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Abstract: In this paper, the stabilizability of discrete-time lineswitched systems is considered.
Several sufficient conditions for stabilizability are posed in the literature, but not a necessary and
sufficient one. The main contribution is a computation-atéel necessary and sufficient condition for
stabilizability based on set-theory. Based on such a coemd#én algorithm for computing the Lyapunov
functions and a procedure to design the stabilizing switghiontrol law are provided. The generic
algorithm is based on the invariance of unions of compaatyew sets containing the origin and is
applied to numerical examples using ellipsoids and polysogt will be shown in particular that no
assumption is made on the existence of a Schur convex cotigrinz the matrices, assumption on
which the Lyapunov-Metzler inequalities approach is basadther discussions with respect to the
literature and concluding remarks are also proposed.

Keywords:Switched linear systems; set-theory; stabilization golicvariance.

1. INTRODUCTION 2007). It should be also mentioned that for specific classes
of switched systems, necessary and sufficient conditionkico

Switched systems are systems for which the current dynamlmg obtained: for two-dimensional systems (Boscain, 2002),
specified by the so-called switching law, belongs at eadhars positive ones (Gurvits et al., 2007).
to a finite set of modes (see Liberzon (2003)). These Iarfrt‘ the case where the switching law is a part of the con-
decades, a large literature has been devoted to study sditc Yol inputs. sufficient conditions f%r stabilizak?ili hawb
systems for practical reasons: they model complex systi&ms | nputs, su X : Lo bility | een
embedded ones; and for theoretical reasons: their behanibr Provided. mainly by using anin-switchingpolicy (Liberzon,
associated properties like their stability are neithauitivie nor ﬁ]O(OK% ,ugggv?/tsekri 22 E;Ttrgglﬁ()a?/ig g:\//llcl:lésngtlgzli d(iﬁggt?,LdaeVL?r?o?ﬁ
trivial, as it has been emphasized in Liberzon and Morseq199 Metzler ine ualities.'(GeromeI and Colaneri 2%06) yBgsad o
Due to the large variety of assumptions related to the sivitch q ' '

law, several frameworks are distinguished. The most comm(} e set-induced Lyapunov functions introduced in Blantchin

approaches consider the switching law as a perturbatios ar aun?% ?E\%ISUTI;ISESOESS:%ZS dﬁ)ersséaﬁggzat;"eoennor rrgo(r)esgﬁgr un.
part of the control inputs. y prop

certain switched linear systems in Lin and Antsaklis (2003)
When the switching law is a perturbation, that is an arbiNevertheless to the best knowledge of the authors, there doe
trary function, sufficient but conservative conditions ttsere not exist in the literature necessary and sufficient coowltifor

the stability have been provided (see for overviews Lin anthe stabilizability of discrete-time switched linear st

Antsaklis (2-009); Sun and Ge (20-11))’ With common Lya:l'he aim of this paper is to provide necessary and sufficient
punov function, Lie algebra and differential (or differepc

inclusions (Gurvits, 1995; Liberzon et al., 1999; Agrache\(fontd't'ons’_rfhOr st?tmlzablllty"otf) Ilnea:jdlsgretglal t"f?e gohied
and Liberzon, 2001), multiple Lyapunov functions (Braryick Syﬁ ems. d el s€ '_th eotry V\r/]' keﬂt]lset %r} V\g_l_to erdaf;}gmerl-
1998), switched quadratic Lyapunov functions (Daafoud.et acly Epun a golr: m obc_lle.c he stal Irl12ad ity an ©
2002). In addition several refinements have been proposedslwItC Ing control law stabilizing the switched system.

order to obtain necessary and sufficient conditions foriliiab The outline of the paper follows. In Section 2, preliminarie
of switched systems. Among these conditions, one can ciééd tools issued from the set-theory are presented. Results
the joint spectral radius approach (Bauer et al., 1993; hith a on stability for arbitrary switching laws are recalled incSe
Antsaklis, 2004; Jungers, 2009); the formulation of a polytion 3. Necessary and sufficient conditions for stabililigbi
hedral Lyapunov function (Molchanov and Pyatnitskiy, 19890f switched systems are provided in Section 4. The efficiency
or a path-depend switched Lyapunov one (Lee and Dullerudnd suitability of our approach are underlined on academic
examples in Section 5, before concluding remarks in Se@ion

* Corresponding author M. Fiacchini.



Notation: The set of positive integers smaller than or equalto 3. RECALL OF THE ARBITRARY SWITCHING LAW

the integen € Nis denoted ail,, i.e.N, = {xe N:1<x<n}. FRAMEWORK

GivenD,E CR", a > 0 andM € R™", defineD+E = {z=

x+yeR":xeD, yeE}, defineD-E={xeR":x+ECD}, Inthis section, we recall in Theorem 1 necessary and sufficie
aD = {axcR":xe D} andMD = {Mxe R™:x<c D}. Given conditions for the stability of a switched linear systemwit
a setD C R", co(D) denoted the convex hull d, int(D) arbitrary switching lawo. Several statements are then declined
its interior anddD its boundary. The seB" is the unitary in Proposition 1 and links with the literature are discussed

Euclidean ballirR". Thei-th element of a finite sets of matricesthaorem 1(Molchanov and Pyatnitskiy (1989)). There exists

, . i .

is denoted a, of a set of sets &@'. a Lyapunov function for the switching system (1) if and only
if there exists a C-se® C R" and a scalah € [0,1) such that

2. PRELIMINARIES AQCAQ, VieN (3)

Proof: The proof is inspired by the one of Lemma 4.1
Consider the discrete-time autonomous switched system  in Blanchini (1995) and extended to the case of switched sys-
X1 = Ag X 1) tems without loss of genericity. It is based on the lineanitth
+ 0 (k)7 respect to the state of the system (1) and on the convexdicati
wherex, € R" is the state at timke N ando : N — Ngisthe  of the set induced by the stability definition of the systerrm

switching law that, at any instant, selects the transiti@irin " . .
among the finite sefA Jicw,, With A € R™" for all i € Nq. The condition (3) could be reformulated in several formsioivh

Given the initial state and a switching laws (), we denote are more suitable for the switched nature of the system (1).
with X% (%) the state of the system (1) at tirkstarting from  Proposition 1. The three following statements are equivalent:

%o by applying the switching lavo(-). In some cases can ; s C RN
be a function of the state, for instance in the case of switchi a) There exists a C-s€ C R7, such that

control law, as shown later. AQCAQ, VieNg 4)

A concept widely employed in the context of set-theory an{) There exisg C-sets); C R", with i € Ng, such that

invariance is the C-set, see Blanchini (1991, 1995); Blarch AQ C A NjeN O VieN,. (5)
. . . .. = q=>“D q

and Miani (2008). A C-set is a compact, convex set contamln% _ N N

the origin in its interior. We define an analogous concepilise ¢) There exisg C-setsQj C R, withi € Ng, such that

for our purpose. For this, we first recall that a €etis a AQ g;\g}j’ (i, }) € Ng x Ng. (6)

star-convex set if there exisi® € Q such that every convex

combination of andx? belongs taQ for everyx € Q. Proof: The proof is made circularly. The implication

Definition 1. A setQ C R" is a C-set f it is compact, star- &)=b) is true by choosind = Q, Vi € Nq. The inclusion

convex with respect to the origin and=int(Q). ﬂjeNq Qj C Qj, Vi € Nqg leads to b}>c). The implication c}>a)

is obtained by considering = .y, Q;, which is a C-set be-
causeQ; are C-sets. More precisely, the inclusion (6) being true
for all j € Ng, we haveA Qi € A Njen, Qj andAiNjen, Qj €

for the C'-setQ C R". In what follows, we will refer to¥q(x) A Njeng Q- u
as the Minkowski function o€ atx, with a slight abuse as the

Minkowski function is usually defined for C-sets (or symritr The relation (4) is more convenient for theoretical and comp
C-sets), Rockafellar (1970): Schneider (1993): Blanchind tational aspects because it is closer to the set-inducqulingy

Miani (2008) function _proposed in Blanchil_wi_(1995). V_\/_héhis assumt_a_d to

' be an ellipsoid, we obtain sufficient conditions for stapivith
Some basic properties of the*Bets and their Minkowski a common quadratic Lyapunov function. We recover the result
functions are listed below. The proof is avoided, since thegf Molchanov and Pyatnitskiy (1989) concerning necessady a
follow directly from the definition. sufficient conditions with a polyhedral Lyapunov functiop b

Property 1. Any C-set is a C-set. Given a G-setQ C R", we assuming thaQ) is a polytope, due to the fact that a C-set

have thanQ C Q for all a € [0,1], and the Minkowski function admits and arbitrarly close polytopic approximation. Wigan

Wq(-) is: homogenous of degree one, ity (ax) = aWq(X) i € Nq are ellipsoids, the relation (6) writes as the sufficient

for all @ > 0 andx € R"; positive definite; defined oR" and conditions for stability in the framework of quadratic setied

radially unbounded. Lyapunov functions (Daafouz et al., 2002). Finally the rela
5 tion (5) is adapted to design an algorithm based on pre-image

Then, given a G-setQ, its Minkowski function is a Lyapunov modal operators. This last approach will be privileged ia th

function if there existdN > 1 and a switching law defined on following for the case of switching control law.

R" such that its value is not increasing and it decreases Mfter

steps for alk € R". Although this is not the classical definition 4. SWITCHING CONTROL LAW

of Lyapunov functions, it can be proved that there exists a

Lyapunov function if and only if there is a function of thisii. |t is proved in Molchanov and Pyatnitskiy (1989) that for an

Notice that this is equivalent to impose that the smallegllset  autonomous linear switched system (called therein diffeze

containingxg (x) is contained in the interior of the smallervoneindusion), the origin is asymptotically stable if and orify

containingx for all x, which is equivalent to contractivity @ there exists a polyhedral Lyapunov function, see also Blan-

afterN steps. chini (1995); Lin and Antsaklis (2009). It can be proved that

Define also the analogous of the gauge function of &€ as
LIJQ(x):rr}J{in{a eR:xeaQ}, 2



analogous results can be stated in the case that the swjtchavery C-setsD andE to prove the results by induction. By
sequence is supposed to be a properly chosen selectioiis thatefinition ax € D for all x € D and a € [0,1]. Then given

considering it as a control law. a € (0,1] we have
We recall that in the switching stabilization literatureetsys- aA D = {axcR": Axe D} ={yeR": Ayc aD} C
tem (1) is asymptotically stabilizable if there exists atshing C{xeR": AxeD} = A~1D,

law and a continuous positive definite and radially unboqlndesinceD is a C-set. Fora — 0, dA-1D = {0}  A~1D, trivially.

non-increasing function converging to zero when the lavpis a in L

plied. Hence, the function is a Lyapunov function and stwldaThenA D is a star-convex set anq It IS als_o_C(_)m_pa_qt from

reasoning for guaranteeing asymptotically stability Holthe ~ #SSUmption 1. The fact thfftl't contains the origin in its ffae

resulting time-varying system. The switching law will betp follows from the fact tha#\, = are continuous operators under

to the class of state-dependent one, that is Assumption 1. TherA'D is a C-set. The property on the
o (k) = g(x), (7) union follows from the definition of Gset. ]

whereg: R" — Ng. With a slight abuse of notation we define inlt can be proved that Algorithm 1 provides 4-6etQ contrac-
the sequel the state-dependent switching law@s = o(x¢).  tivein N steps, for every initial GsetQ € R", if and only if the

Assumption 1 The matrices\, with i € N, are non-singular. SWitching system (1) is asymptotically stable. Such neargss

Remark 1.Notice that this assumption is not restrictive at aII.and sufficient condition, which is the main contribution bét

In fact, the stable eigenvalues of the matridgsare benefi- paper, is stated in th? theorem below. ] o
cial from the stability point of view of the switched systemsTheorem 2.There exists a Lyapunov function for the switching
and poles in zero are related to the more contractive dynaystem (1) if and only if the Algorithm 1 ends with finité

ics. Moreover, the results presented in the following can be ) . .
extended to the general case with appropriate considesatio T 100f: Necessity follows from the fact that, if the algo-
Finally, recall that sampled linear systems do not preseletsp rithm ends with finiteN, thenQ induces a Lypaunov function.

in the origin and then real systems satisfy Assumption 1. |nde¢d,f_2 being a C-set from Proposition 2, its Minkowski
function is defined. Moreover, considering
Consider the following algorithm: i :)V\(Q) —min{A >0:QC Afz} (10)
Algorithm 1. Computation of a contractive*cset for the sys- A - ’
tem (1) such that Assumption 1 holds. we have thad < 1, sinceQ C int(Q) andQ is a C-set. Since
e Initialization : given the C-setQ C R", defineQy = Q by constructio is the set of points such thak? (x) are inQ
andk = 0; for k =k(x) < N and an appropriate switching sequence, then
e lteration for k > 0: we have ..
1 =AlQ, VieN,, Xe (X) €QCAQ, (11)
Qi1 = U Q|k+1; )  forallx €Qandin particular fox ¢ dQ. This means that there
i€Ng exist a switchingr(x) andk(x) < N such that
o Stopif Q C int( U Qj); denoteN = k+ 1 and W (xFy (X)) < AWg (x), (12)
j€NKy1

. for all x € Q. Then the value of the Minkowski function

Q=Q;. (9) decreases aftéa(x) steps, for al on the boundary. Moreover,
jeNy it does not increase, for ajl < k(x). In fact, givenx € 0,
the elementsf (x) can be stirred inQ in k(x) — j steps for

. all j <k(x), being elements of the same sequence whose last
the set of points mapped @y throughA;. ThenQ, ; are those 0 . -
pointsx € R" for which there exists a selectio(x) € Ny such elementis ir2. This means thatf (x) € Q and then
that Ay x € Qx. ThereforeQy is the set of points that can be Wo(X] (X)) < Wg(x), Vi€ Ngy. (13)

driven inQ in k step and henc® the set of those which can ¢o, 5|1 x € 9O, Then for every e 99 there exists a switching
reachQ in N or less steps, by an adequate switching law.  gaquence of lengtk(x) such that théb is not increasing for
Remark 2.The symbol should be intended to denote, withthe firstk(x) — 1 steps and it decreases of at least a proportional
a slight abuse of notation, the operator that associateséb a ya|ye) at the instank(x), from (12) and (13).
its inverse image, rather than the inverse of mafixThat is, ) ) )
given the seD C R" one have Since everyx is on thev boundary of a level set 8f5(x), in
1 _ n. A particularx € d(Wg(x)Q), and from the homogeneity of the
A D= {xeRT: Axe D). Minkowski func(tio% and)the linearity of the switched system

Indeed, it is worth pointing out that the inverse image of e have that (12) and (13) hold for everye R". Thus from
set exists and can be computed also for linear transfornmtio(lz) and (13) valid on the whole state space W'e have

given by non-invertible matrices. This has to remarked bsea .
the algorithm applies also for the general case for which As- Wo(xg (X)) <AWx(x), (14)
sumption 1 is not satisfied, although it is not the case so far. for a|| x € R" which proves thatWy is a Lyapunov function.
PI’OpOSition 2.The Setﬂlk anko with i € Nq and for allk Z 0 Then’ if the A|g0r|thm 1 ends with f|n|td<|, a Lyapunov
are C-sets. function exists, in particula¥z (x).

From the geometrical point of view, notice that the @t , is

Proof: Clearly Qg is a C'-set. It is sufficient to prove that To prove sufficiency, we suppose that there exists a Lyapunov
A~1D andDUE are C-sets, for all nonsingulaA € R" and  function for the switched linear system (1) and we demotestra



that the Algorithm 1 ends with finitél. By definition, there LIJQik(x) =a, ifxed(aQ)),

exist a switching lawo(x), a valueN € N and a continuous _ i [

positive definite functioV : R" — R such that for everx we WQL 9> a, _ X (@ Q).

haveV (x§(x)) < V(x). Consider the set Remind that by constructio, is the set that can be stirred in
Qv = {xeR": V(x) <1}, (15) Q, and then also in the contracted ad, ink steps by means

of a sequence of modes whose first elemerit isloreover,

as demonstrated in the proof of Theorem 2, the Minkowski

function does not increase along the fikst 1 elements of the

generated trajectory. Then from homogeneity of the Minkaws

. ; . : . functions, the seX(x) is composed by the paifg k) wherei is

int(QY). PosingQ = [ in Algorithm 1, we have C int(QY). .

From the gobally asymptotic stability of the system (1),réhe tr;e flrstvelevment O; a contr9| sequgrm:(sx) that Ievadsvto hgve

exist a switching lawo(x) defined onR" and a finiteNV € N X (X) € AaQ andx} (x) € aQforall j € Ni. As (0(x),k(x)) is

such that for alk € Q¥ there exist&k(x) < NV for which a selection of the sei(x), the result follows. =

Xf(x) (x) € Q. It could be reasonable, to speed up the convergence, ta selec

ConsiderQv obtained by applying the Algorithm 1 with ~2mong the elements &{(x), those whosé isvminimal.
defined above, supposing that the stop condition has not be@arollary 1. If Algorithm 1 ends with finiteN then the switch-
satisfied, otherwise the result would be directly provedc8i ing law defined by (16) and (17) is such that

the Se\iﬂj is the set of states that can be stirreddiin j steps, Wé(xaﬂ(x)) < P (%), (18)
thenQV C UJeNNv Q; and then we have p

Qcin(@) cint( |J Qj),

jENNV

which is closed from continuity of and bounded from its
radially unboundedness. Hern@¥ is compact and @ int(QY),
sinceV is continuous and positive definite. Thus for every C
setl’, there existg > 0 such that the Gsetel satisfiesel” €

for everyp € N and allx € R".

Proof: From Proposition 3 we have that, if Algorithm 1

. . " ends with finiteN, then there exist a switching lad(x) and
which contradicts the fact that the stop condition has nenhbe the relatedk X) < N such that the Minkowski function o
satisfied. Then the Algorithm 1 ends with finkewith N < NV () <

m doesnotincrease fér< R(x) and it decreases of a proportional

value ofA afterk(x) steps, for alk € R". Sincek(x) < N, then

The fact that Algorithm 1 ends with finithl is a necessary the value ofWy (x) decreases at least one time within the next
and sufficient condition for global asymptotic stability thie N steps, that means that

switched system (1). Moreover, Algorithm 1 provides a Lya-

punov function and a stabilizing switching control law, etter Wy (Xg (X)) < AWg(X),
a family of stabilizing control laws, for the linear switahe hich implies (18) since the property applies over the whole
system (1). Notice that the complexity of the algorithm, ethi spacer™. [ ]

we think should deserve further analysis, depends on the co

plexity intrinsic to the Lyapunov functions and then on thetotically stabilizable, then the algorithm ends with finNefor
hature Proper ofthe system. . all initial C*-setQ. Clearly, the value oN and the complexity
Proposition 3.If Algorithm 1 ends with finiteN then ¥, - of the setq) depends on the choice 6. In particular, ifQ is
R — R is a Lyapunov function for the switched system (1khe euclidean norm ball (or the union of full dimensionaigell
and given the set valued map soids), the set®} andQy, with i € Ngq andk € N, are union

5(x) = arg min{Wo (x) 11 € Ng, ke Ny} CNgx Ny, (16)  of ellipsoids, and so i®. Then, the switching law computation
(k) reduces to check the minimal value of amot@x with j € M,

Remark 3.1t is worth pointing out that if the system is asymp-

any switching law definedas where{P;}, y; are theM positive definite matrices that define
(0(x),k(x)) € Z(x), (17) &, with M = Skeng @ =0a+--+a" = (@ —q)/(q-1).
is a stabilizing switching law and such that Moreover, ifQ is a (the union of) polytope contaning the origin
wé(ng (X)) < ;\Wé(x), in its intt_arior, alsoQ!} , Q_k, with ie Nq andl_< € Ny, andQ are
s _ so. In this case, the switching law is obtained by evaluatieg
We (X} (X)) < Wy (x), vje Nk(x)v set linear inequalities defining those polytopes.

with A as in (10).
5. ILLUSTRATION

Proof: The fact thatWs(-) is a Lyapunov function has
been proved in the proof of necessity for Theorem 2. Denote order to illustrate the suitability of the algorithm, coder
a = Wg(x), to easy the notation. There d(aQ) by definition.  the example witlg = n=2:
Moreover, from definition of), there are some valuégk) € A 12 0 A -0.6 -2

. . ~ o . . 1= s 2 = .

Ng x Ny such thak € d(aQ}), sinceQ is the union o} for all -108 0 -12

. . - H H |

:senI:\I)? zgt?;‘igefmgﬁg\?grtﬂ;; t?fg,( )) ;(:: d"‘;ﬂglﬁ G (igafé) Both the matrice#\; andA, are not Schur, which implies that
, N k Ty " this is not possible to stabilize the system (1) with a carmtsta

This becausa is either on the boundary or in the complementwitching law. In order to apply the Algorithm 1, we have

of everyaQy, for alli € Ng andk € Ny, otherwiseor would not  to choose a particular initial ‘GsetQ. Firstly we consider

be the minimal value such thate aQ. Then for everyi € Ng  Q = B2, The induced set€y, k € N will be thus unions of

andk € Ny we have that ellipsoids. The result at the first step is depicted in Fiduteft.
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Fig. 1. BallB? in dashed line and induced s€s and{Jy.y, Q« I U S SN S S
in solid line.
6 15
Qy is the union of two ellipsoidsA; B2 andA, 'B?). Itis clear P SRR VA0S PN SSS SO S
that B2 does not belong t®;. The next step of the algorithm 05 ‘ ‘ ‘ ‘ ‘ ‘ ‘
leads to a setycn, Qk given by the union of six ellipsoids E o

(A7 B2 with i € Nz and A;*A'B2, for all (i, j) € N2 x Np).
SinceB? does not belong tQJken, Ok, see Figure 1 right, the Fig. 3. Lyapunov function and switching control laws in time
termination condition is not satisfied. The algorithm staps
the fourth iteration. The zoom in Figure 2 emphasizes Bfat
is included iUy, Q-

A stabilizing switching law, satisfying the relation (18)diven

in Figure 3 for the initial conditiorkg = (—3,3)". The Lya-
punov function converges to zero (Figure 3). Itis also notew
thy that the Lyapunov function is not a decreasing functiorn,
only a non-increasing one which is strictly decreasing aste
every four (the number of steps of the algorithm) instanss, a
proved in the main result.

Fig. 4. Unitary square in dashed line dpgky, Qk in solid one.
Trajectory starting fronxg = (—3,3)" in starry line.

stabilizable. Our algorithm stops at the third step. It isvsh
in Figure 5 thatB? C Uyen, Q«. The Lyapunov function and
the switching law are given in Figure 6. Notice that also iis th
case, the Lyapunov function decreases aftsteps.

Fig. 2. Ball B? in dashed line andJyen, Qk in solid one.
Trajectory starting fromxg = (—3,3)" in starry line.

The algorithm could also be applied by considering othéiaihi \
C*—set Q. For instance, we consider the unit square. The or
algorithm terminates at the fourth step. The relatkdy, Q« is < 4

depicted in Figure 4. The trajectory starting fragn= (—3,3)" = -
is also plotted in this figure. -2}

As a second example, consider tpE=n=2: af 4

0 -1.01 0 -1.01
Al[l 1 } Az{l —0.5]'

Due to the structure of; andA,, the product of eigenvalues

of every convex combination of these both matrices is equg\g 5. Ball B2 in dashed line and Q in solid one
to 1.01. That is every convex combinationA&f andA; is not L keNs '
Schur. The technique based on Lyapunov-Metzler ineqesliti
is then not applicable. Nevertheless this switched system i

I I I I I I I I I
-4 -3 -2 -1 0 1 2 3 4 5

Trajectory starting fronxg = (—3,3)T in starry line.
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