the fiber end and the same physical values as beforefévea [24]
for a practical application in optics requiring up t& EFT nodes.
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Figure 3: Evolution of the step-size along the fiber for th&EBd the SD methods (considered here over the coarse and
the fine grids) when solving the NLSE for a 3rd order solitothvei tolerance set to 18.

5.3. Soliton collisions

We present in this section numerical simulation resultgtiercollision of 2 first order soli-
tons [1]. It is known that when two neighboring solitons aeriched with the same phase, they
are initially attracted towards each other and then the tulegs periodically coalesce to form
one pulse and separate [25]. The source term was

Q. teRr—

1 1 . Re? )
vVyLp \ch(t = T1)/To)  ch(R(t+ T1)/To)

whereTy is the pulse half-width,p = —Tg/ﬂz is the dispersion lengtikR accounts for the relative
amplitude,¢ for the relative phase shift anfi, for the initial separation time. The following
physical parameters were taken for the numerical expetimen= 5000 km,A = 1550 nm,
y = 22W71tkm?, g, = —-01pgkm™?, To = 4ps, T; = 100ps,R = 1 andg = 0. With
these numerical values, the collision of the 2 solitons edted to happen at a distance of
4161 km [1]. The simulation time windows was 400 ps and the lmemof FFT nodes was'2
The initial step-size was set to 1 km and the tolerance t3.10

For comparison purposes we have summarized in Table 1 thefesures of the Embedded
Symmetric Split-Step (E3S) method and of the Symmetrictikp with Step-Doubling (SD)
method when applied for solving the NLSE with the above ptglgparameter values. We pro-
vide the CPU time in seconds, the number of FFT achieved amdumber of computational
steps. Inside the brackets are the number of steps rejegtbé ladaptive step-size control strat-
egy. The global error at the fiber end has been computed by aisop to a reference solution
obtained with a constant step-size of @m. Fig. 4 depicts the evolution of the step-size along
the fiber for the E3S and the SD methods (considered here logaroiarse and the fine grids).
The same observations made in the previous example arealiddere.
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| Method | CPU time (s.)] Nb FFT | Nb steps (rejected) Quad. Err.| Sup. Err. |

E3S 12.2 974 486 (4) 0.014715 | 0.014978
SD 116 1064 | 177 (16)/ 354 (32)| 0.031737 | 0.032481

Table 2: Comparison of the Embedded Symmetric Split-St&§Sfand the Symmetric Split-Step with Step-Doubling
(SD) methods for solving the NLSE for soliton collision fotalerance set to 8. For the Step-Doubling method we
have indicated the number of steps for both the coarse andrinie
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Figure 4: Evolution of the step-size along the fiber for th&BBd the SD methods (considered here over the coarse and
the fine grids) when solving the NLSE for soliton collisiorr fotolerance set to 18.

In order to obtain at the fiber end the same relative quadeatic of 147% corresponding to
a tolerance 16 for the E3S method, the SD method should be used with a taleraind 10*.
The CPU time for the E3S method is then@.g and 256 steps are required.

6. Conclusion

We have presented a way of estimating the local error fortadegtep-size control purposes
when solving the nonlinear Schrodinger equation (NLSEubing the Symmetric Split-Step
method. Compared to the "step-doubling” approach wherethpproximated solutions are
obtained by solving the NLSE by the Symmetric Split-Stephodtwith 2 diferent step-size
(the finest one being half the coarse one) resulting in a ctatipnal over-cost of 50%. Our
approach gives a coarse approximated solution at low cost fingt order Split-Step scheme
designed to be embedded into the Symmetric Split-Step rdetfibe numerical investigations
we have conducted show that this way of estimating the locai éor adaptive step-size purposes
is valuable compared to the "step-doubling” approach whercomputational cost of the Fourier
Transform is significant (which is likely to occur in opticgge when the self-phase modulation
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induces a large spectral broadening) since the "step-d@itdpproach increases by a factor 3
the number of Fourier Transforms to be achieved compardtt&ymmetric Split-Step method
without adaptive step-size control. The main drawback efgtopound approach is that since
the local error for the Symmetric Split-Step method is eated from a first order Split-Step
scheme, itis overestimated resulting in a selection of sizgs smaller than optimal. The various
parameter in the step-size selection formula could howbeeempirically tuned to take into
account this particularity. Alternatively higher orderleedded Split-Step scheme could be used.

The approach presented in this paper is not only applicaliteet NLSE but to any evolution
type PDE for which a solution can be computed by the Symm&piit-Step method with an
explicit solution for the nonlinear ODE problem (9) or withsalution for the nonlinear ODE
problem (9) obtained by a numerical method with an order ofieacy much higher than that of
the Symmetric Split-Step method.
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