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We use the equations–of–motion approach for time–dependent pair correlations in

strongly interacting Fermi liquids to develop a theory of the excitation spectrum and the
single–particle self energy in such systems. We present here the fully correlated equa-
tions and their approximate solutions for 3He. Our theory has the following properties:
It reduces to both, i) the “correlated” random–phase approximation (RPA) for strongly
interacting fermions if the two–particle–two–hole correlations are ignored, and, ii) to the
correlated Brillouin–Wigner perturbation theory for boson quantum fluids in the appro-
priate limit. iii) It preserves the two first energy–weighted sum rules, and systematically
improves upon higher ones. iv) A familiar problem of the standard RPA is that it pre-
dicts a roton energy that lies more than a factor of two higher than what is found in
experiments. A popular cure for this is to introduce an effective mass in the Lindhard
function. No such ad–hoc assumption is invoked in our work. We demonstrate that the
inclusion of correlated pair–excitations improves the dispersion relation significantly. Fi-
nally, a novel form of the density response function is derived that arises from vertex
corrections in the proper polarization.

Keywords: Fermi fluids, density response function, multi–pair excitations, 3He, correlated
basis functions

1. Introduction

The method of choice for studying the strongly interacting quantum liquids 3He

and 4He is the Jastrow–Feenberg variational method and its extension in the form

of correlated basis functions (CBF) theory.1 The theory builds the correlations of

the system into the the basis of the Hilbert space in a natural and straightforward

manner. While ground state properties are accessible in many cases via simulation

studies, the above approach remains the most powerful tool for a quantitatively

reliable prediction of dynamic properties. In the last decade the excitation spectrum

of the Bose system has been successfully investigated for a variety of configurations,
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ranging form the basic works of Refs. 2,3 to recent studies of the influence of phonon

decay on the transport current.4 In all these cases the inclusion of dynamic, i.e.

time–dependent pair correlations has proved necessary. It is not only plausible, but

has been demonstrated convincingly in several cases, that short-ranged fluctuations

become relevant for excitations with wavelengths that are comparable to the inter-

particle distance. A special case of such pair excitations was already introduced by

Feynman5 in the form of “backflow” effects.

The theory of pair fluctuations is very well understood for Bose systems, but

is still in its beginnings for fermions. We expect that also in the the case of Fermi

systems, especially in 3He whose properties are dominated by the strong, short-

ranged repulsion, the dispersion of phonons is visibly influenced by short-ranged

fluctuations. In addition, accounting for these processes is indispensable for a de-

scription of the damping of long-wavelength phonons. This work reports progress

in our development of a theory for bulk 3He with the ultimate goal of reaching a

level of accuracy as well as consistency comparable to the theory for bosons.

Central to our investigations is the density-density response function χ(q, ω)

connected to the dynamic structure function by

S(q, ω) = −
1

π
ℑmχ(q, ω) . (1)

In Fermi liquids χ(q, ω) is often taken to be of the “RPA” form

χRPA(q, ω) =
χ0(q, ω)

1 − Ṽp-h(q)χ0(q, ω)
, (2)

where χ0 is the Lindhard function and Ṽp-h (q) a suitable effective interaction (also

termed, “pseudo-potential6” and “local field corrected potential7”). One can deter-

mine Ṽp-h (q) through the ω0 and ω1 sum rules, but this leads to a collective mode

that is energetically much higher than what is found in experiments. An ad-hoc

repair of this problem is to introduce an effective mass8 m∗ in χ0. The effective

mass in both three– and two–dimensional 3He is far from constant,9,10 it exhibits

a strong peak around the Fermi momentum kF , and another one at approximately

2.5 kF . Introducing an m∗ is unsatisfactory mainly from two points of view: First,

we want to develop a manifestly microscopic description of the low-temperature

properties of 3He, and second, it introduces inconsistencies because the important

sum rules are violated, which makes Ṽp-h (q) undetermined. The above example of

a successful description of the phonon–roton spectrum in 4He systems – which does

not even introduce the concept of an “effective mass” – leads one to expect that the

same physical mechanisms, viz. dynamic pair correlations, lower the phonon-roton

spectrum not only in 4He but also in 3He, without violating the two above sum

rules.

An even more compelling argument against introducing an effective mass is pro-

vided by experimental data on the dynamic structure function of two-dimensional
3He. An example of the experimental data is shown in Fig. 1. Here the collective
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mode is found inside the particle-hole continuum.11 It would be quite difficult to ex-

plain the feature that the maximum strength of a possible collective mode is found

inside the continuum with the form (2) of the density density response function, in

particular this feature cannot be reproduced by changing m∗ in the RPA formula

(2).

0.0 0.5 1.0 1.5 2.0 2.5

S
(k

,ω
)

hω   [meV]

n = 0.43 Å-2

n = 0.49 Å-2

n = 0.55 Å-2

Fig. 1. The figure shows experimental data of the dynamic structure function S(k, ω) in two-
dimensional 3He for wave numbers 1.1 Å−1 ≤ k ≤ 1.2 Å−1. These data were obtained by three of
us (H. G., H.-J. L and M. M.) at the IN14 instrument at the Institute Laue-Langevin in Grenoble.

2. Equations of motion

2.1. Correlated equations of motion

We describe the excited state wave function of strongly interacting fermions by a

generalized time-dependent Hartree-Fock form

∣∣Ψ(t)〉 = 1√
N e−itH00/~ F eU(t)

∣∣Φ0〉 , (3)

where N denotes the normalization integral,
∣∣Φ0〉 the ground state of a model system

(normally a Slater determinant) and H00 the energy of the correlated ground state

F
∣∣Φ0〉. The most general excitation operator U contains n−particle amplitudes
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u(n)(t)

U =
∑

n

∑

p1...pn
h1...hn

up1...pnh1...hn
(t) a†

p1
. . . a†

pn
ahn

. . . ah1

≡
∑

n

∑

(ph)n

u(n)(t) X̂n . (4)

These amplitudes are determined by minimizing the action integral S =
∫
dt L

corresponding to the time–dependent Schrödinger equation:
[ δ

δu∗
(n)

−
d

dt

δ

δu̇∗
(n)

]
L = 0 with L = 〈Ψ

∣∣H + Hext(t) +
~

i

∂

∂t

∣∣Ψ〉 . (5)

Here, Hext(t) ≡
∫
d3r hext(r; t) ρ̂(r) describes a small and real external perturba-

tion where ρ̂(r) is the density operator. Considering Hext as a perturbation, linear

equations of motion (EOMs) are derived by expanding L to order (U †)2. Using the

abbreviation H ′ ≡ H−H00 and denoting expectation values taken in the free ground

state 〈Φ0| . . . |Φ0〉 by 〈. . .〉0 these EOMs read

−
~

i

( 〈
X̂†F †FU̇

〉
0
−
〈
X̂†F †F

〉
0

〈
F †FU̇

〉
0

)
=
〈
X̂† F †HextF

〉
0
−
〈
F †HextF

〉
0

+
〈
X̂†F †H ′FU

〉
0

+
〈
X̂†U †F †H ′F

〉
0

−
〈
U †F †H ′F

〉
0

〈
X̂†F †F

〉
0
.

(6)

In the standard notation of correlated basis functions (CBF) formalism12

〈X̂†
nF †H ′FX̂ ′

n′〉0
〈F †F 〉0

= H ′
X

n
,X′

n′

zX
n

zX′

n′
:=

〈FX̂nΦ0

∣∣H ′∣∣FX̂ ′
n′Φ0〉√

〈X̂†
nF †FX̂n〉0 〈X̂

′†
n′F †FX̂ ′

n′〉0

√
〈X̂†

nF †FX̂n〉0√
〈F †F 〉

0

√
〈X̂

′†
n′F †FX̂ ′

n′〉0√
〈F †F 〉

0

(7)

and the analogous convention for the off-diagonal normalization integrals

〈X̂†
nF †FX̂ ′

n′〉0
〈F †F 〉0

≡ NX
n

,X′

n′

zX
n

zX′

n′

(8)

the EOMs take the form

∑

n′

∑

(p′h′)n′

{
−

~

i
u̇(n′)

(
zX′

n′
NX

n
,X′

n′
− zX′

n′
NX

n
,0N0,X′

n′

) }
= Hext

X
n

,0 +

∑

n′

∑

(p′h′)n′

{
u(n′) zX′

n′
H ′

X
n

,X′

n′

+ u∗
(n′)

(
zX′

n′
H ′

X
n
X′

n′
,0 − zX′

n′
NX

n
,0H

′
X′

n′
,0

) }

(9)

(for a uniform system, we have zX
n

X′

n′
=zX

n
zX′

n′
+O(N−1)). Technically, we restrict

ourselves to single particle and pair fluctuations. We spell out these equations in

detail for single-particle and pair fluctuations in the appendix; here we adopt a

more pragmatic strategy: In essence, the CBF theory provides a means13,14 to map
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the strong, bare interaction of the system onto weak, effective interactions. This

mapping is uniquely determined by the diagrammatic analysis of off-diagonal cor-

related matrix elements,15 generally one can define non-local effective interactions

from overlap integrals of the Hamiltonian between correlated states (as examples

we mention Hph,p′h′ and Hhh′pp′,hh′p′′p′′ ; which, in turn, defines a pair operator

H via the anti-symmetrized expectation values 〈ph′|H|hp′〉
a
, and 〈pp′|H|p′′p′′′〉

a
).

Once this mapping is performed, the originally strongly interacting system can be

regarded as only moderately interacting in these new effective interactions.

2.2. The Hartree Fock (HF) limit

To see the content of our theory of excitations at a somewhat simpler level, we treat

the problem in this section in the Hartree-Fock approximation, i.e. the correlation

operator F is replaced by unity: F , F † →1. Consequently, all z−factors become 1

and the normalization overlap integrals are antisymmetrized delta−functions.

In the spirit of the ideas outlined at the end of Sec. 2.1 the interaction in this HF

approximation should clearly be interpreted as an effective interaction which will

ultimately be obtained from the correlated theory. We also should allow for different

effective interactions in different channels. Denoting empty (occupied) states of the

Slater determinant by pi =“particles” (hi=“holes”), the “particle–hole interaction”

Ṽp-h arises from matrix elements of the form
〈
h1p2

∣∣H
∣∣p1h2

〉
, whereas we would have

a “particle–particle” interaction Ṽ
p−p

(r) arising from matrix elements of the type〈
p1p2

∣∣H
∣∣p′1p′2

〉
(and analogously for “hole–hole” terms). Finally, another effective

interaction W arises from all other (=mixed) channels. Anticipating such effective

interactions (all of which are normally non-local), we start with inspecting the EOMs

for a weakly interacting system.

Eqs. (9) simplify to

−~

i
Au̇(n) = Hext

X
n

,0 +
∑

n′

∑

(p′h′)n′

{
u(n′) H ′

X
n

,X′

n′

+ u∗
(n′) H ′

X
n
X′

n′
,0

}
, (10)

where A denotes antisymmetrisation in all indices. In our case the fluctuation op-

erator U(t) in Eq. (4) consists of 1p-1h and 2p-2h fluctuations

X̂1 = a†
pah u(1)(t) =: cph

X̂2 = a†
pa†

p′ah′ah u(2)(t) =: 1
2dpp′,hh′ .

(11)

The pair correlations are symmetric under a pairwise interchange of indices, anti-

symmetry needs to be accounted for the hole (or particle) indices alone:

dpp′,hh′ = dp′p,h′h ; dpp′,(hh′)a
≡ dpp′,hh′ − dpp′,h′h . (12)

Abbreviating the particle-hole excitation energies with eph ≡ ep−eh the EOMs read
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explicitly

[
i~

∂

∂t
− eph

]
cph(t) = hext

ph (t) + 〈ph′|Ṽp-h |hp′〉
a
cp′h′ + (13)

〈pp′|Ṽp-h |hh′〉
a
c∗p′h′ + 〈ph′|W |p′′p′〉

a
dp′′p′,hh′ − 〈h′′h′|W |hp′〉

a
dpp′,h′′h′ ,

and
[
i~

∂

∂t
− eph − ep′h′

]
dpp′,hh′ =

〈
pp′
∣∣W
∣∣hp′′

〉
cp′′h′ +

〈
pp′
∣∣W
∣∣p′′h′〉 cp′′h −

〈
ph′′∣∣W

∣∣hh′〉 cp′h′′ −
〈
h′′p′

∣∣W
∣∣hh′〉 cph′′

+

[〈
h′′p′

∣∣Ṽp-h

∣∣p′′h′〉
a
dpp′′,hh′′ −

〈
h′′p′

∣∣Ṽp-h

∣∣hp′′
〉
a

dpp′′,h′′h′ +
(

p↔ p′

h ↔h′

) ]

+
〈
pp′
∣∣Ṽ

p−p

∣∣p′′p′′′
〉
dp′′p′′′,hh′ +

〈
h′′h′′′∣∣Ṽ

h−h

∣∣hh′〉 dpp′,h′′h′′′ . (14)

3. Solution strategy

Without loss of generality we assume harmonic time dependence for the perturba-

tion

hext(r, t) = hext(r, ω)
(
eiωt + e−iωt

)
(15)

and consequently a similar form for the excitation amplitudes.

In this first implementation of the theory we aim towards a form that is, as far

as possible, analytic and preserves the analytic structure and the physical content

of CBF theory for Bose systems. We therefore neglect exchange effects and also

contributions of the “ladder” type, and we restrict the set of two–pair amplitudes

to functions that are matrix elements of a local operator

∑

pp′hh′

dph,p′h′ a†
pa

†
p′ah′ah −→

∑

qq′

d(q,q′) [ρ̂qρ̂q′ − ρ̂q+q′ ] , (16)

where ρ̂q is the density operator in momentum space. Comparing our theory to

descriptions using Feynman diagrams, our approach corresponds to accounting for

the proper polarization graphs shown in Fig. 2. Clearly, the graphs no. 3 and 5−7

represent vertex corrections, which are beyond the RPA (i.e. these terms are not

properly accounted for in response functions of the form of Eq. (2) ).

We further simplify the c-d coupling by replacing the amplitudes cph(t) in

Eq. (14) by their Fermi-sea averages. With these approximations the EOMs can

be solved for cph and dph,p′h′ which, in turn, yield the linear response wave function

and thus the induced density δρ(r, t).

Introducing

χ
(±)
0 (q, ω) = ±

1

N

∑

h

nh nh+q

~ω ∓ eh+q,h + i0+
, (17)
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+ + +

+ ++ + ...

. . .

Fig. 2. Typical proper polarization Feynman diagrams taken into account in our approach. (The
single and double wavy lines denote the bare and screened interactions, respectively. The lines
denote free single particle propagators).

(where nk = θ(kF−k) ≡ 1 − nk), the final result for the density-density response

function can be expressed as follows:

χPair(q, ω) =
κ(q, ω)

1 − κ(q, ω)Ṽp-h(q)
(18)

κ(q, ω) =
χ

(+)
0

1 − χ
(+)
0 W+

+
χ

(−)
0

1 − χ
(−)
0 W−

, (19)

W± = W(q,∓ω) = −
1

2

∑

q′

W3(q−q′,q′)W3(q−q′,q′)
±~ω − ε(q−q′) − ε(q′)

. (20)

Here W3 is a three-“phonon” vertex

W3(q,q′) =
Ṽp-h(q) SF (q) + Ṽp-h(q′) SF (q′)

√
S

F
(q)S

F
(q′)

S(3)
F

(q,q′,q+q′)

S
F
(q+q′)

. (21)

with S
F

nd S(3)
F

denoting the static structure factors of the non-interacting Fermi

gas. In ε(q) we recover the weakly interacting limit of the Bogoljubov dispersion

relation

ε(q) =
~

2q2

2mS
F
(q)

1 + S
F
(q) Ṽp-h(q) (22)

≈
~

2q2

2mS
F
(q)

√
1 + 4mS2

F
(q) Ṽp-h(q) /~2q2 ≈

~
2q2

2m S(q)
(23)

This dispersion relation (23) can be obtained, for example, by a “collective approx-

imation” of the RPA equation (2).

There are two important differences between the density response function from

the EOMs for the strongly interacting case and its weakly interacting counterpart.

First, ε(q) in Eq.(20) becomes the full Bogoljubov spectrum corresponding to the

exact interacting structure factor S(q), and, second, a multi–phonon contribution

Ṽmp(q, ω) must be added in the denominator of Eq. (18). This latter term is of

no immediately transparent structure and numerical investigations show that its

inclusion has only a marginal effect on the numerical results.16



October 30, 2006 20:40 WSPC - Proceedings Trim Size: 9.75in x 6.5in cmt˙2p2h

8

We end this section by noting that it is easily proved that χPair(q, ω) obeys the

ω0 and ω1 sum rules, independently of the specifics of W(q, ω). This means that

Ṽp-h(q) is uniquely defined by the static structure function through the first two

energy weighted sumrules.

4. Applications to two-dimensional 3He

We show in Fig. 3 results for the dynamic structure factor S(k, ω) of two–

dimensional 3He for an areal density of n = 0.049 Å−2 and 4 different wave numbers

in the vicinity of the experimental data. The effective interaction was calculated

through the ω0 sum rule from the static S(k) obtained by diffusion Monte Carlo

calculations in Ref. 17. In the spirit of the above discussion, the multi–phonon

contribution has been neglected for the time being.

Results are shown for the RPA as well as for the CBF theory in Fig. 3. The three

figures for k = 0.85 Å−1, k = 1.01 Å−1 and k = 1.15 Å−1 all show a collective mode

and the familiar particle-hole continuum. Note that the boundaries of the single-

particle-hole continuum are identical in RPA and CBF. (This is to be contrasted

with a theory invoking a m∗, as the latter changes χ0 and thus the particle-hole

continuum). It is clearly seen from the figure that the collective mode in CBF theory

is shifted appreciably to lower energies and is about to merge into the continuum

at k = 1.15 Å−1. Evidently, pair fluctuations are quite able to move the location of

the zero sound mode without effecting the particle-hole continuum. Therefore, an

adjustment of the effective mass is unnecessary to lower the collective mode, this

was also the case18 for 3d 3He.

While the RPA still yields a well separated collective mode at somewhat higher

wave numbers, the CBF phonon has merged into the continuum and S(k, ω) displays

a form similar to the RPA curve in the last part of Fig. 3. The case of the wave

number k = 1.34 Å−1 is most interesting: In both RPA and CBF, the collective

mode has merged with the single-particle-hole continuum. But whereas the RPA

spectrum still has a strong peak close to the upper boundary of the continuum, the

overall form of the CBF corrected spectrum is now very close to the experimentally

observed one.

From these results we conclude that that the essential mechanism determining

the shape of the dynamic structure function in 3He is that of fluctuating pair corre-

lations. Our study must, of course, be considered preliminary. A number of physical

mechanisms are still unaccounted for:

• We have found that the collective mode can be lowered without introducing

an ad-hoc effective mass. Nevertheless a consistent view of multi–pair and

single (quasi–)particle properties appears important. In previous work9,10

we have taken working formulas from perturbation theory and have com-

bined these with effective interactions generated from CBF theory to com-

pute m∗. A rigorous justification for this procedure is still lacking.

• In 4He, the same approximations used here lead to a significant lowering
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Fig. 3. Dynamic structure factor of a 3He layer at an areal density n = 0.049 Å−2 for four
different wave numbers as shown in the plots. Full lines: CBF-theory results Dashed lines: RPA
results as defined by Eq. (2).

of the phonon-roton spectrum, but still do not reproduce the experiments.

A theory with fewer approximations is needed to lower the energy of the

collective mode even further.3 The same is expected here, note that our

collective mode at the experimental wave number is still too high.

• At the experimental wave number 1.1 Å−1 ≤ k ≤ 1.2Å−1, the particle-hole

continuum terminates at about 1 meV, whereas the data still show signif-

icant strength up to about twice that energy. To explain this feature with

single-particle excitations would require an effective mass that is signifi-

cantly less than 1, which does not seem realistic.19–21 Therefore, a part of

the continuum seen in Fig. 1 must be due to multi-pair-excitations. These

have been treated in this work as “collective modes” (note that the energy

denominator in Eq. (20) contains only collective excitations); clearly this
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approximation must sooner or later be eliminated.

Our first priority is to investigate the effect of pair-fluctuations on quasi–particle

excitations in the system within this same formalism, and to combine this aspect

of the theory with the multi-pair-theory of the dynamic structure function. In pre-

vious work,9,10 we have used the so-called G0W approximation without rigorous

justification. Such a justification be achieved by studying the time–dependent wave

function corresponding to a definite single particle-hole amplitude, i.e. by omitting

the sum over ph (only) in the cph− contribution in Eq. 4. Then one can proceed in

exactly the same way as above, leading to a consistent way of studying collective

excitations and quasi–particle properties. Work in this direction is in progress.

In summary, the introduction of dynamic multi-pair correlations, so successful

in 4He, also proves necessary for obtaining the correct phonon dispersion in 3He. A

promising extension is the inclusion of spin fluctuations, which holds the potential

of understanding the large effective mass in 3He. As a matter of course the theory

can also be applied to other strongly interacting Fermi fluids and to electrons.

Appendix

We include henceforth the factors zX′

n′
in the definition of the correlation amplitudes

u(n) and conveniently split off the diagonal parts contained in the correlated EOMs

NX
n

,X′

n′
= δn,n′ AδX

n
,X′

n′
+ ÑX

n
,X′

n′

H ′
X

n
,X′

n′

= δn,n′ eXn
AδX

n
,X′

n′
+ H̃ ′

X
n

,X′

n′

.
(24)

The n−particle excitation energies in this definition are essentially the differences

of single–particle and –hole energies

eXn
= HXn,Xn

− H00 =
∑

i

(epi
−ehi

) + O( 1
N ) (25)

(N is the particle Number). Defining the correlation amplitude vector as

u ≡
(
u(1), . . . , u(n), u

∗
(1), . . . , u

∗
(n)

)
≡
(
cp′′h′′ , dp′′p′′′,h′′h′′′ , c∗p′′h′′ , d∗p′′p′′′,h′′h′′′

)
(26)

the correlated EOMs can be cast into matrix form
[
−

(
M O

O −M

)
~

i

∂

∂t
−

(
Ω0 O

O Ω0

)]
· u =

(
A B

B∗ A∗

)
· u , (27)

where O is the 2 × 2 zero matrix, Ω0 contains the excitation energies

Ω0 :=

(
(ep−eh) δ pp′′

hh′′

0

0 (ep−eh + ep′−eh′)Aδ pp′′

hh′′

δ p′p′′′

h′h′′′

)
(28)

with

Aδ pp′′

hh′′

δ p′p′′′

h′h′′′

:= δ pp′′

hh′′

δ p′p′′′

h′h′′′

− δ pp′′′

hh′′

δ p′p′′

h′h′′′

− δ pp′′

hh′′′

δ p′p′′′

h′h′′

+ δ pp′′′

hh′′′

δ p′p′′

h′h′′

. (29)
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The time derivative terms have factors arising from the normalization overlap inte-

grals contained in M

M =

(
δ pp′′

hh′′

0

0 Aδ pp′′

hh′′

δ p′p′′′

h′h′′′

)
+ (30)

(
Ñph,p′′h′′

1
2Nph,p′′h′′p′′′h′′′

Nphp′h′,p′′h′′
1
2

[
Ñphp′h′,p′′h′′p′′′h′′′ − N0,php′h′N0,p′′h′′p′′′h′′′

]
)

,

(in the bulk system Nph,0 = 0). Finally, the dynamics is governed by the Hamilto-

nian contributions

A :=




H̃ ′
ph,p′′h′′

1
2Hph,p′′h′′p′′′h′′′

H ′
php′h′,p′′h′′

1
2H̃ ′

php′h′,p′′h′′p′′′h′′′


 (31)

B :=




H ′
php′′h′′,0

1
2Hphp′′h′′p′′′h′′′,0

H
′
php′h′p′′h′′,0

1
2H

′
php′h′p′′h′′p′′′h′′′,0


 (32)

H
′
php′h′p′′h′′,0 ≡

[
H ′

php′h′p′′h′′,0 − Nphp′h′,0H
′
p′′h′′,0

]

H
′
php′h′p′′h′′p′′′h′′′,0 ≡

[
H ′

php′h′p′′h′′p′′′h′′′,0 − Nphp′h′,0H
′
p′′h′′p′′′h′′′,0

]

Obviously, Eq. (27) is similar to the corresponding dynamic CBF equations contain-

ing single–particle excitations only12, the matrices A and in particular B, however,

being much more intricate.
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