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ABSTRACT

Distributed collaborative editing systems allow users to
work distributed in time, space and across organizations.
Trending distributed collaborative editors such as Google
Docs, Etherpad or Git have grown in popularity over the
years. A new kind of distributed editors based on a fam-
ily of distributed data structure replicated on several sites
called Conflict-free Replicated Data Type (CRDT for short)
appeared recently. This paper considers a CRDT that rep-
resents a distributed sequence of basic elements that can be
lines, words or characters (sequence CRDT). The possible
operations on this sequence are the insertion and the deletion
of elements. Compared to the state of the art, this approach
is more decentralized and better scales in terms of the num-
ber of participants. However, its space complexity is linear
with respect to the total number of inserts and the inser-
tion points in the document. This makes the overall perfor-
mance of such editors dependent on the editing behaviour of
users. This paper proposes and models LSEQ, an adaptive
allocation strategy for a sequence CRDT. LSEQ achieves in
the average a sub-linear spatial-complexity whatever is the
editing behaviour. A series of experiments validates LSEQ
showing that it outperforms existing approaches.
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1. INTRODUCTION
Distributed collaborative editing systems [4, 5, 6] such as

Google Docs, Etherpad or Git are now widely used and allow
users to work distributed in time, space, and across organi-
zations. A new kind of distributed editors [12, 20] appeared
based on Conflict-Free Replicated Data Types (CRDTs) [11,
21, 16]. A CRDT is a distributed data type replicated over
several sites [15, 14]. A CRDT cannot implement any cen-
tralized data structure but for instance can implement a
counter, a set, a tree, etc. In this paper we consider a spe-
cial family or CRDTs that implement a sequence of basic
elements such as lines, words or characters that we call se-
quence CRDT. For our purpose and as a first step, we only
consider two basic operations on a sequence, the insert and
the delete operations. Compared to the state of the art, ed-
itors based on sequence CRDTs are more decentralized and
scale better. However, they have a linear space-complexity
with respect to the number of insertions. Consequently, they
heavily depend on the editing behaviour. Some editing sce-
narios lead to a permanent loss in performance.

In order to preserve the total order on the elements of the
sequence, a unique and immutable identifier is associated
with each basic element of the structure (character, line or
paragraph according to the chosen granularity). This allows
distinguishing two classes of sequence CRDTs: (i) Fixed
size identifier (also called the tombstones class). This class
includes WOOT [11], WOOTO [20], WOOTH [1], CT [7],
RGA [13], [23]. In this class, a tombstone replaces each
suppressed element. Although it enjoys a fixed length for
identifiers and it has a space complexity which depends
on the number of operations. For example, a document
with an history of a million operations and finally contain-
ing a single line can have as much as 499999 tombstones.
Garbaging tombstones requires costly protocols in decen-
tralized distributed systems. (ii) Variable-size identifiers.
This class includes for example Logoot [21]. It does not re-
quire tombstones, but its identifiers can grow unbounded.
Consequently, although it does not require garbage proto-
cols, its space complexity remains till now linear with the
number of insert operations. Thus, it is possible to have
only a single element in the sequence having an identifier of
length 499999. Treedoc [12] uses both tombstones and vari-
able size identifiers but relies on a complex garbage protocol
when identifiers grow too much.

In this paper, we propose a new approach, called LSEQ,
that belongs to the variable-size identifiers class of sequence
CRDTs. Compared to the state of the art, LSEQ is an
adaptive allocation strategy with a sub-linear upper-bound



in its spatial complexity. We experimented LSEQ on syn-
thetic sequences and real documents. In both cases, LSEQ
outperforms existing approaches.

The remainder of the paper is organized as follows. Sec-
tion 2 delineates the background on variable-size identifiers
class of sequence CRDTs and motivates this work. Then,
Section 3 details LSEQ and the three parameters that con-
trol the growth and the selection of the identifiers. It de-
scribes each parameter with its aim and its defect. Also, how
their composition overcomes their respective weaknesses. Sec-
tion 4 validates the approach by showing the effect of each
one of the three parameters of LSEQ and also by comparing
the proposed approach to Logoot. Finally, Section 5 reviews
related works.

2. PRELIMINARIES
Distributed collaborative editing systems consider a se-

quence of characters replicated on n sites. Each site man-
ages a local copy of the sequence called local replica. At
some moments, the local replica can differ from some other
sites’ local replica. Each site can insert and delete charac-
ters in the sequence without any locking mechanism. Then,
all sites exchange and deliver the operations. When any site
delivers an insert operation, the state of the local replica
may be different from the state of another replica.

The system is correct if: (i) It converges i.e. all local
replicas of the sequence are equal when the system is idle. It
corresponds to the eventual consistency property [8]. (ii) It
preserves all partial order relations ≺ between characters. If
a site inserts the character x between the characters a and b
(a ≺ x ≺ b), this relation is preserved on each sites’ replica.
It corresponds to the property of intention preservation in
Operational Transformation algorithms [19] used by Google
Docs.

Let us illustrate this with an example. Assume that all
the replicas of a sequence of characters are equal and that
the sequence looks like ...abcd.... Consider that a site inserts
the character e between b and c and also consider that at the
same moment, another site inserts a character f between b
and c. It results in two relations b ≺ e ≺ c and b ≺ f ≺
c. Once every site has delivered all the changes on their
local replica, the union of these two relations merges into
a partial relation without any precedence between e and
f . Consequently, two final states are possible abefcd and
abfecd. The role of the sequence CRDTs is to build a linear
extension of the partial order formed by the intentions of all
users to obtain a unique total order.

Variable-size sequence CRDTs encode order relations into
identifiers. For example, the operation insert(a = 10 ≺ x ≺
b = 15) can be sent as insert(x, 12). This strategy does not
require keeping tombstones, however it is easy to see that
identifiers can grow quickly and significantly degrade the
overall performance of the system. In the worst case, the
system requires to re-balance identifiers implying the use of
a consensus algorithm.

In this paper, we focus on keeping the identifiers as small
as possible hence avoiding any costly protocol to re-balance
them. Definition 1 states a document as a set of pairs
(elt, id) where elt can be a character or a line and id are
unique immutable identifiers defined on the set of all possi-
ble identifiers I. I has an order relation < which is dense
and strictly totally ordered i.e. if x, y ∈ I and x < y then
∃z ∈ I, z 6= x, z 6= y, x < z < y. alloc(p, q) is the allocation

strategy function that generates id ∈ I. In Definition 2,
we state that an id is a sequence of numbers, id1 < id2 if
id1 precedes id2 in lexicographic order. This sequence is an
efficient way to represent a dense order.

Definition 1 (Model of a document).
A document is a set D = {(elt, id)} with two operations:

— insert(p ∈ I, elt, q ∈ I):- D ∪ {(elt, idelt)}
where idelt = alloc(p, q) with p < idelt < q

— delete(id ∈ I):- D/{(elt, id)}

Definition 2 (Variable-size identifier). A variable-
size identifier id is a sequence of numbers id = [p1.p2 . . . pn]
which can designate a path in a tree 1.

In Figure 1, we represent a document as a tree where
each identifier is a path from the root to a leaf. In this
example, each level has a maximum capacity (arity of the
tree node) set to 100. A leaf is an element of the sequence.
For instance, [10.13] is an identifier referencing the element
b. Assume a user wants to insert an element z between two
existing elements identified by p and q:
— if p = [11] and q = [14], there is room for insertion.

Both identifiers [12] and [13] are valid choices for the new
element.

— if p = [14] and q = [15], there is no room at this level.
Since the model does not have further levels, the allocation
function alloc initiates a new level. Then, it chooses among
this bunch of newly available identifiers: between [14.0] and
[14.99].

0 99
10 11 14 15

Begin End

13 42 92

a
e f g

b c d

Figure 1: Underlying tree model of a variable-size identi-
fiers sequence CRDT. Depth-1 contains four identifiers [10],
[11], [14] and [15] labeling the elements a, e, f and g respec-
tively. Also, depth-1 contains the bounds of the sequence
〈[0], Begin〉 and 〈[99], End〉. Depth-2 contains three identi-
fiers [10.13], [10.42], and [10.92] labelling b, c and d respec-
tively.

2.1 Allocation strategies
The Logoot paper [21] already highlighted the importance

of allocation strategies (alloc). Indeed, experiments con-
cerned two strategies. (1) Random: randomly choosing
between the identifiers of the two neighbours. It delivers
poor performance because the identifiers quickly saturate

1. Identifiers should include site ID to ensure the unique-
ness property. However, for clarity purposes and in order to
focus on allocation strategy, we did not include any site ID
in this definition.
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(a) A page of 12k lines mostly edited at the end.
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(b) A page of 170 lines mostly edited at the beginning.

Figure 2: Experiments made on a Wikipedia pages. The top figure shows the spectrum of the page (revision number of each
line). The bottom figure shows the bit-length of the identifier assigned to each line. The allocation strategy is boundary from
the Logoot approach.

the space, resulting in the creation of new levels. As con-
sequence, the size of identifiers grows quickly. (2) Bound-
ary : randomly choosing between the identifiers of the two
neighbours bounded by a boundary maximum value. The
strategy allocates the new identifiers closer to their preced-
ing identifier. Of course, it works well when the editions are
performed right-to-left.

Figures 2a and 2b show the editing behaviour and the bit-
length of allocated identifiers on two Wikipedia pages. The
top part shows the spectrum associated with the pages. A
spectrum gives an overview of the editing behaviour associ-
ated with a page. It gives the revision number of each line of
a document, i.e., the relative date of their insert operation.
As the left spectrum suggests, most of the insert operations
situate the new elements at the end of the document, i.e.,
the last lines of the page are more recent. On the opposite,
the second spectrum shows that most of the insert opera-
tions situates the newest elements at the beginning of the
document. The bottom figures associate the bit-length of
the identifier of each line of the document using the bound-
ary strategy. In the first figure, we consider a page of 12k
lines. Identifiers do not exceed 256 bits and they are well
spread between levels [1−4]. It leads to a satisfying average
of 169.7 bits/id. On the contrary, the editing behaviour on
the second document (see figure 2b) that has only 170 lines
does not fulfills the right-to-left editing behaviour assumed
by the boundary strategy. In this case, we observe, on an
existing document, the worst-case of linear growth of the
size of identifiers. The average bit-length is 172.25 bits/id
over 5 levels.

2.2 Issues and motivations
Most of existing CRDTs’ allocation strategies make the

assumption of right-to-left and top-to-bottom editing be-
haviour. This strong hypothesis allows better space man-
agement but other behaviours may lead to a quick decrease
in performance. Therefore, it makes the distributed collab-
orative editor unsafe.

In order to build an efficient distributed collaborative edi-
tor based on a sequence CRDT, we need an adaptive alloca-
tion function alloc, i.e., an allocation strategy independent
of an editing behaviour. The unpredictability of the editing
behaviour makes the allocation of identifiers challenging. At
any time, the CRDT knows what happened in the past and
the current operations. Still, inferring the upcoming opera-
tions is complex if not impossible.

Definition 3 (Problem statement).
Let D be a document on which n insert operations have been
performed. Let I(D) = {id|( , id) ∈ D}. The function
alloc(idp, idq) should provide identifiers such as:

∑

id∈I

log2(id)
n

< O(n)

The problem statement concerns the allocation function
alloc which should have a sub-linear upper-bound in its
space complexity. Such function would greatly improve the
current state of art since the document does not require any
additional costly protocol: the average size of identifiers be-
ing under an acceptable bound.

3. LSEQ ALLOCATION FUNCTION
LSEQ applies a very simple strategy: each time it cre-

ates a new level in the tree between two identifiers p and q,
it doubles the base of this depth and it randomly chooses
a strategy among boundary+ and boundary–. boundary+
allocates from p plus a fixed boundary, boundary– allocates
from q minus a fixed boundary. The boundary never changes
whatever the depth of the tree.

The following idea is the foundation of this approach: as
it is complex to predict the editing behaviour, the principle
is to sacrifice some depths of the tree with the certainty
that the reward will compensate the loss. In other words, if
LSEQ chooses the wrong strategy at a given depth, it will
eventually choose the right one in the next depths. Since it
doubles the base at each new depth, when the right strategy
is found, it will overwhelm the cost of the lost depths.



3.1 Base Doubling
Logoot’s [21] underlying allocation strategy always uses

the same base to allocate its identifiers. With regard to the
tree representation, it means that the arity is set to base.
A high base value is not profitable if the number of insert
operations in this part of the sequence is low. On the con-
trary, keeping a constant base value when the number of
insert operations starts to be very high does not allow to
fully benefit of the boundary strategy. For instance, Fig-
ure 2a presents experimental results from a Wikipedia page
that has 12k lines which justifies the usage of a large base
unlike Figure 2b with only 170 lines. Knowing the dilemma,
the objective is to adapt the base according to the number
of insertions in order to make a better reflection of the ac-
tual size of the document. Since it is impossible to know a
priori the size of the document, the idea is to start with a
small base due to the empty sequence, and then to double it
when and where necessary, i.e. when the depth of identifiers
increases.

Doubling the base at each depth implies an exponential
growth of the number of available identifiers. Thus, the
model corresponds to the exponential trees [3, 17, 2] and
consequently it benefits of their complexities. An exponen-
tial tree of depth k can store up to Nk = Nk−1 + k ∗ k!
identifiers where N1 = base. In other words, the arity of a
node depends of its depth: a node has twice more children
than its parent node, and the root has base children.

Knowing this exponential tree model, the binary represen-
tation of the identifier is Σid.size

i=1 b ∗ 2i where b is the initial
base (conveniently a power of 2). Practically, if the initial
base is 24 then, there are 24+1 possibilities to choose an
identifier at depth 1, 24+2 at depth 2, etc.

The base doubling relies on the following assumption: the
lack of space triggers the growth of identifiers. Therefore, an
inefficient allocation strategy will entail an excessive growth
of the identifier size as the system doubles the base fre-
quently and the additional depths are more and more costly.

3.2 Allocation Strategies
[21] introduced two allocation strategies: boundary and

random. In the experiments, the former outperforms the
latter. However, the boundary strategy is heavily application
dependent. If a user mainly performs insert operations at
the end of the document the allocation will perform well.
However, front editing will cause a quick linear growth of
the size of identifiers.

With LSEQ, we introduce the allocation strategy named
boundary–. Basically, this strategy is the opposite of the
original boundary strategy. In this paper, we rename bound-
ary to boundary+. Let us consider an insert operation be-
tween two elements with the identifiers p and q. While the
boundary+ strategy preferably allocates a position near the
preceding identifier p, the boundary– strategy allocates a
position near the succeeding identifier q. Indeed, boundary–
starts from position q and subtracts a boundary value in-
stead of starting from position p and adding a boundary
value. The arithmetic operation explains the names given to
these strategies. Figure 3 shows the results obtained by these
two strategies with the same neighbours and random value.
The left figure shows the boundary+ strategy which ends
up with [50.11] while the right figure shows the boundary–
strategy which ends up with [50.89]. They leave free space

for future insertions of 88 identifiers at the end and at the
beginning respectively.

boundary+ boundary-

insertion

+20

0 100

0
11

100

5051

insertion

−20

0 100

0
89

100

5051

Figure 3: Choice of the digit part of identifiers in boundary+
(left) and boundary- (right). In both cases: constant base is
set to 100, boundary value is set to 20 and the random num-
ber is 11. The results are [50.11] (boundary+) and [50.89]
(boundary-).

As expected, while the boundary+ algorithm handles the
end editing, the boundary– algorithm aims the front editing.
They both have an antagonist weakness. Thus, boundary–
cannot be used alone safely, just like boundary+.

3.3 Strategy choice
Current variable-size sequence CRDTs rely on a unique

strategy that is not versatile in the sense that it does not
adapt to all editing behaviour. As it is impossible to know a
priori the editing behaviour and then, obtain the best strat-
egy for every sequence, LSEQ randomly alternates between
boundary+ and boundary–. Thus, when LSEQ increases the
identifier size, it has 1

2
chance to choose either boundary+

or boundary–. This kind of choice implies lost depths but
the main idea is: some depths are lost indeed, nevertheless
it is acceptable if the reward compensates the losses.

Algorithm 1 details the allocation function LSEQ. The de-
parture base is set to 24 (depth-0) and the boundary to 10.
The collection S stores the strategy choices. It starts empty.
Three parts compose the algorithm. (1) The first part pro-
cesses the interval between the two identifiers p and q at each
depth until one identifier at least can be inserted. The step
limits the interval where alloc will allocate the new identi-
fier. (2) The second part determines the allocation strategy.
If the function did not allocate any identifiers at this depth
yet, it randomly chooses among boundary+ and boundary–.
Then it saves this choice for future decisions in S. (3) The
final part of the algorithm constructs the new identifier. De-
pending on the strategy, it draws a random value using the
step previously processed, and adds/subtracts this value to
the prefix of p/q at the wanted depth. The prefix func-
tion takes an identifier id as argument, and copies it until
it reaches depth. If the identifier size is smaller than the
requested depth, the function appends a zero to the copy
for each missing depth. Each number in the sequence that
composes the identifier must be carefully encoded in the base
depending on the depth. Line 35 refers to base(cpt). It is a
very simple function that computes the base value at a given
depth (cpt). Thus, 0base(cpt) means that the binary repre-
sentation of 0 uses log2(base(cpt)) bits. Consequently, the
add and the subtract operations do not require additional
computation compared to regular arithmetic operations.

Figure 4 illustrates the allocation strategy LSEQ by show-
ing its underlying tree model. First the empty sequence



Algorithm 1 LSEQ allocation function

1: let boundary := 10; ✄ Any constant
2: let S := {}; ✄ map<depth,boolean>
3: ✄ true: boundary+
4: ✄ false: boundary−
5:
6: function alloc(p, q ∈ I)
7: let depth := 0;
8: let interval := 0;
9: while (interval < 1) do ✄ Not enough for 1 insert
10: depth++;
11: interval := prefix(q, depth)− prefix(p, depth)− 1;
12: end while

13: let step := min(boundary, interval); ✄ Process the
maximum step to stay between p and q

14:
15: if not(S.exist(depth)) then ✄ add the new entry
16: let rand := RandBool();
17: S.set(depth, rand);
18: end if

19: if S.get(depth) then ✄ boundary+
20: let addV al := RandInt(0, step) + 1;
21: let id := prefix(p, depth) + addV al;
22: else ✄ boundary−
23: let subV al := RandInt(0, step) + 1;
24: let id := prefix(q, depth)− subV al;
25: end if

26: return id;
27: end function

28:
29: function prefix(id ∈ I, depth ∈ N

∗)
30: let idCopy := [ ];
31: for (cpt := 1 to depth) do

32: if (cpt < id.size) then ✄ Copy the value
33: idCopy = idCopy.append(id.at(cpt));
34: else ✄ Add 0 encoded in the right base
35: idCopy = idCopy.append(0base(cpt));

36: end if

37: end for

38: return idCopy;
39: end function

contains only two identifiers: the beginning ([0]) and the
end ([31]). The sequence needs three additional identifiers
between [0] and [31]. First, LSEQ randomly assigns bound-
ary+ as allocation strategy to the depth-1. Then, it employs
this strategy to allocate the three new identifiers ([9], [10],
[23]). The randomness makes the first and second elements
very close in terms of identifier distance. Unfortunately, the
sequence requests three other identifiers between these two.
Consequently, the depth has to grow to contain these new
elements. Since LSEQ have not used any strategy at this
depth yet, it must randomly choose one. Here, the choice is
boundary–. Therefore, this strategy allocates the three new
identifiers. Furthermore, the underlying exponential tree
model extends the number of possible identifiers to 64. In
this example, the resulting fresh identifiers are [9.32], [9.51]
and [9.60].

This example highlights the principle of LSEQ. Figure 4
depicts an exponential tree model that clearly grows in ar-
ity over depths. It means more and more available identi-
fiers when the tree grows. This design aims to adjust the
depth of the tree to the number of insert operations. The
next section aims to demonstrate experimentally that LSEQ
achieves sub-linear space complexity in extreme setups and
also outperforms state-of-the-art CRDTs on real documents.

StrategyBase

boundary+32

boundary−64

???128

0 319 10 23

Begin End

32 51 60

Figure 4: Underlying tree model of LSEQ containing three
identifiers at depth-1. The randomness makes the first and
second elements very close regarding their identifiers ([9] and
[10]). The sequence requests three other elements between
these two. The chosen strategy is boundary– and since LSEQ
doubles the base at each depth, it allocates the fresh identi-
fiers closer of [10.64].

4. EXPERIMENTATION
This experimentation section is comprised of two parts.

The first part focuses on highlighting the behaviour of LSEQ
on extreme cases. The measurements capture the effect of a
large number of insert operations on the identifier sizes. We
synthesized different editing behaviours. Analyses are made
step by step to bring out the contribution of each compo-
nent to LSEQ. Previous experiments [1, 12, 21] focused on
average setups and did not consider such extreme setups.

The second part of experiments aims to validate if LSEQ
also performs well on average setups. In order to do so, we
compare Logoot identifiers to LSEQ identifiers on represen-
tative Wikipedia pages with antagonist editing behaviours.
We choose Logoot as it delivers overall best performances
for variable-size sequence CRDTs according to [1].

The experiments focus on the digit part of identifiers. In-
deed, the source and clock part of identifiers are common to
all the variable-size identifiers approaches. They do not im-
pact on the complexity and can be drastically compressed.
Consequently, it is the digit part that reflects the significant
improvements.

In order to evaluate LSEQ performance, we developed
a Java framework called LSEQ and released the source on
GitHub platform under the terms of the GPL licence 2.

4.1 Synthetic Documents Experiments
We designed three experimental setups of synthetic se-

quences, namely monotone editing behaviour in one position
(first and last position), and totally random insertions. The
monotonic insertions algorithms choose a particular element
and continuously insert new elements before/after this ele-
ment. For the front editing, it targets the beginning of the
document and inserts continuously after it. The end editing,
it targets the end of the document and inserts continuously
before it. The random behaviour randomly inserts elements
in the range [0 − doc.size[. The insertions algorithms per-
form a large number of insert operations on the sequence
(up to 106). Furthermore, each operation only concerns one
element at a time.

In these experiments, we measure the average bit-length of
the digit part of identifiers on four different configurations.

2. https://github.com/Chat-Wane/LSEQ

https://github.com/Chat-Wane/LSEQ
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In order of appearance: a simple boundary+ strategy (B),
a base doubling (D) at each new depth, a Round-Robin
strategy choice (RR) and a random strategy choice with
base doubling (LSEQ).

Boundary B Experiment.
Objective: to show that boundary+ does not adapt itself

neither to any monotonic editing behaviour nor to the num-
ber of insert operations. The expected space complexity is
linear compared to the number of inserts in any monotonic
editing behaviour. The random editing should lead to a log-
arithmic size of identifiers.

Description: the measurements concern the average bit-
length of the digit part of identifiers. The checkpoints are
100, 1000, 5000, 10000, 50000, 100000 insert operations. The
experimental setup isB with the following parameter values:
a boundary+ strategy with boundary = 10 and a constant
base = 210. It corresponds to the Logoot approach with
lower values.

Results: Figure 5 shows on the x-axis the number of in-
sertions with a logarithmic scale and on y-axis the aver-
age bit-length of identifiers. As expected the identifiers size
grows when the number of insertions increases. B handles
the random editing behaviour with a logarithmic average
growth of its identifiers. However, with both front and end
editing behaviour, the curve is linear compared to the num-
ber of insertions. The end editing remains acceptable in
comparison of front editing, but the linear growth would
eventually lead to the need of a costly re-balance protocol.

Reasons: The front and end editing behaviours tend to
unbalance the underlying tree model of B. The boundary+
allocation strategy has been designed to handle edition at
the end. It reserves more space for identifiers at the end,
predicting future insertions. The obverse is less space for
identifiers at front, therefore the front editing behaviour un-
balances the tree even more quickly (leading to a worst-case
space complexity of the total identifier size ofO(nb insert2)).
For the same reason, the random editing behaviour leads to
logarithmic space complexity: the tree model is balanced.

Base doubling D experiment.
Objective: to show that D is not suitable in any case be-

cause it does not adapt on the editing behaviour. However,
it constitutes an improvement over B due to its scalability
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Figure 6: Base doubling setup (D) (base = 24+id.size,
boundary = 10)

in terms of insertions number. Indeed, it has a sub-linear
upper-bound when the editing behaviour is the expected
one. Since D uses a boundary+ allocation strategy, the sub-
linear upper-bound is on the end editing. On the other hand,
the expectation on the front editing is even worse than the
first experiment (with B). The random editing should stay
with its logarithmic shape unchanged.

Description: like the previous experiment, this experi-
mentation concerns the average bit-length of identifiers. The
D setup provides the new identifiers. boundary+ and base
doubling compose this setup. The variables are boundary =
10 and a base starting from base = 24+depth. The measures
are taken at 100, 1000, 5000, 10000, 50000, 100000, 500000
insertions.

Results: Figure 6 shows on the x-axis the number of in-
sertions on a logarithmic scale, and on the y-axis the average
id bit-length. Like B, D provides constantly growing iden-
tifiers. When the editing behaviour is the expected one, the
growth is sub-linear compared to the number of insertions.
Otherwise, the growth is quadratic. Given this, D alone is
better than B when the current editing behaviour is known.
In our context where we have no prior knowledge of the
editing behaviour, D alone is unsafe.

Reasons: the base doubling assumes that a high number
of insertions triggered the creation of previous levels in the
tree. Thus, it enlarges the number of available identifiers
in the new level. If the insertions saturated the previous
levels, then it verifies this hypothesis, resulting in an efficient
allocation. Of course, if the base doubling hypothesis is
false, in the worst case, each new level will contain only one
identifier. Each one of these identifiers will have a space

complexity equal to
n∑

i=1

(log2(b) + i) where n is the number

of insertions and b is the departure base.

Round-Robin alternation RR experiment.
Objective: to show that a Round-Robin alternation be-

tween boundary+ and boundary– provides identifiers with a
linear upper-bound and consequently does not scale as re-
gards the number of insertions. However, it is an improve-
ment over B and D: with no a priori knowledge RR avoids
the trivial worst case.

Description: the experiment focuses on the average bit-
length of the digit part of identifiers. The configuration is
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Figure 7: Round-Robin (RR) alternation of strategies
boundary+ and boundary– (base = 210; boundary = 10)

a RR setup with two allocation strategies boundary+ and
boundary–. The parameters value are boundary = 10, and a
constant base = 210. The measures are taken at 100, 1000,
5000, 10000, 50000, 100000 insertions.

Results: Figure 7 shows on the x-axis on a logarithmic
scale the number of insertions performed on the sequence.
The y-axis presents the average bit-length of the digit part
of identifiers. While on the random editing behaviour, the
identifiers size curve stays in a logarithmic shape, front and
end editing are both in linear shape. These observations
mean that like B, RR does not adapt to the number of
insertions, and, on the opposite of B and D it avoids the
trivial worst case of front edition. Since every collabora-
tive editing behaviour is a composition of front, end and/or
random edition, RR is more predictable. However, RR re-
mains unsafe because it does not take into account the large
number of monotonic insertions.

Reasons: compared to B, the average bit-length of iden-
tifiers grows two times faster in the case of the end edit-
ing behaviour. Indeed, the RR alternation of strategies
avoids the trivial worst case with the inappropriate edit-
ing behaviour (in front). This improvement comes at a cost:
half the time RR does not employ the well suited strategy,
justifying the multiplicative factor of two. The linear space
complexity of RR stays unchanged compared to B. Con-
sequently, RR cannot adapt to high number of insertions.
RR does not overwhelm the loss of one level by the gain
obtained in succeeding levels.

LSEQ experiment.
Objective: to show that LSEQ remedies both problems

of (i) editing behaviour dependence and (ii) the non-adaptive
behaviour as regards the number of insert operations. The
expected space complexity of the identifiers is sub-linear
compared to the number of insertions, both in front and
end editing. The random editing stays with the logarithmic
behaviour.

Description: we measure the bit-length of the digit part
of identifiers. The LSEQ approach provides the identifiers.
It lazily and randomly assigns either boundary+ or boundary–
to each depth. The boundary parameter is set to 10 and the
base is doubled over depths. Its departure value is base = 24.
The checkpoints of measurement are 100, 1000, 5000, 10000,
50000, 100000, 500000, 1000000 insertions.
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Figure 8: Random alternation (LSEQ) of strategies bound-
ary+ and boundary– (base = 24+id.size; boundary = 10)

Results: Figure 8 shows the average bit-length of LSEQ

identifiers on the y-axis. The x-axis represents the number of
insertions on a logarithmic scale. Both front and end editing
are now sub-linear compared to the number of inserts. On
this setup, the curves are poly-logarithmic. The average
values are close of the D setup. It means that LSEQ loses
some depths, but future insertions quickly amortize them.
More precisely, it means that the base doubling is profitable
enough to compensate the previous lost depths. These two
changes make LSEQ a suitable safe allocation strategy for
sequences.

Reasons: base doubling B performs well if its hypothesis
is true, i.e., a high number of insertion triggered the creation
of levels. The random choices of strategy among boundary+
and boundary–makes the base doubling hypothesis true with
a probability of 1

2
. So eventually, LSEQ will obtain the

expected gain of base doubling. This gain is high enough
to overwhelm the loss of previous levels. It results in a sub-
linear upper-bound on the space complexity of LSEQ.

4.2 Real Documents Experiments
In previous section, we demonstrate experimentally a sub-

linear upper-bound for LSEQ. Next, we aim to confirm the
LSEQ properties on real documents. As Logoot delivers best
overall performances according to [1], we compare LSEQ
with Logoot on Wikipedia documents as previously done
in [22].

We select Wikipedia documents with a large amount of
lines, with front editing and end editing spectrum. We
compare the following two setups: (1) Logoot (L) as [21]
originally described it, (2) a composition of base doubling
and Round-Robin strategy choice (i.e. equivalent to LSEQ)
(LSEQ≈).

End Editing in Wikipedia.
Objective: to confirm that LSEQ≈ (and consequently

LSEQ) brings an improvement on the allocation of identi-
fiers, even in cases where previous approaches are known to
be good.

Description: the Wikipedia page chosen 3 to run exper-
iments contains a high amount of lines, mainly added at

3. http://fr.wikipedia.org/wiki/Liste_
des_bureaux_de_poste_français_classés_par_
oblitération_Petits_Chiffres

http://fr.wikipedia.org/wiki/Liste_des_bureaux_de_poste_fran�ais_class�s_par_oblit�ration_Petits_Chiffres
http://fr.wikipedia.org/wiki/Liste_des_bureaux_de_poste_fran�ais_class�s_par_oblit�ration_Petits_Chiffres
http://fr.wikipedia.org/wiki/Liste_des_bureaux_de_poste_fran�ais_class�s_par_oblit�ration_Petits_Chiffres


the end. The nature of stored data explains the editing be-
haviour: a list of postal marking ids applied to letters. Ex-
periments concern two configurations. (1) L with a single
boundary+ strategy, and parameters set to base = 264 and
boundary = 1M , (2) LSEQ≈ that alternates the two allo-
cation strategies boundary+ and boundary–, and parameters
set to base = 24+depth, boundary = 10.

Results: Figure 9a shows that, on this document, the
bit-length of LSEQ≈ identifiers is lower than the ones of L
in the whole document. Table 1 reflects these results: the
average bit-length of LSEQ≈ identifiers is 2.7 times lower
than L identifiers in spite of the fact that the average size
of LSEQ≈ identifiers (i.e. number of depths) is 2.36 times
higher. Therefore, LSEQ≈ seems to be better suited than
Logoot on documents with end editing. It corroborates the
observations made in section 4.1.

Reasons: when L has to increase the depth of its identi-
fiers, it allocates a large additional space. Each new depth
costs 64 bits. It supposedly handles 264 more elements.
However, the adding of depth happens very quickly when
the editing behaviour is not exactly as expected. In par-
ticular, the spectrum of the document shows very erratic
insertions at the end (in the references and external links
part). On the other hand, LSEQ≈ tries to allocate “when it
is needed”. It explains why minor editing behaviour changes
do not affect a lot the identifiers size. Furthermore, the base
doubling of LSEQ≈ adapts progressively the allocations to
the high number of insertions.

L LSEQ≈

id-length
avg 2.65 6.25
max 4 12

id-bit-length
avg 169.7 61.24
max 256 150

Table 1: Numerical values of experiments on the Wikipedia
page edited at the end (corresponding to Figure 9a).

Front Editing in Wikipedia.
Objective: to highlight the importance of alternating

the allocation strategies in LSEQ≈. In other words, the
boundary+ strategy of L is not sufficient to provide a safe
allocation system. Finally, to show that LSEQ≈ outper-
forms L on documents edited at the beginning.

Description: we choose the Wikipedia page 4. Since it
is a “talk” page, it provides a discussion space. The users
mostly inserted elements at the beginning of the document.
Once again, we make the measurements on two configura-
tions. (1) L with a single boundary+ strategy, and param-
eters set to base = 264 and boundary = 1M , (2) LSEQ≈

with the two allocation strategies boundary+ and boundary–,
and base = 24+depth, boundary = 10.

Result: unsurprisingly, the figure 9b shows that using L,
the identifiers bit-length increases very fast in the beginning
of the document while it quickly stabilizes when LSEQ≈

is used. In Table 2, we observe that the average identifiers
bit-length of LSEQ≈ is 3.31 times lower than the one of
L. The alternation of strategies allows LSEQ≈ to quickly
find a depth where allocation of identifiers will be efficient,
and thereby to amortize previous depths where some spaces

4. http://en.wikipedia.org/wiki/Template_talk:
Did_you_know

could have been wasted. These observations confirm the
results of section 4.1.

Reasons: LSEQ≈ does not favour any editing behaviour
thanks to its allocation strategies. On the opposite, L uses
an allocation strategy designed to support end editing, thus,
when the antagonist behaviour arises, the identifiers size
grow very fast.

L LSEQ≈

id-length
avg 2.69 5.29
max 5 8

id-bit-length
avg 172.25 51.99
max 320 84

Table 2: Numerical values of experiments on the Wikipedia
page edited at the beginning (corresponding to Figure 9b).

4.3 Synthesis
Experiments evaluated the contribution of each part of

LSEQ allocation function. They demonstrated that each iso-
lated component cannot achieve sub-linear space complex-
ity. However, their composition with random choice among
boundary+ and boundary– and a base doubling can achieve
sub-linear space complexity in extreme setups. We also ob-
serve this gain on real documents. Consequently, LSEQ is
suitable for building distributed collaborative editors that
deliver better performance and in a larger scope of usage
than state of art.

5. RELATED WORK
Popular distributed collaborative editors such as Google

Docs [10] rely on Operational Transformation approach (OT)
[18, 19]. OT-based and CRDT-based distributed editors fol-
low the same global scheme of optimistic replication, i.e.,
generate operations without locking, broadcast to others
replicates and re-execute. OT and CRDT mainly differ in
their complexities: (i) OT-based editors have constant-time
complexity at generation time and a complexity of O(|H2|)
at re-execution time where H is the log of operations. Per-
formance of OT closely depends on the number of concur-
rent operations present in the system. (ii) LSEQ sequence
CRDT has a complexity of O(k) for generation time and
O(k ∗ log(n)) for re-execution time where n is the number
of elements presents in the document and k is proportional
to size of identifiers. Unlike OT, the state of the document
mainly determines the CRDT performance. LSEQ signifi-
cantly improves the performance of the sequence CRDTs by
keeping k small.

The tombstone class of sequence CRDT includes WOOT
[11], WOOTO [20], WOOTH [1], Treedoc [12], CT [7], RGA
[13], [23]. In these approach, tombstones (or “death certifi-
cates”) mark the deleted elements. They provide a simple so-
lution to solve problems of concurrent delete. A clear advan-
tage is to only require fixed-length identifiers, nonetheless
the space complexity of tombstone-based sequence CRDTs
is linear compared to the number of insert operations per-
formed on the document.

Safely garbaging tombstones in a distributed system is
costly because it requires obtaining a consensus for this de-
cision among all participants. In [13, 9], they proposed some
solutions related to the garbage collecting mechanism in or-
der to rebalance and/or purge the model of the CRDT. The

http://en.wikipedia.org/wiki/Template_talk:Did_you_know
http://en.wikipedia.org/wiki/Template_talk:Did_you_know
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Figure 9: The top spectrums reflect the editing behaviour performed on Wikipedia pages. The bottom figures shows the
identifier bit-length assigned to each line. Two configurations: Logoot (L) and Round-Robin with base doubling (LSEQ≈).

purge [13] of tombstones requires a full vector clock to keep
track of updates on other replicas and to be able to safely
remove the tombstones. The core nebula [9] approach in-
tends to make the consensus reachable, but constrains the
topology of the network and uses an expensive catch up al-
gorithm.

The variable-size identifiers class of CRDT includes Lo-
goot [21] and Treedoc [12]. These CRDTs use growing iden-
tifiers to encode the total order among elements of the se-
quence. In the worst case, the size of identifiers is linear
in the total number of insert operations done on the docu-
ment [1]. Logoot and Treedoc [12] have different allocation
strategies. Treedoc has two allocation strategies: (i) the
first strategy allocates an identifier by directly appending a
bit on one of its neighbour identifier. (ii) The second strat-
egy increases the depth of this new identifier by ⌈log2(h)⌉+1
(where h is the highest depth of the identifiers already al-
located) and allocates the lowest value possible with this
growth, in prevision of future insertions.

Logoot’s boundary strategy and Treedoc’s second strategy
are very similar, both in their goals and their weaknesses.
They assume an editing behaviour in the end, and therefore
they become application dependent. Compared to Logoot
and Treedoc, LSEQ is adaptive and significantly enlarges
the applicability of sequence CRDTs.

In [1], they compared most sequence CRDTs and one
OT in an experimental setup. RGA and Logoot obtained
best overall performances. In this paper, we completed ex-
periments with more extreme cases and demonstrated that
LSEQ outperforms Logoot.

6. CONCLUSION
In this paper, we presented an original allocation strategy

for sequence CRDTs called LSEQ. Compared to state of
art, LSEQ is adaptive, i.e., it handles unpredictable different
editing behaviour and achieves sub-linear space complexity.
Consequently LSEQ does not require a costly protocol to
garbage or re-balance identifiers, and is suitable for building
better distributed collaborative editors based on sequence
CRDTs.

Three components compose LSEQ: (1) a base doubling,
(2) two allocation strategies boundary+ and boundary–, (3) a
random strategy choice.

Although each component cannot achieve sub-linear com-
plexity, the conjunction of three components provides the
expected behaviour. Experiments show that even if LSEQ
makes a bad strategy choice for one level in the tree, this
choice will be overwhelmed by the gain obtained at next
levels.

The LSEQ approach is generic enough to be included in
other variable-size sequence CRDTs. Current experiments
were done with a Logoot basis because it does not require
tombstones and therefore is less dependent of the editing
behaviour. But we believe that Treedoc’s heuristic could be
improved with this allocation strategy.

Future works include a formal demonstration of the em-
piric poly-logarithmic upper-bound in space complexity of
LSEQ which implies a probabilistic study of its worst-case.
The idea is to prove that its probability of happening is neg-
ligible. We also plan to study if concurrency affects LSEQ
results, i.e., if each site makes different allocation choices
concurrently, does it impact LSEQ performances? Finally,
we aim to study if using documents spectrum knowledge and
machine-learning approaches can outperform random strat-
egy choice.
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