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Learning to combine multi-sensor information

for context dependent state estimation

Alexandre Ravet1, Simon Lacroix1, Gautier Hattenberger2 and Bertrand Vandeportaele1

Abstract— The fusion of multi-sensor information for state
estimation is a well studied problem in robotics. However,
the classical methods may fail to take into account the mea-
surements validity, therefore ruining the benefits of sensor
redundancy. This work addresses this problem by learning
context-dependent knowledge about sensor reliability. This
knowledge is later used as a decision rule in the fusion task
in order to dynamically select the most appropriate subset
of sensors. For this purpose we use the Mixture of Experts
framework. In our application, each expert is a Kalman filter
fed by a subset of sensors, and a gating network serves as
a mediator between individual filters, basing its decision on
sensor inputs and contextual information to reason about the
operation context. The performance of this model is evaluated
for altitude estimation of a UAV.

I. INTRODUCTION

State estimation is an essential issue in robotics. For

many systems, it relies on multiple sensors, each one ex-

hibiting an inherent observation uncertainty, operating range,

and context dependent performance. Uncertainty due to the

observation noise received considerable attention over past

decades and is commonly handled using Bayesian filtering

[1]. It is also well known that the use of redundant sensors

significantly improves estimation accuracy and reliability.

However, such methods do not provide any satisfying way

to assess the validity of sensor measurements.

In the context of multi-sensor state estimation, most at-

tempts to deal with this issue lead to self-contained systems,

relying on information theoretic framework [2] or rejection

schemes designed after experience on the system behaviour

[3]. This work is motivated by the fact that an intelligent

system should not only be able to select the sensor -or

subset of sensors- based on an online performance measure,

but should also encode knowledge about the reliability of a

perception modality according to the current specific context.

This implies the ability for the system to discover the

implicit operation contexts the robot is likely to encounter,

based on the a priori unknown performances of each sensor

in these contexts. Attributing belief about the reliability of a

sensor in these contexts then requires a complex reasoning

on information acquired about the environment. Except for

simple cases (reduced set of sensors, known environment)

one can not easily implement such decision rules by hand.
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Fig. 1. The basic mixture of experts framework

Addressing this problem introduces the need for the system

to learn how to achieve the sensor selection task. For this

purpose, we propose to use a supervised learning algorithm

to learn a mapping from sensors measurements input space

(and any relevant information) to sensors reliability proba-

bilities.

A well-designed robotic platform should exhibit various

perception modalities relying on different but complemen-

tary physical principles. Consequently the set of perception

modalities embedded on a robot does not provide direct

commensurate measurements, and it is often easier and more

modular to fuse information at a state vector level [4].

Furthermore, binding different subset of sensors to different

estimation filters allows to map the sensor selection problem

to the bank of Kalman filter approach. This method assumes

that optimal filtering can be expressed by dynamically se-

lecting the most suitable filter among a bank of filters. This

approach emerged with the Magill’s filter bank [5], and has

been subsequently improved leading to general pseudo Bayes

(GPB) methods and interacting multiple models (IMM) [6],

the latter being more computationally efficient. Although

some authors decided to augment the IMM with context-

dependent information [7], this algorithm fundamentally

relies on the exploitation of internal estimates and a known

transition probability matrix between different filter models.

Thus introduction of a knowledge about context dependent

model reliability is not straightforward, especially if the user

wants the system to learn this information. An analogous

approach can be found in [8] in the context of fault diagnosis.

Based on a jump Markov linear model, this method requires

a priori knowledge of the different regimes of operation for

the learning step, while we want our system to discover these

different contexts by itself.



Aiming at learning how to combine some complementary

experts, the Mixture of Experts (ME) framework lends

itself very well to the problem as it basically computes

an optimal output through a weighted sum of individual

experts. To achieve this mediation task, the ME relies on

a gating network in charge of providing gating probabilities,

equivalent to reliability coefficients over the set of experts

(Fig. 1). When experts are replaced by estimation filters, this

approach is known to be an efficient alternative to the filter

bank approach [9] [10].

This article aims at showing how the mixture of Kalman

filter for implicit sensor selection can be applied to the

altitude estimation task for a UAV, and is based on the two

following contributions :

• Application of the localized gating network to the

mixture of Kalman filters

• Application of the bank of Kalman filter approach for

implicit sensor selection

It is organised as follows: Section II introduces the ME

framework and concept of adaptive Kalman filtering for

sensor selection. Section III focuses on the gating model

and the training phase of the ME. Section IV conveys the

experimental results obtained for simulation and real data

scenario. Concluding remarks are finally made in section V.

II. THEORETICAL BACKGROUND

A. The mixture of experts framework

The mixture of experts approach basically consists in

decomposing a complex problem into subtasks, each of

which being handled by an appropriate expert. Traditionally

used for regression or classification problems, the model

learns to split the input space into overlapping regions within

which assigned experts are active.

The standard ME framework [11] consists in a set of

K experts modules and a gating network (Fig. 1). Each

expert k = 1...K associated with parameters λk looks at

input vector y and computes a local output xk through

a function fk(λk, y). In a probabilistic interpretation, the

output of an expert k can be viewed as the mean of a

probability distribution P (x|y, λk) with x the desired target

value associated to sample y. Assuming that the different

experts may be more competent in different regions of the

input space (i.e. they have higher probability to produce the

desired target x), the gating network mediates the outputs

of the bank of experts by producing for each expert k a

probability of its output xk to be equal to the desired output

x. This results in a set of gating probabilities gk weighting

the output of all experts while satisfying constraints gk ≥
0, k = 1...K, and

∑K

k=1
gk = 1.

Given an input vector y and a target vector x, the prob-

ability of observing x is then written in terms of gating

probabilities and experts outputs (using product rule) as

P (x|y,Θ,Λ) =
K
∑

k=1

P (x, k|y,Θ,Λ)

=

K
∑

k=1

P (k|y,Θ)P (x|k, y,Λ)

=

K
∑

k=1

gk(y, θk)P (x|y, λk) (1)

where {Θ,Λ} denotes the set of all parameters, with Θ =
{θk, k = 1...K} the set of gate parameters and Λ = {λk, k =
1...K} the set of experts parameters.

ME implementations then differ in three main points: the

experts model, the gating model, and the inference method

[12]. Our model for the gating framework is justified in

section II, and expert models are set as Kalman filters in our

case. In this paper we use a common learning method based

on the maximum likelihood principle, quickly described

hereafter.

Given a training set {x,y} we try to maximize the

likelihood L of the data set with respect to the model pa-

rameters. If samples are considered identically independently

distributed, this is equivalent to maximize:

L =
∏

n

p(xn, yn)

We then define the usual cost function C as the negative log

of the likelihood function, such that maximizing likelihood

is now equivalent to minimize C:

C = −
∑

n

ln(p(xn, yn))

Different methods for determining max likelihood have

been developed. The standard gradient descent methods can

be applied. More recently, sampling, variational inference

and several Expectation Maximization (EM) algorithms have

emerged [12] and have shown good performances.

B. Adaptive Kalman filtering for sensor selection

We implicitly solve the sensor selection problem through

the filter bank approach. In classical implementations, the

bank is composed of a finite number of filters differing in

transition model, transition noise and observation noise. A

weighting function then assigns weight factors to the output

of each individual filter, giving highest weight value to the

best performing filter. In our case, models differ only in

observation matrices (and corresponding observation noise),

acting as a selector on the sensors (Fig. 2). By this mean

we implicitly select the most appropriate subset of sensors

through the filter selection process.

III. ME FRAMEWORK FOR SENSOR SELECTION

A. Motivations

A micro-UAV is often brought to deal with changing

environment. The simple take-off and landing phase of a

micro-UAV already brings many different regimes in term
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Fig. 2. Mixture of experts framework for sensor selection. Each filter can
be wired to a different subset of sensors. The gating network can share
experts inputs and use any useful additional contextual information.

of sensor performance for altitude estimation. Ultrasonic

sensors are for example quite reliable and accurate until

they reach a given maximum range. They also easily provide

outliers measurements, e.g. because of multiple reflections.

Vision may start to provide information after reaching a

given altitude, depending on camera characteristics and on

the ground texture. Barometric pressure sensors provide

wide measuring range with quite constant accuracy but also

require to estimate a bias due to changing atmospheric

conditions, while GPS provides signal dependant precision,

and is more likely to be reliable for high altitudes, also

depending on environment characteristics. These specificities

raise the need to create decision rules for selecting an active

sensor subset given a specific context.

In [3] the authors report for example that indoor/outdoor

transitions result in outliers classical methods can not reject.

Therefore, a mechanism for sensor selection is proposed,

giving ability to the system to switch to the sensor that works

well in the current environment. The selection rule relies

on the strong assumption that the sensor with the smallest

measurement variance is the more reliable. If this approach

turns to be efficient in this specific transition context and

sensor setup, it is not generic at all.

An important capability of the ME model, which moti-

vated this work, relies in the gating network ability either to

share the experts inputs or to use additional information. This

allows to base decision on context-dependent information of

any kind. Under the assumption that the training set contains

enough samples, the learned gating network then ensures

adaptation to the different environments, providing a partial

assessment of sensors reliability.

B. Using Localized gating network to encode decision rules

Besides adapting the perception modalities, we also aim

at switching smoothly between experts. This requirement

especially makes sense in flight context, where hard tran-

sitions between sensors (consequently between estimates)

are not admissible, as it directly impacts the robot safety

in cluttered environments. In the standard model, the gating

network is a single layer linear network, hence the decision

boundaries consist of ’soft’ hyperplanes and inevitably create

overlapping regions [13], within which only one expert

may be needed (i.e. only one sensor subset is effective).

Consequently we adopt a specific model for the gating

network, known as localized ME [14], which consists of

normalized Gaussian kernels (or any density function from

the exponential family) :

gk(y, θk) = P (k|y) =
αkP (y|θk)

∑K

j=1
αjP (y|θj)

(2)

with

P (y|θk) =
1

(2π)d/2| Σk |1/2
exp

(

−
(y −mk)

TΣ−1

k (y −mk)

2

)

where θk = {mk,Σk} the mean and variance of the

Gaussian kernel distribution.

The Gaussian kernels allow to divide the input space

into soft hyper-ellipsoids. These ellipsoids can overlap, or

create localized regions of expertise where a single sensor

is trustworthy. The choice of Gaussian kernels also impacts

the learning step, as it yields a one-pass maximization step

when using the EM algorithm. EM is proved to have a

faster convergence rate than gradient ascent methods [15],

and provides guaranteed convergence due to the single loop

maximization step when used with Gaussian kernels: hence

we learn the gating parameters with the EM algorithm.

C. Learning the mixture parameters

The basic idea of the EM algorithm is to make the

assumption that some variables are hidden, in our case the

probability that the nth target sample xn was generated by

expert k. Hence we introduce an indicator variable z :

znj =

{

1 if target sample xn is generated by expert j

0 otherwise

This hidden variable induces mutual competition among

experts. It also models the existence of unknown operating

contexts which for different subsets of experts are reliable.

To obtain a one pass calculation for the gating parameters,

we complete maximum likelihood estimation on the joint

density p(x, y) [14]. Rewriting equation (1) with the new

gating function and noting the kth expert output conditional

density function φk(x|y):

p(x|y,Θ,Λ) =
K
∑

k=1

αkP (y|θk)
∑K

j=1
αjP (y|θj)

φk(x|y) (3)

we obtain the joint density

p(x, y) =

K
∑

k=1

αkP (y|θk)φk(x|y) (4)

using Baye’s rule on (2) to obtain p(y) =
∑K

j=1
αjP (y|θj).

Finally, introducing the indicator variable z to mediate

mutually exclusive experts, the joint distribution over hidden

and observed variables takes the form :

p(x, y, z) =

K
∏

k=1

(αkP (y|θk)φk(x|y))
zk (5)



which by maximum likelihood leads to the cost function:

C = −
∑

n

K
∑

k=1

znk ln(αkP (yn|θk)φk(x
n|yn)) (6)

Now the specificity of EM algorithm enters. In the expec-

tation step we replace the hidden variable z by its expected

value :

E(znk ) := p(znk = 1|xn, yn)

=
p(xn|znk = 1, yn)p(znk = 1|yn)

p(xn|yn)

=
αkP (yn|θk)φk(x

n|yn)
∑K

j=1
αjP (yn|θj)φj(xn|yn)

= hk(x
n, yn) (7)

Then the maximization step maximizes the expectation

of the cost function by substituting zk by its expectation

hk(x, y).

E(C) = −
∑

n

K
∑

k=1

hk(x
n, yn)ln(αkP (yn|θk)φk(x

n|yn))

(8)

As we can see this cost function can be separated in

two terms. The first one corresponds to the cost function

relative to gating parameters (αkP (yn|θk)) and the second

term corresponds to the expert network parameters.

D. Achieving mixture of Kalman filter

In our context each expert is a particular Kalman filter

providing its own estimation based on observation input ynk
and parameters λk describing specific sensor observation

noise and observation selection matrix. Hence φk(x
n|yn)

is obtained by evaluating the output distribution of the

kth Kalman filter at point xn. The maximization step then

consists only in minimizing the first term of result (8).

Setting partial derivatives w.r.t to αk (and using Lagrangian

multiplier to introduce the constraint
∑

k αk = 1), mk and

Σk to zero, we obtain new estimates [13]:

αk =
1

N

∑

n

hk(x
n, yn) (9)

mk =

∑

n hk(x
n, yn)yn

∑

n hk(xn, yn)
(10)

Σk =
1

d

∑

n hk(x
n, yn)‖ yn −mk ‖

2

∑

n h(x
n, yn)

(11)

Using these new parameters, we then repeat the EM steps

until convergence.

One common problem with mixture of Kalman filter is that

the exact belief state grows exponentially in time. For a set

of K filters, at iteration t = T , the exact distribution of the

state is a mixture of KT Gaussian distributions. To deal with

this exponential growth we use the GPB collapsing method

of order 1, and approximate the mixture of filters output

distribution with a single Gaussian distribution. At step n, if

each filter k provides an output distribution of mean µk and

variance σk we obtain the mixture distribution mean µmix

and variance σmix [16]:

µmix =

K
∑

k=1

gkµk

σmix =

K
∑

k=1

gk[σk + (µk − µmix)(µk − µmix)
T ]

The next transition step is then based on this mixture output,

hence accumulating the error introduced by the approxima-

tion at each time step. However, it has been shown in [17]

that the process error remains bounded indefinitely, avoiding

the mixture output to become irrelevant.

Some drawbacks of the approach are now discussed. In

its original implementation the ME framework inputs are

synchronized, and the gating network bases its decision on

a joint set of observations. For experiments, we simulated

synchronous observations by forcing sensors to provide mea-

sures at a defined frequency. As we will see, this approach

does not affect the framework ability to make decisions,

mainly because difference between inputs frequencies are

small – however large differences would not provide relevant

decisional capabilities.

An other constraint, directly imposed by the Gaussian

kernel model, is the unimodal distribution of the regions of

expertise. Under specific configurations, some sensors may

need to be active in separate regions of the input space. This

would require to model gating probabilities with more com-

plex models, like Gaussian mixtures or Gaussian processes

[12] – we will however notice that in our application context

the localized Gaussian kernels provide good behaviour.

IV. EXPERIMENTS

A. Simulation

We first illustrate the system ability to learn decision rules

according to sensors characteristics. This simple example

reproduces the take-off and landing phases of a UAV. Three

sensors provide direct measures of the altitude with different

characteristics, such as observation noise, outliers occur-

rences and measurement range thresholds (Fig. 3). Each sen-

sor is fed to one filter, and all filters share a common constant

velocity transition model. We train the gating network on a

dataset of 12000 samples reproducing two subsequent take-

off/landing sequences. The EM algorithm takes 50 iterations

to converge with a convergence threshold of 10−5.

The final estimate and associated uncertainty boundaries

for the validation set is shown in Fig. 5(a). As we can see, the

gating network learned to switch between sensors in order

to reject outliers and to take into consideration each sensor

measurement range. As expected from mutual competition

between experts introduced during the learning step, the

gating network tends to assign binary weights. Hence mixing

only operates during transition phases. As a consequence, the

system output provides consistent estimation but does not

benefit from estimation uncertainty reduction that could be

provided by direct measure fusion.
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Fig. 3. Altitude measurement provided by three sensors. Sensor 1
reproduces typical ultrasonic measures, low observation noise, outliers
occurrences and maximum range threshold. Sensor 2 permanently provides
measures with high observation noise. Sensor 3 does not provide relevant
measures below 2 meters.
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Fig. 4. Gating weights history on validation dataset.
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Fig. 5. Estimated altitude on validation dataset.

We compared the ME approach with a classical Kalman

filter enhanced with 3-sigma rejection on all sensors. As

shown Fig. 5(b), this approach can provide similar results

with appropriately tuned filter parameters. However, the

efficiency of such methods proves to be unsound, especially

as small changes in filter parameters or rejection threshold

can lead to strong divergence of the estimation output. While

we observed that changes in filter parameters significantly

modifies the localization of Gaussian kernels in the input

space, the ME approach turns to homogeneously produce

consistent output thanks to its adaptation capability.

B. Real Data

We now use datasets acquired on a paparazzi quadrotor

UAV [18]. Datasets consists of 50Hz synchronized altitude

measures provided by an ultrasonic sensor and a barometer

as well as accelerations on 3 axis provided by the embedded

IMU. Altitude truth is given by a motion capture system.

As we can see Fig. 6, ultrasonic sensor presents strong and
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Fig. 6. Gating network inputs and altitude truth for validation dataset.
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Fig. 7. Altitude estimation and uncertainty boundaries using mixture of
Kalman filters on validation set.

frequent outliers we know to be related to thrust level. We

also suppose that an external filter gives us an estimation of

the barometer offset.

Without additional understanding of the perturbations gen-

erated on ultrasonic sensor measures, we apply the mixture

of experts framework to show its ability to learn to filter

these outliers, and improve estimation accuracy. For this

application we use 3 different experts: one expert based on

ultrasonic measures, an other based on barometer measures,

and a last one based on both ultrasonic and barometer

measures. As we know the presence of outliers in ultrasonic

observations is correlated to the thrust, we provide 3 inputs

to the gating network: both sensor measures and the thrust

command. We compare this method to a Kalman filter

using 3-sigma rejection scheme on ultrasonic and barometer

measures. All these filters share the same constant velocity

transition model and observation noise. We train the system

on a dataset of 5000 samples. After 50 iterations the EM

algorithm reaches the convergence threshold fixed to 10−6.

Experiments show that the learned parameters generalize

well on different validation sets, always providing similar

performances. As we can see Fig. 7, some outliers are not

perfectly filtered. These outliers are presumably localized in

unexplored regions of the input space, implying that rejection

capability could be improved by using a larger training set.

On the validation set corresponding to Fig .6, the system
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Fig. 8. Estimation error relative to altitude truth for mixture of Kalman
filter (in red) and Kalman filter with 3-sigma rejection (in blue).
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2 (ultrasonic sensor) and expert 3 (barometer).

provides the best RMS estimation error with a value of

0.135. The filter with rejection provides an RMS error of

0.207. With a gating framework basing its decision on sensor

measures only, we found an RMS error of 0.150. This result

attests of thrust impact on ultrasonic measures, and of the

ability for the framework to take it into account as well.

The estimation error improvement provided by the mixture

approach (shown Fig. 8) can be explained by the sensor

selection process. For example our model learned to assign

more weight to the ultrasonic sensor as the UAV gets closer

to the ground, and usually promotes the barometer for higher

altitudes, where outliers on ultrasonic measures are more

likely to appear. Note that due to its estimation latency, the

barometer measures are more relevant for small velocity.

This is why, based on the strong thrust command value,

our approach reduces estimation error by now choosing the

ultrasonic sensor during the fast transition phase between

sample 3000 and 4000. The error difference provided by the

Kalman filter here again results from its sensitivity on filter

parameters. The noise term on the transition model should

reflects the dynamics of the UAV, but as rejection is based

on the innovation term, high noise terms reduce rejection

capability on small outliers. At the same time, low values

can conduct to correct measurement rejection during high

dynamic maneuvers. This explains the highest error peaks

on Fig. 8 where estimation latency introduced by the use of

the barometer punctually becomes coherent with ultrasonic

outliers, and make the filter diverge until altitude decreases.

In this more complex example, all the sensor specificities

can not be handled by an appropriate parameter tuning, and

more subtle decision rules as encoded in the gating network

prove to be more suitable.

V. CONCLUSION

We demonstrated that the mixture of expert framework

can be applied to the sensor selection problem. The gating

network discovers the different operating contexts and en-

codes knowledge about sensor reliability through the gating

probability distributions parameters. This enables the system

to automatically select the best suited estimation output,

improving robustness regarding filter parameters inaccuracies

and sensor characteristics.

An interesting direction for future work would consist

in using more complex models for decision boundaries

and extend the method to richer information sources like

laser range data or images. In the current implementation

the mixture process ignores previous gating weight values.

Extending the gating network to its dynamical version would

also improve performances of the approach.
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