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Abstract: In this paper, the stabilizability of discrete-time linearswitched systems is considered.
Several sufficient conditions for stabilizability are proposed in the literature, but not a necessary and
sufficient one. The main contribution is a computation-oriented necessary and sufficient condition for
stabilizability based on set-theory. Based on such a condition, an algorithm for computing the Lyapunov
functions and a procedure to design the stabilizing switching control law are provided. The generic
algorithm is based on the invariance of unions of compact, convex sets containing the origin and is
applied to numerical examples using ellipsoids and polytopes. It will be shown in particular that no
assumption is made on the existence of a Schur convex combination of the matrices, assumption on
which the Lyapunov-Metzler inequalities approach is based. Further discussions with respect to the
literature and concluding remarks are also proposed.
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1. INTRODUCTION

Switched systems are systems for which the current dynamic,
specified by the so-called switching law, belongs at each instant
to a finite set of modes (see Liberzon (2003)). These last
decades, a large literature has been devoted to study switched
systems for practical reasons: they model complex systems like
embedded ones; and for theoretical reasons: their behaviorand
associated properties like their stability are neither intuitive nor
trivial, as it has been emphasized in Liberzon and Morse (1999).
Due to the large variety of assumptions related to the switching
law, several frameworks are distinguished. The most common
approaches consider the switching law as a perturbation or as a
part of the control inputs.

When the switching law is a perturbation, that is an arbi-
trary function, sufficient but conservative conditions to ensure
the stability have been provided (see for overviews Lin and
Antsaklis (2009); Sun and Ge (2011)), with common Lya-
punov function, Lie algebra and differential (or difference)
inclusions (Gurvits, 1995; Liberzon et al., 1999; Agrachev
and Liberzon, 2001), multiple Lyapunov functions (Branicky,
1998), switched quadratic Lyapunov functions (Daafouz et al.,
2002). In addition several refinements have been proposed in
order to obtain necessary and sufficient conditions for stability
of switched systems. Among these conditions, one can cite
the joint spectral radius approach (Bauer et al., 1993; Lin and
Antsaklis, 2004; Jungers, 2009); the formulation of a poly-
hedral Lyapunov function (Molchanov and Pyatnitskiy, 1989)
or a path-depend switched Lyapunov one (Lee and Dullerud,
⋆ Corresponding author M. Fiacchini.

2007). It should be also mentioned that for specific classes
of switched systems, necessary and sufficient conditions could
be obtained: for two-dimensional systems (Boscain, 2002),for
positive ones (Gurvits et al., 2007).

In the case where the switching law is a part of the con-
trol inputs, sufficient conditions for stabilizability have been
provided, mainly by using amin-switchingpolicy (Liberzon,
2003, Chapter 3) introduced in Wicks et al. (1994), developed
in (Kruszewski et al., 2011) via BMI and leading to Lyapunov-
Metzler inequalities (Geromel and Colaneri, 2006). Based on
the set-induced Lyapunov functions introduced in Blanchini
(1995), sufficient conditions for stabilization or more precisely
uniformly ultimate boundedness has been proposed for un-
certain switched linear systems in Lin and Antsaklis (2003).
Nevertheless to the best knowledge of the authors, there does
not exist in the literature necessary and sufficient conditions for
the stabilizability of discrete-time switched linear system.

The aim of this paper is to provide necessary and sufficient
conditions for stabilizability of linear discrete time switched
systems. The set-theory will be used and will offer a numeri-
cally sound algorithm to check the stabilizability and alsothe
switching control law stabilizing the switched system.

The outline of the paper follows. In Section 2, preliminaries
and tools issued from the set-theory are presented. Results
on stability for arbitrary switching laws are recalled in Sec-
tion 3. Necessary and sufficient conditions for stabilizability
of switched systems are provided in Section 4. The efficiency
and suitability of our approach are underlined on academic
examples in Section 5, before concluding remarks in Section6.



Notation: The set of positive integers smaller than or equal to
the integern∈N is denoted asNn, i.e.Nn = {x∈N : 1≤ x≤ n}.
GivenD,E ⊆ R

n, α ≥ 0 andM ∈ R
m×n, defineD+E = {z=

x+y∈R
n : x∈D, y∈E}, defineD−E= {x∈R

n : x+E⊆D},
αD = {αx∈R

n : x∈ D} andMD = {Mx∈R
m : x∈ D}. Given

a setD ⊆ R
n, co(D) denoted the convex hull ofD, int(D)

its interior and∂D its boundary. The setBn is the unitary
Euclidean ball inRn. Thei-th element of a finite sets of matrices
is denoted asAi , of a set of sets asΩi .

2. PRELIMINARIES

Consider the discrete-time autonomous switched system

xk+1 = Aσ(k)xk, (1)

wherexk ∈ R
n is the state at timek∈ N andσ : N→ Nq is the

switching law that, at any instant, selects the transition matrix
among the finite set{Ai}i∈Nq, with Ai ∈ R

n×n for all i ∈ Nq.
Given the initial statex0 and a switching lawσ(·), we denote
with xσ

N(x0) the state of the system (1) at timeN starting from
x0 by applying the switching lawσ(·). In some casesσ can
be a function of the state, for instance in the case of switching
control law, as shown later.

A concept widely employed in the context of set-theory and
invariance is the C-set, see Blanchini (1991, 1995); Blanchini
and Miani (2008). A C-set is a compact, convex set containing
the origin in its interior. We define an analogous concept usefull
for our purpose. For this, we first recall that a setΩ is a
star-convex set if there existsx0 ∈ Ω such that every convex
combination ofx andx0 belongs toΩ for everyx∈ Ω.

Definition 1. A set Ω ⊆ R
n is a C∗-set if it is compact, star-

convex with respect to the origin and 0∈ int(Ω).

Define also the analogous of the gauge function of a C∗-set as

ΨΩ(x) = min
α

{α ∈R : x∈ αΩ}, (2)

for the C∗-setΩ ⊆ R
n. In what follows, we will refer toΨΩ(x)

as the Minkowski function ofΩ at x, with a slight abuse as the
Minkowski function is usually defined for C-sets (or symmetric
C-sets), Rockafellar (1970); Schneider (1993); Blanchiniand
Miani (2008).

Some basic properties of the C∗-sets and their Minkowski
functions are listed below. The proof is avoided, since they
follow directly from the definition.

Property 1. Any C-set is a C∗-set. Given a C∗-setΩ ⊆ R
n, we

have thatαΩ⊆Ω for all α ∈ [0,1], and the Minkowski function
ΨΩ(·) is: homogenous of degree one, i.e.ΨΩ(αx) = αΨΩ(x)
for all α ≥ 0 andx ∈ R

n; positive definite; defined onRn and
radially unbounded.

Then, given a C∗-setΩ̌, its Minkowski function is a Lyapunov
function if there existsN ≥ 1 and a switching law defined on
R

n such that its value is not increasing and it decreases afterN
steps for allx∈R

n. Although this is not the classical definition
of Lyapunov functions, it can be proved that there exists a
Lyapunov function if and only if there is a function of this kind.
Notice that this is equivalent to impose that the smaller level set
containingxσ

N(x) is contained in the interior of the smaller one
containingx for all x, which is equivalent to contractivity of̌Ω
afterN steps.

3. RECALL OF THE ARBITRARY SWITCHING LAW
FRAMEWORK

In this section, we recall in Theorem 1 necessary and sufficient
conditions for the stability of a switched linear system with
arbitrary switching lawσ . Several statements are then declined
in Proposition 1 and links with the literature are discussed.

Theorem 1.(Molchanov and Pyatnitskiy (1989)). There exists
a Lyapunov function for the switching system (1) if and only
if there exists a C-set̂Ω ⊆ R

n and a scalarλ ∈ [0,1) such that

AiΩ̂ ⊆ λ Ω̂, ∀i ∈ Nq. (3)

Proof: The proof is inspired by the one of Lemma 4.1
in Blanchini (1995) and extended to the case of switched sys-
tems without loss of genericity. It is based on the linearitywith
respect to the state of the system (1) and on the convexification
of the set induced by the stability definition of the system.

The condition (3) could be reformulated in several forms, which
are more suitable for the switched nature of the system (1).

Proposition 1.The three following statements are equivalent:

a) There exists a C-set̂Ω ⊆ R
n, such that

AiΩ̂ ⊆ λ Ω̂, ∀i ∈Nq. (4)

b) There existq C-setsΩ̂i ⊆ R
n, with i ∈ Nq, such that

AiΩ̂i ⊆ λ ∩ j∈Nq Ω̂ j , ∀i ∈Nq. (5)

c) There existq C-setsΩ̂ j ⊆ R
n, with i ∈ Nq, such that

AiΩ̂i ⊆ λ Ω̂ j , ∀(i, j) ∈ Nq×Nq. (6)

Proof: The proof is made circularly. The implication
a)⇒b) is true by choosinĝΩi = Ω̂, ∀i ∈ Nq. The inclusion
⋂

j∈Nq
Ω̂ j ⊆ Ω̂i , ∀i ∈Nq leads to b)⇒c). The implication c)⇒a)

is obtained by considerinĝΩ =
⋂

j∈Nq
Ω̂ j , which is a C-set be-

causeΩ̂i are C-sets. More precisely, the inclusion (6) being true
for all j ∈ Nq, we haveAiΩ̂i ∈ λ

⋂

j∈Nq
Ω j andAi

⋂

j∈Nq
Ω j ∈

λ
⋂

j∈Nq
Ω j .

The relation (4) is more convenient for theoretical and compu-
tational aspects because it is closer to the set-induced Lyapunov
function proposed in Blanchini (1995). WhenΩ̂ is assumed to
be an ellipsoid, we obtain sufficient conditions for stability with
a common quadratic Lyapunov function. We recover the result
of Molchanov and Pyatnitskiy (1989) concerning necessary and
sufficient conditions with a polyhedral Lyapunov function by
assuming thatΩ̂ is a polytope, due to the fact that a C-set
admits and arbitrarly close polytopic approximation. WhenΩi ,
i ∈ Nq are ellipsoids, the relation (6) writes as the sufficient
conditions for stability in the framework of quadratic switched
Lyapunov functions (Daafouz et al., 2002). Finally the rela-
tion (5) is adapted to design an algorithm based on pre-image
modal operators. This last approach will be privileged in the
following for the case of switching control law.

4. SWITCHING CONTROL LAW

It is proved in Molchanov and Pyatnitskiy (1989) that for an
autonomous linear switched system (called therein difference
inclusion), the origin is asymptotically stable if and onlyif
there exists a polyhedral Lyapunov function, see also Blan-
chini (1995); Lin and Antsaklis (2009). It can be proved that



analogous results can be stated in the case that the switching
sequence is supposed to be a properly chosen selection, thatis
considering it as a control law.

We recall that in the switching stabilization literature, the sys-
tem (1) is asymptotically stabilizable if there exists a switching
law and a continuous positive definite and radially unbounded
non-increasing function converging to zero when the law is ap-
plied. Hence, the function is a Lyapunov function and standard
reasoning for guaranteeing asymptotically stability holdfor the
resulting time-varying system. The switching law will belong
to the class of state-dependent one, that is

σ(k) = g(xk), (7)
whereg :Rn 7→Nq. With a slight abuse of notation we define in
the sequel the state-dependent switching law asσ(k) = σ(xk).
Assumption 1.The matricesAi , with i ∈ Nq, are non-singular.
Remark 1.Notice that this assumption is not restrictive at all.
In fact, the stable eigenvalues of the matricesAi are benefi-
cial from the stability point of view of the switched systems
and poles in zero are related to the more contractive dynam-
ics. Moreover, the results presented in the following can be
extended to the general case with appropriate considerations.
Finally, recall that sampled linear systems do not present poles
in the origin and then real systems satisfy Assumption 1.

Consider the following algorithm:
Algorithm 1. Computation of a contractive C∗-set for the sys-
tem (1) such that Assumption 1 holds.

• Initialization : given the C∗-setΩ ⊆ R
n, defineΩ0 = Ω

andk= 0;
• Iteration for k≥ 0:

Ωi
k+1 = A−1

i Ωk, ∀i ∈ Nq,

Ωk+1 =
⋃

i∈Nq

Ωi
k+1; (8)

• Stop if Ω ⊆ int
(

⋃

j∈Nk+1

Ω j

)

; denoteŇ = k+1 and

Ω̌ =
⋃

j∈NŇ

Ω j . (9)

From the geometrical point of view, notice that the setΩi
k+1 is

the set of points mapped inΩk throughAi . ThenΩk+1 are those
pointsx∈ R

n for which there exists a selectioni(x) ∈ Nq such
thatAi(x)x ∈ Ωk. Therefore,Ωk is the set of points that can be

driven in Ω in k step and hencěΩ the set of those which can
reachΩ in Ň or less steps, by an adequate switching law.

Remark 2.The symbolA−1
i should be intended to denote, with

a slight abuse of notation, the operator that associates to aset
its inverse image, rather than the inverse of matrixAi . That is,
given the setD ⊆ R

n one have

A−1
i D = {x∈R

n : Aix∈ D}.

Indeed, it is worth pointing out that the inverse image of a
set exists and can be computed also for linear transformations
given by non-invertible matrices. This has to remarked because
the algorithm applies also for the general case for which As-
sumption 1 is not satisfied, although it is not the case so far.
Proposition 2.The setsΩi

k andΩk with i ∈Nq and for allk≥ 0
are C∗-sets.

Proof: ClearlyΩ0 is a C∗-set. It is sufficient to prove that
A−1D andD∪E are C∗-sets, for all nonsingularA ∈ R

n and

every C∗-setsD and E to prove the results by induction. By
definition αx ∈ D for all x ∈ D and α ∈ [0,1]. Then given
α ∈ (0,1] we have

αA−1D = {αx∈R
n : Ax∈ D}= {y∈ R

n : Ay∈ αD} ⊆
⊆ {x∈ R

n : Ax∈ D}= A−1D,

sinceD is a C∗-set. Forα = 0,αA−1D= {0}⊆A−1D, trivially.
Then A−1D is a star-convex set and it is also compact from
Assumption 1. The fact that it contains the origin in its interior
follows from the fact thatA−1

i are continuous operators under
Assumption 1. ThenA−1D is a C∗-set. The property on the
union follows from the definition of C∗-set.

It can be proved that Algorithm 1 provides a C∗-setΩ̌ contrac-
tive in Ň steps, for every initial C∗-setΩ ∈R

n, if and only if the
switching system (1) is asymptotically stable. Such necessary
and sufficient condition, which is the main contribution of the
paper, is stated in the theorem below.

Theorem 2.There exists a Lyapunov function for the switching
system (1) if and only if the Algorithm 1 ends with finitěN.

Proof: Necessity follows from the fact that, if the algo-
rithm ends with finiteŇ, thenΩ̌ induces a Lypaunov function.
Indeed,Ω̌ being a C∗-set from Proposition 2, its Minkowski
function is defined. Moreover, considering

λ̌ = λ̌(Ω) = min
λ

{λ ≥ 0 : Ω ⊆ λ Ω̌}, (10)

we have thaťλ < 1, sinceΩ ⊆ int(Ω̌) andΩ̌ is a C∗-set. Since
by constructionΩ̌ is the set of pointsx such thatxσ

k (x) are inΩ
for k = k(x) ≤ Ň and an appropriate switching sequence, then
we have

xσ
k(x)(x) ∈ Ω ⊆ λ̌ Ω̌, (11)

for all x∈ Ω̌ and in particular forx∈ ∂ Ω̌. This means that there
exist a switchingσ(x) andk(x) ≤ Ň such that

ΨΩ̌(x
σ
k(x)(x))≤ λ̌ ΨΩ̌(x), (12)

for all x ∈ ∂ Ω̌. Then the value of the Minkowski function
decreases afterk(x) steps, for allx on the boundary. Moreover,
it does not increase, for allj ≤ k(x). In fact, givenx ∈ ∂ Ω̌,
the elementsxσ

j (x) can be stirred inΩ in k(x)− j steps for
all j ≤ k(x), being elements of the same sequence whose last
element is inΩ. This means thatxσ

j (x) ∈ Ω̌ and then

ΨΩ̌(x
σ
j (x)) ≤ ΨΩ̌(x), ∀ j ∈ Nk(x). (13)

for all x∈ ∂ Ω̌. Then for everyx∈ ∂ Ω̌ there exists a switching
sequence of lengthk(x) such that theΨΩ̌ is not increasing for
the firstk(x)−1 steps and it decreases of at least a proportional
valueλ̌ at the instantk(x), from (12) and (13).

Since everyx is on the boundary of a level set ofΨΩ̌(x), in
particularx ∈ ∂

(

ΨΩ̌(x)Ω̌
)

, and from the homogeneity of the
Minkowski function and the linearity of the switched system,
we have that (12) and (13) hold for everyx ∈ R

n. Thus from
(12) and (13) valid on the whole state space, we have

ΨΩ̌(x
σ
Ň
(x))≤ λ̌ ΨΩ̌(x), (14)

for all x ∈ R
n which proves thatΨΩ̌ is a Lyapunov function.

Then, if the Algorithm 1 ends with finiteŇ, a Lyapunov
function exists, in particularΨΩ̌(x).

To prove sufficiency, we suppose that there exists a Lyapunov
function for the switched linear system (1) and we demonstrate



that the Algorithm 1 ends with finitěN. By definition, there
exist a switching lawσ(x), a valueN ∈ N and a continuous
positive definite functionV : Rn → R such that for everyx we
haveV(xσ

N(x))<V(x). Consider the set

ΩV = {x∈ R
n : V(x)≤ 1}, (15)

which is closed from continuity ofV and bounded from its
radially unboundedness. HenceΩV is compact and 0∈ int(ΩV),
sinceV is continuous and positive definite. Thus for every C∗-
setΓ, there existsε > 0 such that the C∗-setεΓ satisfiesεΓ ∈
int(ΩV). PosingΩ = εΓ in Algorithm 1, we haveΩ ⊆ int(ΩV).
From the gobally asymptotic stability of the system (1), there
exist a switching lawσ(x) defined onRn and a finiteNV ∈ N

such that for allx∈ ΩV there existsk(x) ≤ NV for which

xσ
k(x)(x) ∈ Ω.

ConsiderΩNV obtained by applying the Algorithm 1 withΩ
defined above, supposing that the stop condition has not been
satisfied, otherwise the result would be directly proved. Since
the setΩ j is the set of states that can be stirred inΩ in j steps,
thenΩV ⊆

⋃

j∈NNV
Ω j and then we have

Ω ⊆ int(ΩV)⊆ int
(

⋃

j∈NNV

Ω j
)

,

which contradicts the fact that the stop condition has not been
satisfied. Then the Algorithm 1 ends with finiteŇ with Ň≤NV .

The fact that Algorithm 1 ends with finitěN is a necessary
and sufficient condition for global asymptotic stability ofthe
switched system (1). Moreover, Algorithm 1 provides a Lya-
punov function and a stabilizing switching control law, or better
a family of stabilizing control laws, for the linear switched
system (1). Notice that the complexity of the algorithm, which
we think should deserve further analysis, depends on the com-
plexity intrinsic to the Lyapunov functions and then on the
nature proper of the system.

Proposition 3. If Algorithm 1 ends with finiteŇ then ΨΩ̌ :
R

n 7→ R is a Lyapunov function for the switched system (1)
and given the set valued map

Σ̌(x) = argmin
(i,k)

{ΨΩi
k
(x) : i ∈ Nq, k∈ NŇ} ⊆ Nq×NŇ, (16)

any switching law defined as

(σ̌(x), ǩ(x)) ∈ Σ̌(x), (17)

is a stabilizing switching law and such that

ΨΩ̌(x
σ̌
ǩ(x)

(x))≤ λ̌ ΨΩ̌(x),

ΨΩ̌(x
σ̌
j (x)) ≤ ΨΩ̌(x), ∀ j ∈Nǩ(x),

with λ̌ as in (10).

Proof: The fact thatΨΩ̌(·) is a Lyapunov function has
been proved in the proof of necessity for Theorem 2. Denote
α =ΨΩ̌(x), to easy the notation. Thenx∈ ∂ (αΩ̌) by definition.
Moreover, from definition ofΩ̌, there are some values(i,k) ∈
Nq×NŇ such thatx∈ ∂ (αΩi

k), sinceΩ̌ is the union ofΩi
k for all

i ∈Nq andk∈NŇ. Concerning the(i,k) for whichx∈ ∂ (αΩi
k)

is not satisfied, we have thatx /∈ (αΩi
k) and thenΨΩi

k
(x) > α.

This becausex is either on the boundary or in the complement
of everyαΩi

k, for all i ∈Nq andk∈NŇ, otherwiseα would not
be the minimal value such thatx∈ αΩ̌. Then for everyi ∈ Nq
andk∈NŇ we have that

{

ΨΩi
k
(x) = α, if x∈ ∂ (αΩi

k),

ΨΩi
k
(x)> α, if x /∈ (αΩi

k).

Remind that by constructionΩi
k is the set that can be stirred in

Ω, and then also in the contracted setλ̌ Ω̌, in k steps by means
of a sequence of modes whose first element isi. Moreover,
as demonstrated in the proof of Theorem 2, the Minkowski
function does not increase along the firstk−1 elements of the
generated trajectory. Then from homogeneity of the Minkowski
functions, the setΣ(x) is composed by the pairs(i,k) wherei is
the first element of a control sequenceσ(x) that leads to have
xσ

k (x) ∈ λ̌ αΩ̌ andxσ
j (x) ∈ αΩ̌ for all j ∈Nk. As ( ˇσ(x), ǩ(x)) is

a selection of the setΣ(x), the result follows.

It could be reasonable, to speed up the convergence, to select
among the elements ofΣ(x), those whosek is minimal.

Corollary 1. If Algorithm 1 ends with finiteŇ then the switch-
ing law defined by (16) and (17) is such that

ΨΩ̌(x
σ̌
pŇ(x))≤ λ̌ pΨΩ̌(x), (18)

for everyp∈ N and allx∈ R
n.

Proof: From Proposition 3 we have that, if Algorithm 1
ends with finiteŇ, then there exist a switching law̌σ(x) and
the relatedǩ(x) ≤ Ň such that the Minkowski function of̌Ω
does not increase fork≤ ǩ(x) and it decreases of a proportional
value ofλ̌ after ǩ(x) steps, for allx∈ R

n. Sinceǩ(x)≤ Ň, then
the value ofΨΩ̌(x) decreases at least one time within the next
Ň steps, that means that

ΨΩ̌(x
σ̌
Ň(x))≤ λ̌ ΨΩ̌(x),

which implies (18) since the property applies over the whole
spaceRn.

Remark 3.It is worth pointing out that if the system is asymp-
totically stabilizable, then the algorithm ends with finiteŇ for
all initial C∗-setΩ. Clearly, the value of̌N and the complexity
of the setΩ̌ depends on the choice ofΩ. In particular, ifΩ is
the euclidean norm ball (or the union of full dimensional ellip-
soids), the setsΩi

k andΩk, with i ∈ Nq andk ∈ NŇ, are union
of ellipsoids, and so išΩ. Then, the switching law computation
reduces to check the minimal value of amongxTPjx with j ∈ M̌,
where{Pj} j∈M̌ are theM̌ positive definite matrices that define

Ω̌, with M̌ = ∑k∈NŇ
qk = q+ · · ·+ qŇ = (qŇ+1 − q)/(q− 1).

Moreover, ifΩ is a (the union of) polytope contaning the origin
in its interior, alsoΩi

k, Ωk, with i ∈ Nq andk ∈ NŇ, andΩ̌ are
so. In this case, the switching law is obtained by evaluatingthe
set linear inequalities defining those polytopes.

5. ILLUSTRATION

In order to illustrate the suitability of the algorithm, consider
the example withq= n= 2:

A1 =

[

1.2 0
−1 0.8

]

, A2 =

[

−0.6 −2
0 −1.2

]

.

Both the matricesA1 andA2 are not Schur, which implies that
this is not possible to stabilize the system (1) with a constant
switching law. In order to apply the Algorithm 1, we have
to choose a particular initial C∗–set Ω. Firstly we consider
Ω = B

2. The induced setsΩk, k ∈ N will be thus unions of
ellipsoids. The result at the first step is depicted in Figure1, left.
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Fig. 1. BallB2 in dashed line and induced setsΩ1 and

⋃

k∈N2
Ωk

in solid line.

Ω1 is the union of two ellipsoids (A−1
1 B

2 andA−1
2 B

2). It is clear
thatB2 does not belong toΩ1. The next step of the algorithm
leads to a set

⋃

k∈N2
Ωk given by the union of six ellipsoids

(A−1
i B

2 with i ∈ N2 andA−1
j A−1

i B
2, for all (i, j) ∈ N2 ×N2).

SinceB2 does not belong to
⋃

k∈N2
Ωk, see Figure 1 right, the

termination condition is not satisfied. The algorithm stopsat
the fourth iteration. The zoom in Figure 2 emphasizes thatB

2

is included in
⋃

k∈N4
Ωk.

A stabilizing switching law, satisfying the relation (17) is given
in Figure 3 for the initial conditionx0 = (−3,3)T . The Lya-
punov function converges to zero (Figure 3). It is also notewor-
thy that the Lyapunov function is not a decreasing function,but
only a non-increasing one which is strictly decreasing at least
every four (the number of steps of the algorithm) instants, as
proved in the main result.
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Fig. 2. Ball B2 in dashed line and
⋃

k∈N4
Ωk in solid one.

Trajectory starting fromx0 = (−3,3)T in starry line.

The algorithm could also be applied by considering other initial
C∗–set Ω. For instance, we consider the unit square. The
algorithm terminates at the fourth step. The related

⋃

k∈N4
Ωk is

depicted in Figure 4. The trajectory starting fromx0 = (−3,3)T

is also plotted in this figure.

As a second example, consider forq= n= 2:

A1 =

[

0 −1.01
1 −1

]

, A2 =

[

0 −1.01
1 −0.5

]

.

Due to the structure ofA1 andA2, the product of eigenvalues
of every convex combination of these both matrices is equal
to 1.01. That is every convex combination ofA1 andA2 is not
Schur. The technique based on Lyapunov-Metzler inequalities
is then not applicable. Nevertheless this switched system is
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Fig. 3. Lyapunov function and switching control laws in time.
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Fig. 4. Unitary square in dashed line and
⋃

k∈N2
Ωk in solid one.

Trajectory starting fromx0 = (−3,3)T in starry line.

stabilizable. Our algorithm stops at the third step. It is shown
in Figure 5 thatB2 ⊆

⋃

k∈N3
Ωk. The Lyapunov function and

the switching law are given in Figure 6. Notice that also in this
case, the Lyapunov function decreases afterŇ steps.
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Fig. 5. Ball B2 in dashed line and
⋃

k∈N3
Ωk in solid one.

Trajectory starting fromx0 = (−3,3)T in starry line.
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Fig. 6. Lyapunov function and switching control laws in time.
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6. CONCLUSION

The issue of the stabilizability of a switched discrete-time linear
autonomous system has been studied in this paper. Via a set-
theory approach, necessary and sufficient conditions for the
stabilizability have been provided. These conditions are based
on an algorithm using pre-image modal operators over compact,
star-convex sets containing the origin in their interior, which
provides in addition the switching laws stabilizing the switched
system. The method is applied to numerical examples by em-
ploying ellipsoids or polytopes as the initial sets. Our approach
allows moreover to stabilize counter-examples of Lyapunov-
Metzler approach based on the existence of a Schur convex
combination of the matrices. Several academic illustrations are
proposed to strengthen the discussions and to emphasize the
efficiency of our approach.
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