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Abstract

In optics the nonlinear Schrödinger equation (NLSE) whichmodelize wave propagation in an
optical fiber is the most widely solved by the Symmetric Split-Step method. The practical effi-
ciency of the Symmetric Split-Step method is highly dependent on the computational grid points
distribution along the fiber, therefore an efficient adaptive step-size control strategy is mandatory.
The most common approach for step-size control is the “step-doubling” approach. It provides an
estimation of the local error at each computational grid point in order to set the next grid point
in the best way to match a user predefined tolerance. The step-doubling approach increases of
around 50 % the computational cost of the Symmetric Split-Step method. Alternatively there
exists in optics literature other approaches based on the observation along the propagation length
of the behavior of a given optical quantity. The step-size ateach computational step is set so as
to guarantee that the known properties of the quantity are preserved. These approaches derived
under specific physical assumptions are low cost but suffer from a lack of generality. In this pa-
per we present a new method for estimating the local error in the Symmetric Split-Step method
when solving the NLSE. It conciliates the advantages of the step-doubling approach in term of
generality and rigor but without the drawback of requiring asignificant extra computational cost.
The method is related to Embedded Split-Step methods for nonlinear evolution problems.

Keywords: Symmetric Split-Step method, adaptive step-size control,Nonlinear Schrödinger
Equation
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1. Introduction

The nonlinear Schrodinger equation (NLSE) describes a wideclass of physical phenomena
among which propagation of light in an optical fiber. We are concerned by the following form of
the NLSE (see [1, 2])

∂

∂z
A(z, t) = −α

2
A(z, t) +


N∑

n=2

in+1βn

n!
∂n

∂tn
A(z, t)

 + iγA(z, t)|A(z, t)|2 (1)
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where the complex valued functionA represents the slowly varying pulse envelope of a quasi-
monochromatic optical wave at frequencyω0 in a frame of reference moving with the pulse at the
group velocityvg = c/ng whereng denotes the group index of the fiber,z represents the position
along the fiber andt the time in the local frame. In the situation considered here, the optical
wave is assumed to be an electric fieldE at frequencyω0 which is linearly polarized along the
vectorex transverse to the propagation’s directionez defined by the fiber axis and expressed as a
function of positionr = (x, y, z) and timeτ in the form

E(r , τ) = A(z, t) F(x, y) e−i(ω0 τ−k z) ex (2)

whereF(x, y) is the electric wave transverse representation also called the “modal distribution”
andk is the wavenumber. The relation between the “local time”t in the local frame and the
absolute timeτ is t = τ − z/vg.

Equation (1) describes wave propagation in a single mode fiber taking into account phe-
nomena such as the optical Kerr effect through the nonlinear coefficientγ and linear dispersion
through the dispersion coefficientsβn, n = 2, . . . ,N with N ∈ N, N > 2. The coefficientα
accounts for attenuation or gain during propagation in the fiber. The partial differential equation
(PDE) (1) is to be solved for allz in a given interval [0, L] whereL denotes the length of the fiber
and for all “local time”t ∈ R. It is considered together with the following boundary condition at
z= 0 : ∀t ∈ R, A(0, t) = a0(t), wherea0 is a given complex valued function.

The most widely used numerical method for solving the NLSE inoptics is the Symmetric
Split-Step method, see e.g. [3–7], due to its particular simplicity and efficiency. The idea behind
the Symmetric Split-Step method applied to the NLSE (1) is todecompose over each subinterval
of a given subdivision of the fiber length the PDE problem intoa sequence of 3 simpler problems
connected to each others. The first one corresponding to a purely linear PDE over the first half of
the subinterval, the second one over the whole subinterval corresponding to a nonlinear ordinary
differential equation (ODE) with the time variable as a parameter and the third one a purely
linear PDE over the second half of the subinterval. The Symmetric Split-Step method applied to
the NLSE (1) is detailed in section 2. The interest of this numerical approach for computing an
approximation of the solution to the NLSE (1) is that each of the 3 nested problems can be solved
more easily than equation (1) and when the step-size tends toward 0 the approximate solution is
likely to converge to the solution of the NLSE (1).

It can be convenient for numerical simulation purposes to consider a normalized version of
the NLSE (1). This can be achieved by introducing the normalized variablest′ = t/T0 and
z′ = z/LD whereT0 is the half-width of the source slowly varying pulse envelope a0 and
LD = T2

0/|β2| is known as the dispersion length [1]. When normalizing the slowly varying pulse
envelope to the square root of its peak powerP0, the new unknownA′(z′, t′) is found to satisfy
the following equation

∂

∂z′
A′(z′, t′) = −α

′

2
A′(z′, t′) +


N∑

n=2

in+1β
′
n

n!
∂n

∂t′n
A′(z′, t′)

 + iγ′A′(z′, t′)|A′(z′, t′)|2 (3)

for t′ ∈ R andz′ ∈ [0, L/LD] whereα′ = LD α, γ′ = LDP0 γ andβ′n = (LD/Tn
0) βn.

Let us now introduce a comprehensive mathematical framework for the study of our em-
bedded Split-Step method applied to the NLSE. We denote byLp(I ,C), p ∈ [1,+∞[ the set
of complex-valued functions over the real intervalI whosep-th powers are integrable and by
Hm(I ,C) for m ∈ N∗ the Sobolev space of functions inL2(I ,C) with derivatives up to orderm in
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L2(I ,C), see e.g. [8]. For convenience, we will also use the notation H0(I ,C) for L2(I ,C) and
L
∞(I ,C) for the space of essentially bounded functions. The Sobolev spacesHm(I ,C), m ∈ N,

are equipped with the usual norms denoted‖ ‖m. For a functionA : (z, t) ∈ R2 7→ A(z, t) ∈ C, we
denote byA(z) the first partial function ofA in z, i.e. A(z) : t ∈ R 7→ A(z, t) ∈ C. The NLSE (1)
can be reformulated as

∂

∂z
A(z) = DA(z) +N(A(z)) ∀z ∈ [0, L] (4)

where the linear operatorD given by

D : A(z) 7−→
N∑

n=2

βn
in−1

n!
∂n

t A(z) (5)

is a unbounded linear operator onL2(R,C) with domainHN(R,C) and the non-linear operator
N given by

N : A(z) ∈ L6(R,C) 7−→ −1
2
αA(z) + iγA(z)|A(z)|2 ∈ L2(R,C) (6)

is locally Lipschitz continuous on every Sobolev spaceHm(R,C) for all m ∈ N∗ with additionally
N ∈ C∞(Hm(R,C),Hm(R,C)), see [9]. It can be seen that another splitting for the NLSE(1) is
possible: the term− 1

2αA can be added to the linear operatorD instead of the nonlinear opera-
torN.

For all (k,m) ∈ N2 and I ⊂ R, we denote byCk(I ;Hm(R,C)) the space of functions
u : z ∈ I 7→ u(z) ∈ Hm(R,C) with continuous derivatives up to orderk (or just continuous
whenk = 0). WhenN = 2, a comprehensive mathematical framework for the NLSE (1) exists
in the literature [10] and it is known that fora0 ∈ H2(R,C) there exists a uniqueA belonging to
C0(R;H2(R,C))

⋂C1(R;L2(R,C)) solution of equation (1) satisfyingA(0) = a0. This result has
been extended to an arbitrary value ofN in [11]. Namely, denoting for anym ∈ N by Em,N(I )
the space

⋂⌊m/N⌋
k=0 Ck(I ,Hm−Nk(R,C)), where⌊s⌋ denotes the integer part ofs ∈ R+, the following

result holds [11].

Theorem 1.1. For all a0 ∈ Hm(R,C), with m ∈ N∗, there exists a unique maximal solution
A ∈ Em,N([0,Z[), with Z ∈]0,+∞], to the NLSE(1) with the initial condition A(0) = a0 at z= 0.
This solution satisfies

‖A(z)‖0 = e−
α
2 z ‖a0‖0 for all z ∈ [0,Z[. (7)

Moreover, if N is even and m> N/2 then the solution is global, i.e. Z= +∞.

As a corollary of theorem 1.1 we have that whenN is an even integer anda0 ∈ H
N(R,C)

the NLSE (1) with the initial conditionA(0) = a0 at z = 0 has a unique solution in the space
C0([0, L]; HN(R,C))

⋂C1([0, L]; L2(R,C)).
Of course, the practical efficiency of a numerical method such as the Symmetric Split-Step

method applied to the NLSE (1) highly depends on the distribution of the computational grid
points along the fiber and the use of an adaptive step-size control strategy is mandatory. The
idea behind an adaptive step-size strategy is to introduce the grid points during the progress of
the computation taking into account the information available at the current computation stage in
order to determine the best suited step size (and therefore the next grid point) so as to maintain
a given predefined accuracy of the approximation. Since it isnot possible in practice to know
the final global error, the step-size is determined so that a ”local error” is lower than a prescribed
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tolerance. In the literature dedicated to optics, a varietyof adaptive step-size strategies have
been proposed to be used in conjunction with Split-Step methods. We can distinguish 2 types of
approaches. The one based on physical concepts (or physicalintuition) where at each grid point
the step-size is chosen so as a ”local error” related quantity estimated from a physical quantity
matches the prescribed tolerance value. For instance, in the so-called ”nonlinear phase rotation
method” [4] the step-size is chosen so that the phase change due to nonlinearity does not exceed
a certain limit. In the ”walk-off” method, the step-size is chosen to be inversely proportional
to the product of the absolute value of the dispersion and thespectral bandwidth of the signal
and the method applies to low power, multichannel systems [4]. In [12, 13] a method termed
the “uncertainty principle method” is proposed where the determination of the step-size is done
from the values of a parameter derived from an inequality which in quantum mechanics gives
rise to the uncertainty principle between two non commutingoperators. In [14] it is made use
of the conservation of the “optical photon number” to estimate a local error related quantity and
to define an adaptive step-size control strategy termed the Conservation Quantity Error method.
This method applies to low loss fibers.

Another approach for defining adaptive step-size strategies consists in using purely numerical
concepts. The ”local error” is then defined as the error made using the numerical scheme when
computing an approximation of the solution at the current grid point under the assumption that
the value at the previous grid point was exact. In [4] the authors propose to use the “step-
doubling” concept (see e.g. [15]) to estimate the local error when solving the NLSE by the
Symmetric Split-Step method. This approach is closely related to the Step-Doubling method
for local error estimation when numerically solving ordinary differential equations [16]. The
main advantage of such an approach is that since no assumption on the physical parameters
involved in the equation is made, the step-size strategy applies to an arbitrary set of parameters
in the NLSE. However a drawback of the Step-Doubling method is a computational over-cost of
approximatively 50 % (when compared to the same Split-Step method with the “optimal” grid
points distribution given in advance).

In this paper we propose an other way of estimating the local error in the Symmetric Split-
Step method. The over-cost of the propound method is low. As for the Step-Doubling method, 2
approximate solutions of the NLSE corresponding to a “fine” solution and to a “coarse” solution
are combined in a specific way to deliver a local error estimate. However, whereas in the Step-
Doubling method the 2 approximate solutions are obtained bythe use of the Symmetric Split-
Step method on 2 mesh grids, the finest one having twice the number of grid points of the coarse
one, our method uses the same mesh grid but 2 Split-Step schemes of different order: we use the
Symmetric Split-Step scheme which is known to have second order of accuracy with a dedicated
first order of accuracy Split-Step scheme. In order to reducethe over-cost for estimating the local
error, the idea is to re-use some of the computations required by the Symmetric Split-Step scheme
when computing the coarse solution by the first order Split-Step scheme. The first order Split-
Step scheme is therefore non-conventional and has been designed to meet this goal. Although
used in a different context, this approach is very similar to the one of embedded Runge-Kutta
method for solving ordinary differential equations [17, 18]. It is also related to the embedded
Split-Step formulae for the time integration of nonlinear evolution equation presented in [19].

The paper is organized as follows. In Section 2 we recall someof the features of the Sym-
metric Split-Step method useful for understanding the way the local error is estimated in our
embedded Split-Step method. In Section 3 we present a first order Split-Step scheme embedded
in the Symmetric Split-Step scheme designed to deliver a local error estimate at a very cheap
cost. In Section 4 the algorithm of our Embedded Split-Step method and the underlying step-
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size control strategy are detailed. Finally, in Section 5 weachieve a numerical comparison of our
method with the Step-Doubling method on benchmark problemsin optics.

2. Overview of the Symmetric Split-Step method

2.1. The Symmetric Split-Step scheme applied to the NLSE

In the Symmetric Split-Step scheme applied to the NLSE (1), the interval [0, L] is divided
into K subintervals where the spatial grid points are denotedzk, k ∈ {0, . . . ,K}, where 0= z0 <

z1 < · · · < zK−1 < zK = L. We also denote byhk = zk+1 − zk the step-size between grid pointszk

andzk+1 and we setzk+ 1
2
= zk +

hk
2 . The Symmetric Split-Step method applied to the NLSE (1)

consists of solving over each subinterval [zk, zk+1] for k ∈ {0, . . . ,K − 1}, the following 3 nested
problems with time variablet as a parameter and the operatorsD andN defined as in (5) and (6):



∂

∂z
A+k (z) = DA+k (z) ∀z ∈ [zk, zk+ 1

2
]

A+k (zk) = A[2]
k−1(zk)

(8)

whereA[2]
k−1(zk) represents the approximate solution at grid pointzk computed by the Symmetric

Split-Step method at stepk− 1;


∂

∂z
Bk(z) = N(Bk(z)) ∀z ∈ [zk, zk+1]

Bk(zk) = A+k (zk+ 1
2
)

(9)

whereA+k (zk+ 1
2
) represents the solution to problem (8) at half grid pointzk+ 1

2
;



∂

∂z
A−k (z) = DA−k (z) ∀z ∈ [zk+ 1

2
, zk+1]

A−k (zk+ 1
2
) = Bk(zk+1)

(10)

whereBk(zk+1) represents the solution to problem (9) at nodezk+1. An approximate solution
to the NLSE (1) at grid nodezk+1 is then given byA[2]

k (zk+1) = A−k (zk+1). The principle of
the Symmetric Split-Step scheme is depicted in figure 1. The most interesting thing of such a
decomposition is that each one of the 3 problems (8), (9) and (10) can be solved much more
easily than the NLSE (1) itself considered over the interval[zk, zk+1]. Moreover as detailed later
(see proposition 2.1 p. 7) forhk small enoughA[2]

k (zk+1) provides an approximation of the solution
to the NLSE (1) at grid pointzk+1. The exponent[2] in the notation of the approximate solution
refers to the second order of accuracy of the Symmetric Split-Step method.

2.2. Solving the linear problems(8) and (10)

Problems (8) and (10) are in the form


∂

∂z
U(z) = DU(z) ∀z ∈ [a, b]

U(a) = ϕ
(11)

whereU(z) denotes the first partial function of the mappingU : (z, t) ∈ [a, b] ×R 7→ U(z, t) ∈ C.
It is known, see e.g. [11], that when the initial dataϕ is in HN(R,C), problem (11) has a unique

5



x x x

D D DDDD

1
2 hk

1
2 hk

hk

NNN

zk−1 zk+1 zk−2zk

Figure 1: Principle of the Symmetric Split-Step scheme (computational stepk is displayed in the dashed box).

solutionU : z ∈ [a, b] 7→ U(z) belonging toC0([a, b]; HN(R,C))
⋂C1([a, b]; L2(R,C)) which

satisfies‖U(z)‖ j = ‖ϕ‖ j for all j ∈ {0, . . . ,N}.
The solution to problem (11) can be computed by using the Fourier Transform (FT) approach.

For a fixed value of the space variablez, we introduce the FT̂U(z) of U(z) with respect to the
time variablet. We denote byF the Fourier operator fromL2(R,C) to L2(R,C) defined by
continuous extension of the Fourier Transform definition for integrable functions and computed
for all u ∈ L2(R,C) by an improper integral as

∀ν ∈ R F (u)(ν) = û(ν) = lim
T→+∞

∫ T

−T
u(t) e2iπνt dt.

We also denote byF −1 the inverse Fourier Transform. From (11) we deduce thatÛ satisfies


∂

∂z
Û(z) = d̂ν Û(z) ∀z ∈ [a, b]

Û(a) = ϕ̂
(12)

where d̂ν = i
∑N

n=2
βn

n! (2πν)n. The solution to the linear first order ODE problem (12) reads

Û(z) = ϕ̂ ed̂ν(z−a). Therefore we haveU(b) = F −1[Û(b)
]
= F −1[ϕ̂ ed̂ν(b−a)]. As a consequence,

the solution to problem (8) at grid pointz
k+

1
2

reads

A+k (z
k+

1
2
) = F −1[Âk−1(zk) ed̂ν

hk
2
]

(13)

and the solution to problem (10) at grid pointzk+1 reads

A−k (zk+1) = F −1[B̂k(zk+1) ed̂ν
hk
2
]
. (14)

The Fourier transforms can be computed very efficiently by using the FFTW library [20] that
supports a variety of algorithms and can choose the one it estimates or measures to be preferable
in particular circumstances.

2.3. Solving the nonlinear problem
SinceN is locally Lipschitz continuous onHm(R,C) and continuous onHm(R,C), the

Cauchy-Lipschitz theorem in Banach spaces gives the local existence of a unique maximal solu-
tion to the nonlinear ODE problem (9). The solution to problem (9) whenN is given by (6) can
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be computed analytically. First, one can check that it admits the following integral representation
form:

∀z ∈ [zk, zk+1] Bk(z) = A+k (zk+ 1
2
) exp

(
−α

2
(z− zk) +

∫ z

zk

iγ|Bk(ζ)|2 dζ

)
. (15)

Multiplying each side of the ODE in (9) byBk(z) (the complex conjugate ofBk(z)) and adding
it to the complex conjugate equation deduced from (9) which has been previously multiplied by
Bk(z) shows that∀z ∈ [zk, zk+1]

∂

∂z
|Bk(z)|2 = Bk(z)

∂

∂z
Bk(z) + Bk(z)

∂

∂z
Bk(z) = −α|Bk(z)|2. (16)

We first consider the case whenα = 0. It turns out from (16) that the integrand in (15) is a
constant function and we obtain

∀z ∈ [zk, zk+1] Bk(z) = A+k (zk+ 1
2
) exp

(
iγ(z− zk)|A+k (zk+ 1

2
)|2

)
.

In the general case whenα , 0, it follows from (16) that for allz ∈ [zk, zk+1] we have|Bk(z)|2 =
|A+k (zk+ 1

2
)|2 e−α(z−zk). Then, from (15) we deduce that for allz ∈ [zk, zk+1]

Bk(z) = A+k (zk+ 1
2
) exp

(
−α

2
(z− zk) −

iγ
α
|A+k (zk+ 1

2
)|2(e−α(z−zk) − 1)

)
.

Thus an analytical expression for the solution to the nonlinear problem (9) is known and in
particular at grid pointzk+1 we have

Bk(zk+1) =



A+k (zk+ 1
2
) exp

(
iγhk|A+k (zk+ 1

2
)|2

)
if α = 0

A+k (zk+ 1
2
) exp

(
−α

2
hk −

iγ
α
|A+k (zk+ 1

2
)|2(e−αhk − 1)

)
if α , 0

. (17)

2.4. Error behavior for the Symmetric Split-Step scheme

The convergence of Split-Step methods applied to various forms of the Schrödinger equation
is widely documented in the literature, see e.g. [21–23] where the authors prove that the conver-
gence order of the Symmetric Split-Step method is 2. Namely,in the situation considered here
the following result holds (see proposition 3.1 of [11]).

Proposition 2.1. Let A denote the solution to the NLSE(1) and for all k ∈ {0, . . . ,K − 1} let
A[2]

k (zk+1) denote its approximation at grid point zk+1 computed by solving the 3 nested problems

(8)–(9)–(10)with the initial condition A[2]
k−1(zk) = A(zk) assumed to be inH3N+1(R,C). Then, for

hk in a neighborhood of0 we have the following estimate inH1(R,C):

A(zk+1) = A[2]
k (zk+1) + O(h3

k).

3. A truncated first order Split-Step scheme

3.1. First-order Lie-Trotter Split-Step scheme

As propound in [19], a local error estimate can be obtained byusing the first order Lie-
Trotter Split-Step scheme together with the Symmetric Split-Step one. The Lie-Trotter Split-Step
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scheme is defined for allk ∈ {1, . . . ,K − 1} by:


∂

∂z
A∗k(z) = DA∗k(z) ∀z ∈ [zk, zk+1]

A∗k(zk) = A[1]
k−1(zk)

(18)

whereA[1]
k−1(zk) represents the approximate solution at previous grid point zk computed at step

k− 1; and 

∂

∂z
Bk(z) = N(Bk)(z) ∀z ∈ [zk, zk+1]

Bk(zk) = A∗k(zk+1)
(19)

whereA∗k(zk+1) represents the solution to problem (18) at pointzk+1. The approximate solution to
equation (1) at grid pointzk+1 is thenA[1]

k (zk+1) = Bk(zk+1). The main drawback in using the Lie-
Trotter Split-Step scheme is that the computations leadingto the approximate solution cannot be
factorized with the one of the Symmetric Split-Step scheme.The consequence is a significant
extra cost for estimating the local error in this way, makingthe method not competitive when
compared to the Step-Doubling method. In the next section wepropose another first-order Split-
Step scheme where most of the computations required for evaluating the first order approximate
solution is also required for evaluating the Symmetric Split-Step approximate solution. The
overall cost of this method for evaluating the local error istherefore very low.

3.2. The first-order Split-Step scheme

We consider the following Split-Step scheme defined for allk ∈ {1, . . . ,K − 1} by:


∂

∂z
A⋆k (z) = DA⋆k (z) ∀z ∈ [zk, zk+ 1

2
]

A⋆k (zk) = A[1]
k−1(zk)

(20)

whereA[1]
k−1(zk) represents the approximate solution at previous grid point zk computed at step

k− 1; and 

∂

∂z
Bk(z) = N(Bk)(z) ∀z ∈ [zk, zk+1]

Bk(zk) = A⋆k (zk+ 1
2
)

(21)

whereA⋆k (zk+ 1
2
) represents the solution to problem (20) at half grid pointzk+ 1

2
. The approximate

solution to equation (1) at grid pointzk+1 computed from the approximate solutionA[1]
k−1(zk) at

grid pointzk is obtained by adding toBk(zk+1) a corrective term as follows:

A[1]
k (zk+1) = Bk(zk+1) +

1
2

hkDA[1]
k−1(zk). (22)

The exponent[1] in the notation of the approximate solution refers to the first order of accuracy of
the method (this point is justified in the next section). The principle of this “truncated” Split-Step
scheme is depicted in Fig. 2.
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Figure 2: Principle of the ”truncated” Split-Step scheme (computational stepk is displayed in the dashed box).

3.3. Error analysis of the truncated Split-Step scheme

Since we are concerned by an analysis of the local error in thetruncated Split-Step scheme de-
fined by (20)–(21)–(22), we will assume in the following thatat stagek for all k ∈ {0, . . . ,K − 1},
the initial dataA[1]

k−1(zk) is exact, i.e.A[1]
k−1(zk) = A(zk−1) whereA denotes the solution to equa-

tion (1).

Lemma 3.1. For all k ∈ {0, . . . ,K − 1}, let A⋆k be the solution of problem(20) with the ini-
tial condition given by A⋆k (zk) = A(zk) assumed to belong toH2N+1(R,C). For hk ∈ R∗+ in a
neighborhood of0 we have the following equality inH1(R,C)

A⋆k (zk+ 1
2
) = A(zk) +

1
2

hkDA(zk) + O(h2
k).

Proof. A first order Taylor expansion forA⋆k betweenzk andzk+ 1
2

gives inH1(R,C)

A⋆k (zk+ 1
2
) = A⋆k (zk) +

1
2

hk
∂

∂z
A⋆k (zk) + O(h2

k).

SinceA⋆k is solution to problem (20), we have∂
∂zA⋆k (zk) = DA⋆k (zk). Combining the 2 equalities

gives the result under the assumptionA⋆k (zk) = A(zk).

Lemma 3.2. For all k ∈ {0, . . . ,K−1}, consider the 2 nested problems(20)– (21)with the initial
condition for problem(20) given by A⋆k (zk) = A(zk) assumed to belong toH2N+1(R,C). For
hk ∈ R∗+ in a neighborhood of0, the solution Bk of problem(21) satisfies the following equality
in H

1(R,C):

Bk(zk+1) = A(zk+1) − 1
2

hkDA(zk) + O(h2
k).

Proof. A first order Taylor expansion applied to the solutionBk to problem (21) betweenzk and
zk+1 gives inH1(R,C):

Bk(zk+1) = Bk(zk) + hk
∂

∂z
Bk(zk) + O(h2

k) = Bk(zk) + hkN(Bk)(zk) + O(h2
k)

= A⋆k (zk+ 1
2
) + hkN(A⋆k )(zk+ 1

2
) + O(h2

k).
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Let us then consider a first order Taylor expansion of the solution to the NLSE (1) betweenzk

andzk+1:

A(zk+1) = A(zk) + hk
∂

∂z
A(zk) + O(h2

k) = A(zk) + hk (DA(zk) +N(A)(zk)) + O(h2
k).

It follows that

A(zk+1) − Bk(zk+1) =
(
A(zk) − A⋆k (zk+ 1

2
)
)
+ hkDA(zk)

+ hk
(N(A)(zk) − N(A⋆k )(zk+ 1

2
)
)
+ O(h2

k). (23)

Now consider a Taylor expansion of the operatorN betweenA⋆k (zk+ 1
2
) andA(zk) :

N(A)(zk) − N(A⋆k )(zk+ 1
2
) = N ′(A⋆k (zk+ 1

2
))(A(zk) − A⋆k (zk+ 1

2
)) + O(‖A(zk) − A⋆k (zk+ 1

2
)‖21

)
.

From Lemma 3.1 we deduce thatN(A)(zk) − N(A⋆k )(zk+ 1
2
) = O(hk) so that from (23)

A(zk+1) − Bk(zk+1) =
(
A(zk) − A⋆k (zk+ 1

2
)
)
+ hkDA(zk) + O(h2

k).

From Lemma 3.1 again, we conclude thatA(zk+1) − Bk(zk+1) = 1
2hkDA(zk) + O(h2

k).

From Lemmas 3.1 and 3.2 we finally deduce the following resultwhich states that the Split-
Step scheme (20)–(21)–(22) is first order accurate.

Proposition 3.3. Let A denote the solution to the NLSE(1) under the initial condition A(0) = a0

at z = 0 where a0 is a given function inH2N+1(R,C). For all k ∈ {0, . . . ,K − 1}, let A[1]
k (zk+1)

be the function given by relation(22) where Bk(zk+1) is the solution at grid point zk+1 of the 2
nested problems(20)–(21)under the initial condition for problem(20)given by A⋆k (zk) = A(zk).
For hk ∈ R∗+ in a neighborhood of0 we have the following equality inH1(R,C):

A(zk+1) = A[1]
k (zk+1) + O(h2

k).

Remark A first order Taylor expansion of the solution to problem (10)betweenzk+ 1
2

andzk+1

gives

A−k (zk+1) = A−k (zk+ 1
2
) +

hk

2
∂

∂z
A−k (zk+ 1

2
) + O(h2

k) = Bk(zk+1) +
hk

2
∂

∂z
Bk(zk+1) + O(h2

k)

and from lemma 3.2 we deduce that

A[1]
k (zk+1) = A−k (zk+1) = Bk(zk+1) +

hk

2
∂

∂z
A[1]

k−1(zk) + O(h2
k).

Therefore the corrective term (22) is nothing but a first order Taylor expansion of the solution
to problem (10). A similar first order Taylor expansion couldbe considered instead of solving
problem (8) with a resulting approximation scheme having the same order of accuracy, but the
resulting computational procedure would not be anymore fully embedded in the Symmetric Split-
Step one, resulting in an increase of the computational cost.
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4. The Embedded Split-Step method with adaptive step-size control

4.1. Numerical approximation of the local error for the Split-Step scheme

Assuming that the solution value at grid pointzk is regarded as exact (because we are con-
cerned by an estimation of the local error), we denote byA[1]

k (resp.A[2]
k ) the approximate solution

computed at the current grid pointzk by the first order (resp. the second order) above Split-Step
scheme. From propositions 2.1 and 3.3 we deduce that for a regular enough initial condition,
the local error at grid pointzk+1 for each of the 2 schemes is respectively given, forhk in a
neighborhood of 0 and∀t ∈ R, by

ℓ
[1]
k+1(t) = A(zk+1, t) − A[1]

k (zk+1, t) = C1,k h2
k + O(h3

k) (24)

ℓ
[2]
k+1(t) = A(zk+1, t) − A[2]

k (zk+1, t) = C2,k h3
k + O(h4

k) (25)

whereC1,k andC2,k denote 2 numbers independent ofhk. By taking the difference between these
2 relations we obtain:∀t ∈ R

A[2]
k (zk+1, t) − A[1]

k (zk+1, t) = C1,k h2
k + O(h3

k).

Thus the local error for the first order Split-Step scheme at grid point zk+1 can be approximated,
with an error inO(h3

k), in the following way:∀t ∈ R

ℓ
[1]
k+1(t) ≈ C1,k h2

k ≈ A[2]
k (zk+1, t) − A[1]

k (zk+1, t). (26)

Performing integration overt in R, we obtain the following approximation for theL2-local error
at grid pointzk+1

‖ℓ[1]
k+1‖0 ≈

(∫

R

∣∣∣A[2]
k (zk+1, t) − A[1]

k (zk+1, t)
∣∣∣2 dt

) 1
2

≈
√

ht


J−1∑

j=0

∣∣∣A[2]
k+1(t j) − A[1]

k+1(t j)
∣∣∣2



1
2

(27)

where, for simplicity, the last approximation results fromthe use of the rectangle quadrature rule
over a discretization (t j) j=0,...,J with a constant step-sizeht of the interval of observation. Note
that the trapezoidal quadrature rule could also be used and would provide a more accurate result
for the same cost.

We have to point out that relation (26) gives an approximation of the local error corresponding
to the solution computed with the first order Split-Step method and consequently the size of the
steps delivered by the adaptive step-size control method will be optimal for the first order Split-
Step scheme. However, the solution computed by the Symmetric Split-Step method is a better
approximation than the one computed by the first order Split-Step method and it is thus kept as
the approximate solution. This is very common in such a situation and it is referred to as ”local
extrapolation”.

4.2. The Embedded Split-Step method

The computational sequence for one step of the Embedded Split-Step method can be under-
stood as follows. Fork ∈ N, let u[1]

k+1 denotes the solution at grid pointzk+1 computed by the first
order Split-Step scheme defined at stepk by (20)–(21)–(22) and letu[2]

k+1 denotes the solution at
grid pointzk+1 computed by the Symmetric Split-Step method defined at stepk by (8)–(9)–(10).
As mentioned before, the solution computed by the SymmetricSplit-Step scheme is a better

11



approximation than the one computed by the first order Split-Step scheme and it is kept as the
approximate solution at each grid point. As a consequence, the initial condition in (8) and (20)
is A[2]

k−1(zk) and the 2 linear PDE problems are actually identical. It follows that the 2 problems
(9) and (21) are also identical and the 2 Split-Step schemes only differ by (10) and (22).

The wayu[1]
k+1 andu[2]

k+1 are obtained fromu[2]
k (or actually their Fourier Transformŝu[1]

k+1 and
û[2]

k+1 from û[2]
k ) as well as the way the local error is estimated, can be summarized by the following

computational sequence:

v̂1
2
= exp(

hk

2
d̂ν) × û[2]

k whered̂ν is defined in (12)

v1
2
= F −1(̂v1

2
)

v1 =


v1

2
exp

(
−α2hk − iγ|v1

2
|2 eαhk−1

α

)
if α , 0

v1
2

exp
(
iγhk|v1

2
|2
)

if α = 0
v̂1 = F (v1)

û[2]
k+1 = exp(

hk

2
d̂ν) × v̂1

û[1]
k+1 = v̂1 +

hk

2
d̂ν × û[2]

k

local error = ‖̂u[2]
k+1 − û[1]

k+1‖0 (from Parseval’s theorem)

relative local error= ‖̂u[2]
k+1 − û[1]

k+1‖0/‖̂u
[2]
k+1‖0

When compared to the standard version of the Symmetric Split-Step method, the over-cost
of the above computational procedure for delivering the local error estimate reduces to the com-
putation of the term̂u[1]

k+1. Since the value ofhk
2 d̂ν is required when implementing the Symmetric

Split-Step scheme, the over-cost at each step is 1 multiplication and 1 addition times the number
of sampling points in the frequency domain.

4.3. Step-size control

For step-size control, a tolerance “tol” is given as bound onthe local error estimate. A
step-size control strategy consists in rejecting the current step-size if it gives an estimated local
error “err” higher than the specified tolerance and in accepting the solution computed with this
step-size if otherwise. When the current step-size is rejected, a new smaller step-size has to
be chosen to recompute the solution from the current grid point. On the contrary, when the
current step-size meets the tolerance requirement for the local error, it has to be scaled up for the
next computation step. We consider the Symmetric Split-step method and the Split-Step method
defined respectively by (8)–(9)–(10) and (20)–(21)–(22), and we assume that the leading term
in the asymptotic expansion (24) of the local error dominates the others for the current value of
the step-sizehk. From (24) and (27) there existsC ∈ R+ such that‖ℓ[1]

k+1‖0 = C h2
k. The optimal

step-sizehopt is the one for which the local error estimate is the closest tothe prescribed tolerance
tol, i.e. C h2

opt = tol. By eliminating the constantC from these 2 relations we obtain

hopt = hk

√
tol
err
.

where err= ‖ℓ[1]
k+1‖0. In the previous relationship it is common to consider an estimate for the

relative local error and a relative tolerance “tol”. It is the choice we adopt in the following.
12



For robustness the step-size control has to be designed in order to respond as smoothly as
possible with real or apparent abrupt changes in behavior. That is the reason why it is imposed
that the new step-size does not exceedα1 times the current step-size above andα2 times the
current step-size below. In order to avoid situations wherethe specified tolerance is ever exceeded
resulting in rejecting too many steps, a safety factor is introduced: ifhopt is the value of the step-
size estimated to give a predicted truncation error equal tothe tolerance, then the smaller value
α3 hopt is used instead. Following these requirements, the following step-size control formula is
considered

hnew = max

α2 , min

α1 , α3

√
tol
‖err



 hk (28)

where tol denotes the relative tolerance value specified by the user as a bound on the relative
local error estimated by (27). Suggested constant values for α1, α2 andα3 are respectively 2.0,
0.5 and 0.9.

4.4. Algorithm for the Embedded Split-Step method

ESS algorithm
Require: Array u containing the input pulse envelope sampled over the time interval

Array [t j ] j=1,...,J containing the time sampling points
Array [ν j ] j=1,...,J containing the frequency sampling points
Initial step-sizeh and tolerance tol

Ensure: Array [zk]k=0,...,K containing the spatial grid points
Array u containing the output pulse envelope sampled over the time interval at the fiber end

1: {Initializations}
2: for j = 1, . . . , J do
3: d̂[ j] ← i

∑N
n=2

βn

n! (2πν j)n

4: end for
5: k = 0; z[0] = 0
6: û[2] ← FFT(u, f orward)
7: {Loop over the propagation subinterval}
8: while z[k] 6 L do
9: {Solving the first linear problem}

10: for j = 1, . . . , J do
11: t f expd[ j] ← exp(h2d̂[ j])
12: û1

2
[ j] ← t f expd[ j] × û[2] [ j]

13: end for
14: u1

2
← FFT(̂u1

2
, backward)

15: {Solving the nonlinear problem}
16: if α , 0 then
17: for j = 1, . . . , J do
18: u1[ j] ← u1

2
[ j] × exp(− 1

2αh−
iγ
α

(eαh − 1)|u1
2
[ j]|2)

19: end for
20: else
21: for j = 1, . . . , J do
22: u1[ j] ← u1

2
[ j] × exp(iγh|u1

2
[ j]|2)

23: end for
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24: end if
25: û1← FFT(u1, f orward)
26: {Compute the 2 approximate solutions}
27: for j = 1, . . . , J do
28: û[1]

2 [ j] ← û1[ j] + h
2 d̂[ j] û[2][ j] {First order approximate solution}

29: û[2]
2 [ j] ← t f expd[ j] × û1[ j] {Second order approximate solution}

30: end for
31: {Step-size control}
32: err← 0
33: norm sol← 0
34: for j = 1, . . . , J do
35: norm sol← norm sol+ |̂u[2]

2 [ j]|2
36: err← err+ |̂u[2]

2 [ j] − û[1]
2 [ j]|2

37: end for
38: err←

√
err/norm sol

39: hopt = max
(
0.5 , min

(
2.0 , 0.9

√
tol
err

))
h {Optimal step-size for the given prescribed tol-

erance}
40: if err6 tol then
41: {The current local error matches the tolerance}
42: z[k+ 1] = z[k] + h {New grid point is confirmed}
43: h = min(hopt, L − z[k+ 1]) {New step-size value}
44: û[2] ← û[2]

2 {Initial condition for the next step computations}
45: k← k+ 1
46: {The following line can be removed when only the solution at the fiber end is required

and placed after the end of while loop}
47: u← FFT(̂u[2] , backward) {Arrayucontains the time sampled values [Ak(zk+1, t j)] j=1,...,J

of the signal amplitude at grid pointzk+1}
48: else
49: {The current local error does not match the tolerance}
50: h = hopt {New computation fromzk with smaller step-sizehopt is necessary}
51: end if
52: end while

FFT(u, f orward) stands for a call to the Fast Fourier Transform (FFT) algorithm to compute
the Discrete Fourier Transform (DFT) of arrayu, FFT(u, backward) stands for a call to FFT
algorithm to compute the inverse DFT of arrayu,

5. Numerical comparisons on benchmark problems in optics

5.1. The Symmetric Split-Step method with local error estimate by Step-Doubling

The idea behind the Step-Doubling method for estimation of the local error (widely used for
adaptive step-size control in quadrature methods for integral or ODE [15, 17]) is the following:
the local errorℓ[2]

k+1 for the Symmetric Split-Step method at grid pointzk+1 given by (25) reads

ℓ
[2]
k+1 = A(zk+1) − A[2]

k (zk+1) = C2,k h3
k + O(h4

k) (29)
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whereA denotes the exact solution to the NLSE (1),A[2]
k denotes the approximate solution com-

puted by the Symmetric Split-Step method andC2,k denotes a positive number independent ofhk.
Let u[2]

k+1 be the solution at grid pointzk+1 computed from grid pointzk by the Symmetric Split-
Step method using one step of sizehk, and letv[2]

k+1 be the solution computed using two steps of
sizehk/2, in both cases assuming the solution at grid pointzk to be exact (since we are interested
in the local error). Additionally the following assumptionis made: (H) “the local error after 2
half steps is twice the local error after one half step” (which consists in an approximation since
the initial data for the second half-step is actually the approximated solution computed after the
first half-step and not the exact one; such an approximation is relevant here). Then, from (29) we
deduce that

A(zk+1) − u[2]
k+1 = C2,k h3

k + O(h4
k) and A(zk+1) − v[2]

k+1 = 2C2,k

(
hk

2

)3

+ O(h4
k)

and therefore by difference between these 2 relations we getv[2]
k+1−u[2]

k+1 =
3
4 C2,k h3

k+O(h4
k). Thus

the local error related to the Symmetric Split-Step scheme at grid pointzk+1 can be approximated,
with an error inO(h4

k), by

ℓ
[2]
k+1 ≈ C2,k h3

k ≈
4
3

(v[2]
k+1 − u[2]

k+1). (30)

We have to point out that relation (30) gives an approximation of the local error corresponding
to the solutionu[2]

k+1 computed by the Symmetric Split-Step scheme over the coarsegrid with
step-sizehk. However the fine mesh grid solutionv[2]

k+1 is a better approximation and in practice it
is kept as the approximate solution and propagated along thefiber. This process is referred in the
literature as the “local extrapolation mode”. The over-cost of estimating the local error in this
way is the cost of the computation of the coarse mesh grid solution and this cost is approximately
half the cost of the computation of the fine mesh grid solutionsince the step-size is twice as
large. Thus, estimating the local error using the step doubling approach is liable of an extra
computational cost of 50% more than the cost of the computation of the approximated solution
itself.

5.2. Soliton propagation

Whenα = 0 andβ2 < 0, the NLSE (1) admits an exact solution known as the optical
soliton [1, 2]. Namely, if the source term is given bya0 : t 7→ Ns/(

√
γLD ch(t/T0)) whereNs is

the soliton order,T0 is the pulse half-width andLD = −T2
0/β2 is the dispersion length, then the

solution to the NLSE at the soliton periodzp =
π
2 LD is given by

∀t ∈ R A(z, t) =
Ns√
γLD

eizN2
s/(2LD)

ch(t/T0)
. (31)

We have first considered a 3rd order soliton (Ns = 3) with the following physical parame-
ters for the numerical experiment:L = π

2 LD = 19.80 m, λ = 1550 nm,γ = 4.3 W−1 km−1,
β2 = −19.83 ps2 km−1, T0 = 0.5 ps. For these experimental values, the self-phase modulation
(SPM) is preeminent and it gives rise to an intensity dependent phase shift and induces a spectral
broadening which increases with the propagation distancez, see e.g. [1]. It is therefore manda-
tory to have a number of sampling points for the FFT computations large enough to embrace all
the spectrum at any propagation distance. Here it was set to 218. The initial step-size was set to
0.1 m. Computations were done on a AMD A8 Personal Computer.
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Method Tol. CPU (s.) Nb FFT Nb steps (reject.) Quad. Err. Sup. Err.

E3S 10−3 172 834 416 (2) 0.0044726 0.004526
10−4 531 2618 1308 (1) 0.0010064 0.0014015

SD 10−3 182 1016 169 (18) / 338 (36) 0.011662 0.012961
10−4 350 1922 320 (0) / 640 (0) 0.0020821 0.0022514

Table 1: Comparison of the Embedded Symmetric Split-Step (E3S) and the Symmetric Split-Step with Step-Doubling
(SD) methods for solving the NLSE for a 3rd order Soliton. Forthe Step-Doubling method we have indicated the number
of steps for both the coarse and fine grids.

For comparison purposes we have summarized in Table 1 the main features of both the Em-
bedded Symmetric Split-Step (E3S) method and the SymmetricSplit-Step with Step-Doubling
(SD) method when applied for solving the normalized NLSE (3)with the above physical param-
eter values. We provide the CPU time in second, the number of FFT achieved, the number of
computational steps with inside the brackets the number of steps rejected by the adaptive step-
size control strategy and the quadratic relative error and the maximum relative error at the fiber
end for tolerance values of 10−3 and 10−4. For a tolerance set to 10−3, one can observe that the
E3S method requires a much larger number of computational steps (416) than the SD method
(169) but provides a result 2.5 times more accurate for a veryclose computation time. Simi-
lar comments can be done in the case when the tolerance was setto 10−4 (even if in this latter
case the CPU time for the E3S method is 1.5 time larger than the CPU time required by the SD
method). In this example, the E3S method selects smaller step-sizes (average size of 0.0478 m
for a tolerance 10−3) than the SD method (average size of 0.1311 m or actually 0.0655 m since
it is the fine grid solution which is propagated). This behavior is confirmed in Fig. 3 where the
evolution of the step-size along the fiber for the 2 methods isrepresented. This can be under-
stood as follows. The adaptive step-size strategy in the E3Smethod estimates the local error for
the embedded 1st order Split-Step scheme. This error is likely to be higher than the actual local
error corresponding to the propagation of the solution of the 2nd order Symmetric Split-Step
scheme. This local error is more accurately estimated by theStep-Doubling method. The local
error in the E3S method is therefore overestimated resulting in a selection of step-sizes smaller
than actually required. This is the reason why the E3S methodshould not be used for too small
tolerance values. However, the E3S method counterbalancesthis drawback by requiring 3 times
less FFT evaluations per step and we can observe a gain in the computation time. Indeed, in order
to obtain at the fiber end the same relative quadratic error of0.45% corresponding to a tolerance
10−3 for the E3S method, the SD method should be used with a tolerance of 2.5 10−4. The CPU
time is 172 s for the E3S method versus 258 s for the SD method which represents an difference
of approximatively 50 %. One can infer that whenever the number of FFT nodes will be larger
than 218 the E3S method will be even more efficient than the SD method (since the cost of each
FFT will increase). On the contrary, when FFT can be computedat a lower cost (i.e. when the
required number of FFT nodes is lower than 218), the SD method will be more efficient. This is
confirmed by additional simulations: for instance when the number of FFT nodes is set to 220 we
obtain a CPU time of 676 s for the E3S method versus 1065 s for the SD method for a relative
quadratic error of 0.45% at the fiber end and the same physical values as before. We refer to [24]
for a practical application in optics requiring up to 223 FFT nodes.
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Figure 3: Evolution of the step-size along the fiber for the E3S and the SD methods (considered here over the coarse and
the fine grids) when solving the NLSE for a 3rd order soliton with a tolerance set to 10−3.

5.3. Soliton collisions
We present in this section numerical simulation results forthe collision of 2 first order soli-

tons [1]. It is known that when two neighboring solitons are launched with the same phase, they
are initially attracted towards each other and then the two pulses periodically coalesce to form
one pulse and separate [25]. The source term was

a0 : t ∈ R 7−→ 1
√
γLD

(
1

ch((t − T1)/T0)
+

Reiφ

ch(R(t + T1)/T0)

)

whereT0 is the pulse half-width,LD = −T2
0/β2 is the dispersion length,Raccounts for the relative

amplitude,φ for the relative phase shift andT1 for the initial separation time. The following
physical parameters were taken for the numerical experiment: L = 5000 km,λ = 1550 nm,
γ = 2.2 W−1 km−1, β2 = −0.1 ps2 km−1, T0 = 4 ps, T1 = 100 ps,R = 1 andφ = 0. With
these numerical values, the collision of the 2 solitons is predicted to happen at a distance of
4161 km [1]. The simulation time windows was 400 ps and the number of FFT nodes was 214.
The initial step-size was set to 1 km and the tolerance to 10−3.

For comparison purposes we have summarized in Table 1 the main features of the Embedded
Symmetric Split-Step (E3S) method and of the Symmetric Split-Step with Step-Doubling (SD)
method when applied for solving the NLSE with the above physical parameter values. We pro-
vide the CPU time in seconds, the number of FFT achieved and the number of computational
steps. Inside the brackets are the number of steps rejected by the adaptive step-size control strat-
egy. The global error at the fiber end has been computed by comparison to a reference solution
obtained with a constant step-size of 0.1 km. Fig. 4 depicts the evolution of the step-size along
the fiber for the E3S and the SD methods (considered here over the coarse and the fine grids).
The same observations made in the previous example are also valid here.
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Method CPU time (s.) Nb FFT Nb steps (rejected) Quad. Err. Sup. Err.

E3S 12.2 974 486 (4) 0.014715 0.014978
SD 11.6 1064 177 (16) / 354 (32) 0.031737 0.032481

Table 2: Comparison of the Embedded Symmetric Split-Step (E3S) and the Symmetric Split-Step with Step-Doubling
(SD) methods for solving the NLSE for soliton collision for atolerance set to 10−3. For the Step-Doubling method we
have indicated the number of steps for both the coarse and finegrids.
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Figure 4: Evolution of the step-size along the fiber for the E3S and the SD methods (considered here over the coarse and
the fine grids) when solving the NLSE for soliton collision for a tolerance set to 10−3.

In order to obtain at the fiber end the same relative quadraticerror of 1.47% corresponding to
a tolerance 10−3 for the E3S method, the SD method should be used with a tolerance of 3 10−4.
The CPU time for the E3S method is then 17.0 s and 256 steps are required.

6. Conclusion

We have presented a way of estimating the local error for adaptive step-size control purposes
when solving the nonlinear Schrödinger equation (NLSE) byusing the Symmetric Split-Step
method. Compared to the ”step-doubling” approach where the2 approximated solutions are
obtained by solving the NLSE by the Symmetric Split-Step method with 2 different step-size
(the finest one being half the coarse one) resulting in a computational over-cost of 50%. Our
approach gives a coarse approximated solution at low cost bya first order Split-Step scheme
designed to be embedded into the Symmetric Split-Step method. The numerical investigations
we have conducted show that this way of estimating the local error for adaptive step-size purposes
is valuable compared to the ”step-doubling” approach when the computational cost of the Fourier
Transform is significant (which is likely to occur in optics e.g. when the self-phase modulation
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induces a large spectral broadening) since the ”step-doubling” approach increases by a factor 3
the number of Fourier Transforms to be achieved compared to the Symmetric Split-Step method
without adaptive step-size control. The main drawback of the propound approach is that since
the local error for the Symmetric Split-Step method is estimated from a first order Split-Step
scheme, it is overestimated resulting in a selection of step-sizes smaller than optimal. The various
parameter in the step-size selection formula could howeverbe empirically tuned to take into
account this particularity. Alternatively higher order embedded Split-Step scheme could be used.

The approach presented in this paper is not only applicable to the NLSE but to any evolution
type PDE for which a solution can be computed by the SymmetricSplit-Step method with an
explicit solution for the nonlinear ODE problem (9) or with asolution for the nonlinear ODE
problem (9) obtained by a numerical method with an order of accuracy much higher than that of
the Symmetric Split-Step method.
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