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We investigate the onset of convection in a uniform, constant-thickness, horizontal porous layer which is 
heated from below. The layer is bounded above and below by thermally conducting but impermeable lay-
ers. Our aim is to determine the effect on the onset of convection of the interaction between the presence 
ofthese outer conducting layers and a horizontal background flow. A linear stability analysis is performed 
and a dispersion relation is derived from which the stability characteristics of the layer are computed. 
Convection ce lis are found move along the layer at a speed which is lower than that of the imposed flow 
due to a thermal drag caused by the presence of the bounding solid layers. Neutra! curves and streamline/ 
isotherm patterns are presented in order to understand the physical rote played by the governing nondi-
mensional parameters. Wh en the diffusivity of the solid layers is much lower than the diffusivity of the 
porous layer there exists a regime where the neutra! curve can exhibit two minima, and at one point in 
parameter space there exists a neutra! curve with a quartic minimum. 

1. Introduction 

Convection in a horizontal porous layer heated from below 
continues to be a source of research attention. Whilst there is 
undoubtedly a widespread range of practical topics for which heat 
and mass transfer in porous layers provide a good mode!, convec-
tive flows nevertheless are source of fun dam entai interest from the 
points of view of phenomenology (such as pattern selection) and 
the application of the la test analytical and numerical methods. 

Horton and Rogers [1] and Lapwood [2] were the first to study 
the onset of convection for what may be termed the classical 
Darcy- Bénard problem, namely that of a uniform, isotropie hori-
zontal porous layer which is saturated by a Newtonian fluid, and 
which is subject to a uniformly hot lower bounding surface and a 
uniformly cold upper surface. Convection arises in an infinitely long 
layer wh en the Darcy-Rayleigh number exceeds 41!:2. The first mode 
to appear has the wavenumber, n, which corresponds to convection 
rolls with a square cross-section. Weakly nonlinear theory, which 
applies when the flow is just supercritical, shows that two-dimen-
sional rolls form the stable planform for convection, as opposed to 
hexagonal cells, square or rectangular cells, or more exotic shapes -
see Rees and Riley [3,4] and Rees [5] . When the bounding surfaces 
are heated by means of a constant heat flux, then the critical Darcy-
Rayleigh number is reduced to 12 and the critical wavenumber is 
zero (Nield [6]). Recent weakly nonlinear studies by Rees and Mojt-
abi [7] suggest that the the postcritical stable planform of this 
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constant-heat-flux form of the Darcy-Bénard problem is three 
dimensional. More detail may be found in the chapters by Rees 
[8] , Tyvand [9] , Rees et al. [10] and Nguyen-Quang et al. [11], and 
the books by Pop and Ingham [12] and Nield and Bejan [13]. 

In the present paper we will study one particular type of layered 
system. Layering arises naturally in the real world and an early 
paper by Rana et al. [14] was aimed at describing convection in 
the Pahoa reservoir in Hawaii, a system which was modelled using 
three porous sublayers. This numerical study displayed how the 
familar two dimensional convection patterns for the single-layer 
problem are modified substantially when layering is present. A 
more comprehensive approach was undertaken by McKibbin and 
D'Sullivan [15], who determined the conditions for the onset of 
convection in both two- and three-sublayer configurations. The ex-
tra degree of freedom which arises wh en a porous layer consists of 
as few as two sublayers means that the neutra! curve can exhibit 
more unusual shapes than the standard one where one minimum 
is present. There is a regime in parameter space where two minima 
are possible; typically one of these corresponds to a local convec-
tion pattern (i.e. mainly confined to the sublayer with the higher 
permeability-the higher wavenumber case) orto a global pattern 
(the lower wavenumber). Rees and Riley [16] also presented a 
three-layer case where modes with three different wavenumbers 
become unstable at the same Darcy-Rayleigh number. 

Of more specifie interest to us here are the three-layer configu-
rations where the outer layers are impermeable heat-conducting 
solids. If the outer layers are relatively thin, then such a configura-
tion may be used to mode! experimental studies where a saturated 
porous medium must be bounded by sorne impermeable barrier; 



Nomenclature 

A,B,C,D,E constants 
c phase velocity 
d conductivity ratio 
g gravity 
k disturbance wavenumber 
k thermal conductivity 
K permeability 
p pressure 
Pe Péclet number 
Ra Darcy-Rayleigh number 
t time 
u horizontal velocity 
w vertical velocity 
x horizontal coordinate 
z vertical coordinate 

Greek symbols 
a diffusivity ratio 
p thermal expansion coefficient 

see Rees and Mojtabi [7] and Mojtabi and Rees [17]. An early paper 
by Riahi [18] considered infinitely thick solid sublayers and he 
used weakly nonlinear theory to show that the convection plan-
form may, when the conductivity of the solid layers is small, take 
the form of three-dimensional cells with a square planform. His 
analysis was extended to solid layers of finite thickness by Rees 
and Mojtabi [7] . 

A different, but practically important, modification of the classi-
cal Darcy-Bénard problem was undertaken by Prats [19] who con-
sidered the effect of a horizontal pressure gradient. When Darcy's 
law applies, this pressure gradient induces a uniform fluid velocity 
along the layer, unlike the parabolic velocity profile which arises in 
plane-Poiseuille flow. Prats showed that the convection cells found 
by Horton and Rogers ]1] and Lapwood [2] move along the layer 
with exactly the velocity of the background flow. A simple coordi-
nate transformation to a frame of reference which moves with the 
background flow removes the background velocity from the 
governing equations, even when under strongly supercritical con-
ditions. Thus the vertical heat transfer and ali the nonlinear 
dynamics are unaffected by this forced convection component. 

The aim of the present work, then, is to determine how the 
presence of conducting boundaries affects the simple result of 
Prats [19], namely, that the phase velocity of the convection cells 
is precisely the same as the velocity of the background flow. It is 
a simple piece of a priori reasoning that the presence of stationary 
bounding surfaces will impose a thermal drag on the cells, and 
therefore the velocity of the cells should lie between zero and that 
of the background flow. But the present paper also addresses the 
question of whether this three-layer system displays any unusual 
behaviour over and above having a simple minimum in the neutra! 
curve. 

The linear stability analysis which we present is facilitated by 
the derivation of a dispersion relation which takes the form of a 
complex 4 x 4 determinant. Setting the real and imaginary parts 
to zero simultaneously yields both the critical Darcy-Rayleigh 
number and the phase velocity of the cells. We present neutra! 
curves and the variation of the critical values of the Darcy-Ray-
leigh number, wavenumber and phase velocity as a function of 
the diffusivity ratio, conductivity ratio, thickness ratio and the 
Péclet number. The behaviour of these curves is explained by 
means of a selection of streamlinefisotherm plots. We find that 
the classical unimodal neutra! curve does indeed occasionally take 

y constant 
r exponent 
c5 thickness ratio 
(} fluid temperature 
e disturbance fluid temperature 
K thermal diffusivity 
Â.,O" exponential growth rate 
J1. dynamic viscosity 
p density 
l/1 streamfunction 
'P disturbance streamfunction 

Subscripts and superscripts 
1,2,3 sublayer 
c critical value 
ref reference value 

derivative with respect to z 
11 dimensional 

a more exotic form, and this corresponds to when the diffusivity 
of the solid layers is substantially less than that of the porous 
layer. 

2. Goveming equations 

We investigate the effect of conducting boundaries on what we 
shall cali the Lapwood-Prats problem, namely the Darcy-Bénard 
problem modified by the presence of a horizontal forced convec-
tive pressure gradient. The detailed configuration we consider is 
shown in Fig. 1 and it is comprised of a uniform isotropie saturated 
porous layer of thickness, h2, which is bounded by two uniform, 
impermeable but thermally conducting plates with thicknesses, 
h1 and h3• These plates do not necessarily have identical conductiv-
ities or thicknesses and the derivation of our stability analysis will 
maintain this, but we will present detailed results only for those 
cases where the solid layers are identical in every respect. This 
three-sublayer composite system is taken to be of infinite extent 
in both horizontal directions. 

The origin of the coordinate system is located at the bottom of 
the composite layer, while x and z are the horizontal vertical coor-
dinates, respectively. Constant but different temperatures are 
imposed at the external surfaces of the composite layer, i.e. at 
z = 0 and at z = h1 + h2 + h3, where the lower surface is hotter 
than the upper surface. The somewhat unusual formula given in 
Fig. 1 for the temperature of the upper surface means that the 
overall temperature difference across the porous layer is AT. The 
Darcy-Rayleigh number will be defined using this value, this al-
lows our results to be compared easily with single-layer systems, 
or systems where the solid layers are exceptionally thick. 

For convenience the sublayers are numbered, 1, 2 and 3, begin-
ning with the lowest sublayer. We will assume that the ensuing 
convection is restricted to being two-dimensional and therefore 
the full governing equations for the porous layer are, 

(1) 

(2) 

(3) 



T=To 

Fig. 1. Definition sketch of the configuration being studied. The porous layer is sandwiched between two impermeable but thermally conducting layers. The value, AT, is the 
temperature drop across the porous layer. 

where ali quantities are given in the Nomenclature. The respective 
equations for conductive heat transfer in the solid sublayers are, 

8Tt (82
Tt ｾｔｴＩ＠

(pc)t at = kt 8X2 + az2 

and 

The boundary and interface conditions are, 

Z = 0: Tt = Trer, 
aTt aT2 z. = ht : w = o, Tt = h kt az. = k2 az , 

(4) 

(5) 

aT2 aT3 (6) z = ht + h2: w = o, T2 = T3, k2 az. = k3 az. , 

k2 (ht h2 h3) z = ht + h2 + h3 : T3 =- h2 A.T kt+ k2 + k
3 

+ Tref· 

The imposed horizontal pressure gradient is of such a magnitude 
that it induces the velocity field, (u,v) = (U,O). 

The following scalings may be introduced in order to render 
nondimensional the goveming equations: 

A h A-h h At- ｨｾＨｰｃｨ＠ t X = 2X, Z - t + 2Z, - -k-
2
- , 

(

A A A ) k2 ( ) u, v, w = h2(pC)f u, v, w, 

(7) 

which are based on the height and the properties of the porous 
layer. 

We thereby obtain the nondimensional equations: 

(8) 

(9) 

(10) 

(11) 

and 

The diffusivity ratios, OCt and oc3, are defined according to, 

kt (pCh k3(pCh 
OCt = k2(pC)t' ct3 = k2(PClJ. 

The Darcy-Rayleigh number is defined to be, 

Ra= p2(pC)1gph2KtlT 
J1.k2 

(12) 

(13) 

(14) 

and it is based upon the height of the porous layer and the temper-
ature difference across it. The two conductivity and thickness ratios 
as follows, 

dt = kt/k2, d3 = k3/k2, Ot = htfh2, 03 = h3/h2. (15) 

The background velocity is now (u,w) = (O,Pe), where the Péclet 
number is given by, 

h2U 
Pe = k2(pC)f. (16) 

For two-dimensional flow we may define the streamfunction, l/J, 
using, 

81/1 81/1 
U=-- and W=-

az ax 
(17) 

and the full goveming equations become 

ｾＢＧ＠ ｾＢＧ＠ 8() 8x2 + 8z2 =Ra ax' (18) 

8()2 81/1 8()2 81/J 8()2 ｾ＠ ()2 ｾ＠ ()2 

Tt+ ax az - az ax = 8x2 + 8z2 , (19) 

in the porous layer, and 

(20) 

in the bounding sublayers. The boundary and interface conditions 
are 
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Fig. 2. Neutra! cmves (left) and the corresponding values of the wavespeed, c, (right) for ex= 1 and Pe = 1 for the stated values of d. The following values of èJ were used: 
{J = 10,3,1,0.3,0.1,0.03 and 0.01. The dotted line corresponds to {J = 10 and the dashed line to {J = 0.01. 

3. Unear stability equations 

Z=O: t/1=0, We perturb about the basic state by setting, 

(21) 

Z= 1: t/1=0, (22) 



-- ...... 
--- .. - ...... 
....... 

.......... 

........... ---

--

, , 
,' 

---
k=0.5 

k=l 

1 , 

,' 
, 

1 

.............. - .. -- ........ 
-- ---------

... ... .. .. .. - ........ 
............. -

............ -...... --- ------ ------ ----- .................................. ... 

, , ................. ... , ... -... , 
.............. " 1 .. - ... ... " 

........... ' 

, 

' 
' 

, , , 

... 1 , , 

, 
1 

........... ---
...... ----
......... - ... -, 

, , , .......... - . 
........ --

........ - . 
----- -.. ........ 

..... _,. , 1 ' 

k=2 

Fig. 3. Streamlines ( continuous Ii nes) and isotherms (da shed Ii nes) for d = lJ = ac = Pe = 1. Showing the effect of having different wavenumbers. 

d=5 

------- . 

d= 0.2 

1111: ﾷﾷｾｾｾｾﾷﾷＮﾷﾷｾｾｾＺｾｾｾ･ｳ｣［＠ . 
＾ﾷｾﾷ＠ ...•.•...•. · •. ﾷﾷﾷｾ＠ .•.••. 

. . 

d=l 

. ·.· .... /.' \ < . 
\, __ ｾＭＭＭ Ｎ Ｍ｟Ｍ｟ＭＭ

···.······ ••.••••••.... /. 

Fig. 4. Streamlines (continuous lines) and isotherms (dashed lines) for lJ =ac= Pe = 1. The wavenumber is k = 1. Showing the effect of having different conductivity ratios. 



' ' ... 

0=3 0 = 0.1 
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where k is the wavenumber and c is the phase velocity of the cell 
pattern. The linearized stability equations now take the ordinary 
differentiai form, 

'P" - k2'P +Ra k82 = 0, (23) 

･ｾＭ (k2- ikcfcxt)E>t = o, (24) 

･ｾＭ (k2 + ik(Pe-c))E>2 + k'P = o, (25) 

･ｾＭ (k2 
- ikcjcx3)83 = o, (26) 

where the boundary conditions are: 

(27) 
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4. The dispersion relation 

In layer 1 the solution which satisfies the boundary condition at 
z= -.51 is 

0t =Asinh.A.t(Z+bt), 

where 

( 
.kc)t/2 

.A.t= ｾＭｬ｡ｴ＠

(28) 

(29) 

and hence 0; =A.A.t cosh.A.t (z+ bt). Ifwe now apply the z= 0 inter-
face conditions which are given by (27) we find that, 

82 (0) =A sinh .A.t Dt, Ｐｾ＠ (0) = A.A.t dt cosh .A.tbt. (30) 

Given that the constant, A, is arbitrary, these two conditions for 
® 2(0) and 0;(0) may be combined to remove A, which thereby 
yields the following boundary condition of the third kind, 

(31) 

For la ter convenience we rewrite Eq. (31) as 0 2 (0) = y10; (0) where 

tanh.A.tbt 
Yt = .A.tdt 

The corresponding boundary condition at z = 1 is 

0 (1) = tanh.A.3b3 0 , (1) 
2 .A.3d3 2 ' 

or, in compact form, as 0 2(1) = -y30;(1) where 

( 
kc)t/2 

and .A.3 = k2 
- i a

3 
. 

(32) 

(33) 

(34) 

Therefore we are in a position to consider only the solutions within 
the porous layer (Eqs. (23) and (25)) where the full dynamic ther-
mal of a mode with wavenumber k in the outer bounding layers 
is modelled completely by the complex boundary conditions, Eqs. 
(31) and (33). 

Solutions ofEqs. (23) and (25) take the form, exp (rz), where r 
satisfies the determinantal equation, 

l

r 2
-k

2 
Rak 1 

k r 2- ｾ＠ + ik(c- Pe) =O. 

Hence r = ±.A., ± (J, where 

.A.2 = ｾ＠ + ik(Pe-c)/2 + k[Ra- (Pe-c)2 /4]t
12

, 

u2 = ｾ＠ + ik(Pe-c)/2-k[Ra- (Pe-c)2 /4]
112

. 

Ifwe now set 

'l' = _Ra k [A sinh A.z + B cosh A.z + C sinh az + D cosh az] 
ｒＭｾ＠ ｾＭｾ＠ , 

th en 

0 2 = A sinh A.z + B cosh A.z + C sinh az + D cosh az. 

Application of 'P(O) = 0 leads to 

_B_+_D_=O 
.A.2 - ｾ＠ a2 - k2 , 

while the condition, '1'(1) = 0, gives, 

A sinh .A. + B cosh .A. C sinh a + D cosh a 
0 

12 _ ｾ＠ + a2 _ ｾ＠ = · 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

The application of the boundary condition, Eq. (31) at z = 0 gives, 

B+D=y1(M+aC), (42) 
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while the boundary condition, Eq. (33), yields 

A sinh À + B cash À + C sinh a + D cash a 

= -y3 [À(Acosh À+ Bsinh À)+ a(Ccosh a+ Dsinh a)]. (43) 

These last four equations always admit zero solutions for A,B, C and 
D except for when Ra and c take their appropriate eigenvalues. 
These are found by insisting that the following complex determi-
nant is precisely zero: 

0 
;.>_Jl 0 11>-JC 

sinh). cosh). sinh 11 cosh 11 

).2 -Il ).2 -Il 112 -k2 
112 -Il =0. 

-).yi 1 -11)11 1 
sinh). + ).y3 cosh). cosh). + ).y3 sinh). sinh 11 + 11y3 cosh 11 cosh 11 + 11y3 sinh 11 

(44) 

This determinant generally takes complex values and therefore the 
setting of it ta zero means that two quantities are determined as 
eigenvalues, namely Ra and c. This was done by means of a straight-
forward two-dimensional Newton-Raphson iteration scheme and 
the results obtained are essentially exact. Later, we present sorne 
rather unusally-shaped neutra! curves which arise at an extreme 
value of one of the governing parameters; we therefore modified 
our Fortran90 code from real*8 ta real*l6 in arder ta check if 
such unusual curves arase from the accumulation of round-off error 
- it was found that these real *8 results had not suffered any deg-
radation in accuracy due ta round-off error. 

The locations of the minima in the neutra! curves are generally 
found by differentiating an explicit expression for Ra with respect 
ta k and setting this ta zero. In the present problem Ra and c are 
given implicitly by the determinant given in (38). We therefore 

performed a numerical differentiation of the kind described in de-
tail in Rees and Genç [20] ta find such minima. 

The full system described above is one with seven independent 
parameters (ot. o3 , dt. d3, œt. œ3 and Pe) when it is assumed that the 
values Ra, k and c are determined from the computation of critical 
values. However, we reduce the system ta four parameters by 
insisting that the layer is symmetric, i.e. the bounding layers are 
identical in every way. Therefore we set Ot = o3 = o, dt = d3 = d 
and œt = œ3 = œ. 

5. Results and discussion 

The result of our computation is presented in three different 
forms: neutra! curves, streamline and isotherm plots and the 
variation of critical values. Even with four independent nondimen-
sional parameters it is virtually impossible ta give comprehensive 
results. Therefore we will concentrate on giving a good physical 
understand of the raies played by the nondimensional parameters. 

We have chosen ta use the case, o = d = œ = Pe = 1, as the refer-
ence case against which most of our results will be compared. 

5.1. The influence of variations in d and o 

Fig. 2 keeps the values of Pe and œ fixed at 1. Neutra! curves are 
shawn for three values of d in separate graphs and for a range of 
values of o in each graph. In addition to the behaviour of Ra as a 
function of the wavenumber, k, we also show the variation of the 
phase speed, c, with k. 

The neutra! curves show the very familiar unimodal shape with 
a single minimum. We note that in those cases which we have 
computed, including those not present in this paper, the lowest 
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value afRa always lies between 12 and 4·n?. The latter arises when 
the solid plates are either very thin indeed (c5 « 1), which may be 
seen as the dashed !ines here, or very highly conducting ( d » 1 ), 
while the former arises when the solid plates tend towards being 
insulating (d « 1). These values are well-known in the context of 
the onset of convection in a single layer; see Nield and Bejan [13]. 

As the values of d and c5 vary, the general behaviour of the neu-
tra! curves shawn in Fig. 2, where we concentrate specifically on 
the critical values of the Darcy-Rayleigh number and wavenumber 
( Rac and kc, respectively), are as might be expected. For example, 
when d = 0.2, the values of Rac and k vary greatly as the thickness 
of the bounding layers, c5, varies. Sufficiently thin bounding layers 
( c5 = 0.01) of law conductivity do not alter the onset cri teri on very 
much from that of the classical Darcy-Bénard problem, namely 
Rac = 4n? and kc = n. On the other hand, when c5 increases ta large 
values, the lack of conductivity in the bounding layers yield an on-
set problem which is close ta that of the classical Darcy-Bénard 
problem with constant heat flux boundaries. Thus the critical val-
ues are close to Rac = 12 and kc = 0 when d is small and c5 is large. 

It is also clear that the phase speed of the dis turban ces depends 
strongly on the wavenumber. The thermal disturbances do not 
penetrate far into the bounding layers when k is large, and there-
fore the moving cells are unaffected by the presence of the outer 
layers, which is why the nondimensional phase velocity is close 
ta 1. Similarly, the bounding layers are essentially ineffective when 
they are thin. On the other hand, when there is a substantial pen-
etration of the bounding layers by the thermal field, the phase 

velocity is affected. This is particularly true for small wavenumbers 
where the thermal penetration is of the same arder as the wave-
length of the cells. 

Many of the above observations are displayed in Figs. 3-5. 
These Figures, and others la ter correspond ta a snapshot of stream-
lines and isotherms at one point in time, the whole pattern then 
being understood ta move ta the right at the computed phase 
speed. 

In Fig. 3 we demonstrate the changing thermal penetration as 
the disturbance wavenumber changes. In particular we see the 
penetration decreasing as k increases, and hence the disturbance 
phase speed increases, although here it does sa by only a small 
amount. The phase speed is in the region of 0.9, which corresponds 
ta the very small lag which may be seen in the isotherms in the 
bounding layers. Later we will see cases where the lag is greater, 
and this is brought about by small values of IX or large values of Pe. 

Similar variations in the thermal penetration into the bounding 
layers are seen in Fig. 4, but this is caused by having difference val-
ues of d. When d is large, the bounding layers are relatively highly 
conducting which causes the layers to tend towards a uniform 
temperature. When d is small, there is a very substantial variation 
in the temperature of the bounding layers. The isotherms in the 
porous layer when d = 0.2 are close to being vertical at the inter-
faces with the bounding layers, which is why small-d cases mimic 
constant heat flux single-layer convection. 

The effect of variations in c5 on the streamlines and isotherms 
are shawn in Fig. 5. The case with c5 = 3 is qui te typical of cases with 
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substantially thicker bounding layers, and the thermal disturbance 
is confined naturally to a region which is just thicker than the por-
ous layer. As {> decreases to values of 1 and below, there is a 
decreasing amount of room for the thermal disturbance to develop 
within the bounding layers. The phase speed of the cells also in-
creases towards 1 as a result of this. 

5.2. The influence of variations in IX and {> 

Fig. 6 shows how the neutra! curve and the corresponding 
phase speed of the ce lis vary for different values of IX and {> for large 
fixed values, d = 1 and Pe = 1. Results for IX= 10 and IX = 0.1 are dis-
played here, while the intermediate IX = 1 case may be found as the 
d = 1 case in Fig. 2, for comparison. There is little variation in the 
neutra! curves as IX varies over these two orders of magnitude, 
but the disturbance phase speed depends strongly on IX. When IX 

is large, the bounding surfaces are able to react quickly to the mov-
ing cells within the porous layer, which causes the phase speed to 
be close to 1. But when IX is small, and especially when k is also rel-
atively small, then heat penetration into the bounding layers is 
slow, and this reduces greatly the disturbance phase speed. 

An illustration of this is given in Fig. 7 when the wavenumber is 
given by k = 2. The streamlines and isotherms for the case IX = 1 0 
give no indication that there is a horizontal flow in the porous 
layer, and therefore we may conclude that the bounding layers 
are reacting very quickly to the moving cells in the porous layer. 

When IX= 1, there is an indication of cellular movement, but this 
is most pronounced when IX= 0.1, where the thermal drag caused 
by the low diffusivity in the bounding layers is clearly evident. 

5.3. The influence of variations in Pe. 

Fig. 8 illustrates how variations in the Péclet number affects the 
neutra! curves and the associated phase speeds. Here we have plot-
ted values of cjPe in order to compare different cases easily. The 
Pe = 0 case actually corresponds to Pe = 10-4 as an approximation 
to the Pe --+ 0 limit. 

In ali cases one finds that increasing values of the Péclet number 
causes the system to tend towards the Lapwood-Prats problem 
where Rac = 4n2

, kc = n and Cc= Pe. That this should happen may 
be understood by appealing to the fact that when cells pass a given 
point on the interface between the porous layer and one of the 
bounding layers, that point will experience very rapid oscillatory 
changes in the heat transfer. There will be very little time available 
for the heat in a hot cell to warm up the bounding layer before a 
cold cell replaces it. Thus the thermal penetration is small when 
Pe is large, and the phase speed will be almost the same as the va-
lue ofPe. 

Sorne streamlines and isotherms are displayed in Fig. 9 for the 
cases, Pe = 0, 1, 1 0 and 1 00. In this Figure we have chosen to use 
the wavenumber corresponding to the respective critical values. 
We see that the isotherms in the bounding layers become 
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increasingly deformed as the Péclet number increases. At the same 
time the thermal penetration decreases, thereby confirming the 
above discussion. In addition the critical wavenumber increases 
towards n, which is equivalent ta the disturbance wavelength 
decreasing towards 2. In the most extreme case, for which 
Pe = 1 00, the presence of the thermal disturbance in the bounding 
layers is shawn only by the zero isotherms. These isotherms tend 
towards the horizontal as Pe increases stiJl further. 

5.4. Variation of critical values 

We now summarise much of the above and many more cases in 
Figs. 1 0-12. 

Fig. 10 shows how Rac,kc and Cc vary with {J for selected values of 
d while Pe =oc= 1. Bath the critical Rayleigh and wave numbers in-
crease as d increases but decrease as {J increases. There is a very 
distinct value of {J beyond which these critical values do not change 
and this is because the width of the bounding plates is grea ter than 
the thickness of the disturbance field. As the bounding plates de-
crease in thickness ( decreasing o) the composite layer eventually 
returns ta one which is identical ta the single-layer Darcy-Bénard 
problem. However, the critical phase velocity bas a more compli-
cated dependence on d. When d takes very large or very small val-
ues either the bounding surfaces resemble very closely the classical 
Darcy-Bénard problem and are essentially at constant tempera-
ture, or else no beat passes into the bounding layers, thereby mim-
icking the constant-beat-flux form of the Darcy-Bénard problem. 

In bath cases the bounding surfaces play a minimal raie and the 
phase speed of disturbances is approximately the same as the 
Péclet number. At intermediate values of d, there is a thermal inter-
action between the porous and the bounding layers and therefore 
the phase speed decreases. 

Variations of the critical values with d for chosen values of {J are 
displayed in Fig. 11. With regard ta Rac and kc. we see the full tran-
sition between the constant beat flux (Rac = 12 and kc = 0) and the 
constant temperature ( Rac = 4n2 and kc = 12) versions of the 
Darcy-Bénard problem as d increases. Although we do not show 
it here, for the sake of brevity, the numerical data suggest strongly 
that there is a form of similarity solution when d « 1, namely that 
Rac and kc each collapse onto one curve when plotted against dfo. 
Decreasing values of d and {J correspond respectively ta the con-
stant beat flux and the constant temperature single layer models, 
and therefore the transition between the two depends in a fairly 
simple way on the relative sizes of d and o. 

Fig. 12 shows the effects of increasing values of Pe on the critical 
parameters. As discussed above in connection with Fig. 9, an 
increasing value of Pe causes a return ta the Prats case because 
the cells are moving tao quickly ta transfer beat into or from the 
bounding layers. Thus Rac---> 4n2

, kc---> 1t and Cc/Pe---> 1 asPe---> oo. 

5.5. Unusually-shaped neutra! curves 

We complete our survey of the dependence of the onset cri te-
rion on its four governing parameters by exploring one part of 
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the parameter space where the neutra! curves no longer have the 
standard unimodal shape. As mentioned earlier in the Introduction 
section, multimodal curves are well-known and often arise in lay-
ered systems, such as those studied by Rees and Riley [16] and 
Proctor and jones [21]. For the present system we also obtain mul-
timodal curves, but these are not always a single-valued function 
of the wavenumber. We show three different cases in Fig. 13, 

and there correspond to different values of the Péclet number, 
and each subfigure shows neutra! curves for a variety of values 
of IX where, in every case, we have d = b = 1. 

When Pe = 3 the left hand branch of the neutra! curve first 
develops a kink as IX decreases which then evolves into a curve 
with two minima. The right hand minimum always remains the 
one with the lower value of Ra. At still smaller values of IX the spike 
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in the neutra! curve bends to the left, although this is difficult to 
see directly here: its presence is clear in the numerical data but 
it may also be inferred by the behaviour of Cc. The Pe = 1 case 
displays the same behaviour but the left-leaning spike appears at 
a much larger value of k. The presence of the spike is somewhat 
misleading since c varies as one traverses the neutra! curve. A 
three-dimensional plot of Ra where k and c are bath horizontal 
coordinates would find the curve travelling in the c-direction at 
the tip of the spike. 

When Pe = 0.3 the overall evolution of the neutra! curve is 
slightly different as rx decreases. lnstead of first developing two 
minima, the curve now first becomes multivalued prior to creating 
a new local maximum and minimum. We see that when rx = 0.0003 
the neutra! curve has now developed three minima and two 
maxima. 

By continuity this behaviour must persist in a region of param-
eter space close to d = o = 1, although we have not investigated the 
range of existence of these exotically-shaped curves. 

Finally, in Fig. 14, we display sorne cases where the neutra! 
curves have two minima corresponding to the same Rayleigh 
number, and allow these minima and the intermediate maximum 
to merge together. We have taken the values Pe = d = 1 for this 
one illustration. The lowest curve corresponds to a parameter set 
which is very close to that corresponding to the quartic point, 
which we estimate as being at rx = 128.64 and o = 0.2303 and where 
Rac=35.7544 and kc=2.516. Other quartic points will existas 
either or bath of Pe and d are varied. 

6. Conclusions 

In this paper we have sought to present concisely as much 
information as we can on the stability characteristics of a porous 
layer heated from below which is bounded bath above and below 
by conducting impermable layers and where there is an overall 
background flow along the layer which is driven by an extemal 
pressure gradient. The behaviour of the resulting neutra! curves 

cannat always be predicted by means of a simple "addition" of 
the known effects of conducting bounding layers (viz. a smooth 
variation between the properties of constant temperature surfaces 
and constant heat flux surfaces) and of a background flow (viz. a 
movement of the cells along the layer whwere the phase velocity 
is identical to that of the background flow). While it is clear that, 
when Pe takes small values then the stability characteristics are 
close to that for a zero-Pe layer with conducting bounding layers, 
and when Pe takes sufficiently large values then we have essen-
tially the situation described by Prats [19] and which is indepen-
dent of the bounding layers, the transition between these two 
extremes is not straightforward in ali cases. We have found that 
it is possible for the neutra! stability curve to have more than 
one minimum. But in general the presence of the bounding layers 
serves to redu ce the phase speed of the convection ce lis relative to 
that found by Prats [19]. 
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