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We investigate the onset of convection in a uniform, constant-thickness, horizontal porous layer which is heated from below. The layer is bounded above and below by thermally conducting but impermeable layers. Our aim is to determine the effect on the onset of convection of the interaction between the presence ofthese outer conducting layers and a horizontal background flow. A linear stability analysis is performed and a dispersion relation is derived from which the stability characteristics of the layer are computed. Convection ce lis are found move along the layer at a speed which is lower than that of the imposed flow due to a thermal drag caused by the presence of the bounding solid layers. Neutra! curves and streamline/ isotherm patterns are presented in order to understand the physical rote played by the governing nondimensional parameters. Wh en the diffusivity of the solid layers is much lower than the diffusivity of the porous layer there exists a regime where the neutra! curve can exhibit two minima, and at one point in parameter space there exists a neutra! curve with a quartic minimum.

Introduction

Convection in a horizontal porous layer heated from below continues to be a source of research attention. Whilst there is undoubtedly a widespread range of practical topics for which heat and mass transfer in porous layers provide a good mode!, convective flows nevertheless are source of fun dam entai interest from the points of view of phenomenology (such as pattern selection) and the application of the la test analytical and numerical methods.

Horton and Rogers [START_REF] Horton | Convection currents in a porous medium[END_REF] and Lapwood [START_REF] Apwood | Convection of a fluid in a porous medium[END_REF] were the first to study the onset of convection for what may be termed the classical Darcy-Bénard problem, namely that of a uniform, isotropie horizontal porous layer which is saturated by a Newtonian fluid, and which is subject to a uniformly hot lower bounding surface and a uniformly cold upper surface. Convection arises in an infinitely long layer wh en the Darcy-Rayleigh number exceeds 41!:2. The first mode to appear has the wavenumber, n, which corresponds to convection rolls with a square cross-section. Weakly nonlinear theory, which applies when the flow is just supercritical, shows that two-dimensional rolls form the stable planform for convection, as opposed to hexagonal cells, square or rectangular cells, or more exotic shapessee Rees and Riley [START_REF] Das | The effects ofboundary imperfections on convection in a saturated porous layer: non-resonant wavelength excitation[END_REF][START_REF] Das | The effects ofboundary imperfections on convection in a saturated porous layer: near-resonant wavelength excitation[END_REF] and Rees [START_REF] Das | Stability analysis of Darcy-Bénard convection[END_REF] . When the bounding surfaces are heated by means of a constant heat flux, then the critical Darcy-Rayleigh number is reduced to 12 and the critical wavenumber is zero (Nield [6 ]). Recent weakly nonlinear studies by Rees and Mojtabi [START_REF] Das | The effect of conducting boundaries on weakly nonlinear Darcy-Bénard convection[END_REF] suggest that the the postcritical stable planform of this constant-heat-flux form of the Darcy-Bénard problem is three dimensional. More detail may be found in the chapters by Rees [START_REF] Das | The stability of Darcy-Bénard convection[END_REF] , Tyvand [START_REF] Tyvand | Onset of Rayleigh-Bénard convection in porous bodies[END_REF] , Rees et al. [START_REF] Rees | The instability of unsteady boundary layers in porous media[END_REF] and Nguyen-Quang et al. [START_REF] Nguyen-Quang | Spatial pattern formation of motile microorganisms: From gravititactic bioconvection to protozoan culture dynamics[END_REF] , and the books by Pop and Ingham [12] and Nield and Bejan [START_REF] Nield | Convection in Porous Media[END_REF] .

In the present paper we will study one particular type of layered system. Layering arises naturally in the real world and an early paper by Rana et al. [START_REF] Rana | Natural convection in a multi-layered geothermal reseiVoir[END_REF] was aimed at describing convection in the Pahoa reservoir in Hawaii, a system which was modelled using three porous sublayers. This numerical study displayed how the familar two dimensional convection patterns for the single-layer problem are modified substantially when layering is present. A more comprehensive approach was undertaken by McKibbin and D'Sullivan [START_REF] Mckibbin | Onset of convection in a layered porous medium heated from below[END_REF] , who determined the conditions for the onset of convection in both two-and three-sublayer configurations. The extra degree of freedom which arises wh en a porous layer consists of as few as two sublayers means that the neutra! curve can exhibit more unusual shapes than the standard one where one minimum is present. There is a regime in parameter space where two minima are possible; typically one of these corresponds to a local convection pattern (i.e. mainly confined to the sublayer with the higher permeability-the higher wavenumber case) orto a global pattern (the lower wavenumber). Rees and Riley [START_REF] Rees | The three-dimensional stability of finite-amplitude convection in a layered porous medium heated from below[END_REF] also presented a three-layer case where modes with three different wavenumbers become unstable at the same Darcy-Rayleigh number.

Of more specifie interest to us here are the three-layer configurations where the outer layers are impermeable heat-conducting solids. If the outer layers are relatively thin, then such a configuration may be used to mode! experimental studies where a saturated porous medium must be bounded by sorne impermeable barrier; [START_REF] Das | The effect of conducting boundaries on weakly nonlinear Darcy-Bénard convection[END_REF] and Mojtabi and Rees [START_REF] Mojtabi | The effect of conducting bounding plates on the onset of Horton-Rogers-I.apwood convection, lnt[END_REF]. An early paper by Riahi [START_REF] Riahi | Nonlinear convection in a porous layer with finite conducting boundaries[END_REF] considered infinitely thick solid sublayers and he used weakly nonlinear theory to show that the convection planform may, when the conductivity of the solid layers is small, take the form of three-dimensional cells with a square planform. His analysis was extended to solid layers of finite thickness by Rees and Mojtabi [START_REF] Das | The effect of conducting boundaries on weakly nonlinear Darcy-Bénard convection[END_REF] .

A different, but practically important, modification of the classical Darcy-Bénard problem was undertaken by Prats [START_REF] Prats | The effect of horizontal fluid motion on thermally induced convection currents in porous mediums[END_REF] who considered the effect of a horizontal pressure gradient. When Darcy's law applies, this pressure gradient induces a uniform fluid velocity along the layer, unlike the parabolic velocity profile which arises in plane-Poiseuille flow. Prats showed that the convection cells found by Horton and Rogers ]1] and Lapwood [START_REF] Apwood | Convection of a fluid in a porous medium[END_REF] move along the layer with exactly the velocity of the background flow. A simple coordinate transformation to a frame of reference which moves with the background flow removes the background velocity from the governing equations, even when under strongly supercritical conditions. Thus the vertical heat transfer and ali the nonlinear dynamics are unaffected by this forced convection component.

The aim of the present work, then, is to determine how the presence of conducting boundaries affects the simple result of Prats [START_REF] Prats | The effect of horizontal fluid motion on thermally induced convection currents in porous mediums[END_REF] , namely, that the phase velocity of the convection cells is precisely the same as the velocity of the background flow. It is a simple piece of a priori reasoning that the presence of stationary bounding surfaces will impose a thermal drag on the cells, and therefore the velocity of the cells should lie between zero and that of the background flow. But the present paper also addresses the question of whether this three-layer system displays any unusual behaviour over and above having a simple minimum in the neutra! curve.

The linear stability analysis which we present is facilitated by the derivation of a dispersion relation which takes the form of a complex 4 x 4 determinant. Setting the real and imaginary parts to zero simultaneously yields both the critical Darcy-Rayleigh number and the phase velocity of the cells. We present neutra! curves and the variation of the critical values of the Darcy-Rayleigh number, wavenumber and phase velocity as a function of the diffusivity ratio, conductivity ratio, thickness ratio and the Péclet number. The behaviour of these curves is explained by means of a selection of streamlinefisotherm plots. We find that the classical unimodal neutra! curve does indeed occasionally take a more exotic form, and this corresponds to when the diffusivity of the solid layers is substantially less than that of the porous layer.

Goveming equations

We investigate the effect of conducting boundaries on what we shall cali the Lapwood-Prats problem, namely the Darcy-Bénard problem modified by the presence of a horizontal forced convective pressure gradient. The detailed configuration we consider is shown in Fig. 1 and it is comprised of a uniform isotropie saturated porous layer of thickness, h 2 , which is bounded by two uniform, impermeable but thermally conducting plates with thicknesses, h 1 and h 3 • These plates do not necessarily have identical conductivities or thicknesses and the derivation of our stability analysis will maintain this, but we will present detailed results only for those cases where the solid layers are identical in every respect. This three-sublayer composite system is taken to be of infinite extent in both horizontal directions.

The origin of the coordinate system is located at the bottom of the composite layer, while x and z are the horizontal vertical coordinates, respectively. Constant but different temperatures are imposed at the external surfaces of the composite layer, i.e. at z = 0 and at z = h 1 + h 2 + h 3 , where the lower surface is hotter than the upper surface. The somewhat unusual formula given in Fig. 1 for the temperature of the upper surface means that the overall temperature difference across the porous layer is AT. The Darcy-Rayleigh number will be defined using this value, this allows our results to be compared easily with single-layer systems, or systems where the solid layers are exceptionally thick.

For convenience the sublayers are numbered, 1, 2 and 3, beginning with the lowest sublayer. We will assume that the ensuing convection is restricted to being two-dimensional and therefore the full governing equations for the porous layer are,
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The imposed horizontal pressure gradient is of such a magnitude that it induces the velocity field, (u,v) = (U,O).

The following scalings may be introduced in order to render nondimensional the goveming equations:
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which are based on the height and the properties of the porous layer.

We thereby obtain the nondimensional equations:
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(10) [START_REF] Nguyen-Quang | Spatial pattern formation of motile microorganisms: From gravititactic bioconvection to protozoan culture dynamics[END_REF] and

The diffusivity ratios, OCt and oc 3 , are defined according to, kt (pCh k3(pCh

OCt = k2(pC)t' ct 3 = k2(PClJ.
The Darcy-Rayleigh number is defined to be,

Ra= p2(pC) 1 gph2KtlT J1.k2 (12) (13) (14) 
and it is based upon the height of the porous layer and the temperature difference across it. The two conductivity and thickness ratios as follows, dt = kt/k2, d3 = k3/k2, Ot = htfh2, 03 = h3/h2.
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The background velocity is now (u,w) = (O,Pe), where the Péclet number is given by, h2U Pe = k2(pC)f. [START_REF] Rees | The three-dimensional stability of finite-amplitude convection in a layered porous medium heated from below[END_REF] For two-dimensional flow we may define the streamfunction, l/J, using,
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U=--and W=az ax [START_REF] Mojtabi | The effect of conducting bounding plates on the onset of Horton-Rogers-I.apwood convection, lnt[END_REF] and the full goveming equations become
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in the porous layer, and

in the bounding sublayers. The boundary and interface conditions are Ra 100 80 60 
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Unear stability equations

Z=O: t/1=0,
We perturb about the basic state by setting, where k is the wavenumber and c is the phase velocity of the cell pattern. The linearized stability equations now take the ordinary differentiai form, 'P" -k 2 'P +Ra k82 = 0,
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where the boundary conditions are:
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The dispersion relation

In layer 1 the solution which satisfies the boundary condition at z= -. , . -------Pe=O Pe = 10 (43)
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These last four equations always admit zero solutions for A,B, C and D except for when Ra and c take their appropriate eigenvalues. These are found by insisting that the following complex determinant is precisely zero:
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-).yi This determinant generally takes complex values and therefore the setting of it ta zero means that two quantities are determined as eigenvalues, namely Ra and c. This was done by means of a straightforward two-dimensional Newton-Raphson iteration scheme and the results obtained are essentially exact. Later, we present sorne rather unusally-shaped neutra! curves which arise at an extreme value of one of the governing parameters; we therefore modified our Fortran90 code from real*8 ta real*l6 in arder ta check if such unusual curves arase from the accumulation of round-off error -it was found that these real *8 results had not suffered any degradation in accuracy due ta round-off error.

The locations of the minima in the neutra! curves are generally found by differentiating an explicit expression for Ra with respect ta k and setting this ta zero. In the present problem Ra and c are given implicitly by the determinant given in (38). We therefore performed a numerical differentiation of the kind described in detail in Rees and Genç [START_REF] Rees | The onset of convection in porous layers with multiple horizontal partitions[END_REF] ta find such minima.

The full system described above is one with seven independent 

Results and discussion

The result of our computation is presented in three different forms: neutra! curves, streamline and isotherm plots and the variation of critical values. Even with four independent nondimensional parameters it is virtually impossible ta give comprehensive results. Therefore we will concentrate on giving a good physical understand of the raies played by the nondimensional parameters.

We have chosen ta use the case, o = d = oe = Pe = 1, as the reference case against which most of our results will be compared. The neutra! curves show the very familiar unimodal shape with a single minimum. We note that in those cases which we have computed, including those not present in this paper, the lowest value afRa always lies between 12 and 4•n?. The latter arises when the solid plates are either very thin indeed (c5 « 1), which may be seen as the dashed !ines here, or very highly conducting ( d » 1 ), while the former arises when the solid plates tend towards being insulating (d « 1). These values are well-known in the context of the onset of convection in a single layer; see Nield and Bejan [START_REF] Nield | Convection in Porous Media[END_REF].

The influence of variations in d and o

As the values of d and c5 vary, the general behaviour of the neutra! curves shawn in Fig. 2, where we concentrate specifically on the critical values of the Darcy-Rayleigh number and wavenumber ( Rac and kc, respectively), are as might be expected. For example, when d = 0.2, the values of Rac and k vary greatly as the thickness of the bounding layers, c5, varies. Sufficiently thin bounding layers ( c5 = 0.01) of law conductivity do not alter the onset cri teri on very much from that of the classical Darcy-Bénard problem, namely Rac = 4n? and kc = n. On the other hand, when c5 increases ta large values, the lack of conductivity in the bounding layers yield an onset problem which is close ta that of the classical Darcy-Bénard problem with constant heat flux boundaries. Thus the critical values are close to Rac = 12 and kc = 0 when d is small and c5 is large.

It is also clear that the phase speed of the dis turban ces depends strongly on the wavenumber. The thermal disturbances do not penetrate far into the bounding layers when k is large, and therefore the moving cells are unaffected by the presence of the outer layers, which is why the nondimensional phase velocity is close ta 1. Similarly, the bounding layers are essentially ineffective when they are thin. On the other hand, when there is a substantial penetration of the bounding layers by the thermal field, the phase velocity is affected. This is particularly true for small wavenumbers where the thermal penetration is of the same arder as the wavelength of the cells.

Many of the above observations are displayed in Figs. 345. These Figures, and others la ter correspond ta a snapshot of streamlines and isotherms at one point in time, the whole pattern then being understood ta move ta the right at the computed phase speed.

In Fig. 3 we demonstrate the changing thermal penetration as the disturbance wavenumber changes. In particular we see the penetration decreasing as k increases, and hence the disturbance phase speed increases, although here it does sa by only a small amount. The phase speed is in the region of 0.9, which corresponds ta the very small lag which may be seen in the isotherms in the bounding layers. Later we will see cases where the lag is greater, and this is brought about by small values of IX or large values of Pe.

Similar variations in the thermal penetration into the bounding layers are seen in Fig. 4, but this is caused by having difference values of d. When d is large, the bounding layers are relatively highly conducting which causes the layers to tend towards a uniform temperature. When d is small, there is a very substantial variation in the temperature of the bounding layers. The isotherms in the porous layer when d = 0.2 are close to being vertical at the interfaces with the bounding layers, which is why small-d cases mimic constant heat flux single-layer convection.

The effect of variations in c5 on the streamlines and isotherms are shawn in Fig. 5. The case with c5 = 3 is qui te typical of cases with 
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Fig. 11. Critical values for Ra,k and cas a function of d for ex= Pe = 1 and for lJ = 10-4 , w-3 ,10-2 ,10-l,ta-0 • 5 ,10°, 10°• 5 ,10 1 and 10 2 • The dotted line corresponds to lJ = 10-4 • substantially thicker bounding layers, and the thermal disturbance is confined naturally to a region which is just thicker than the porous layer. As {> decreases to values of 1 and below, there is a decreasing amount of room for the thermal disturbance to develop within the bounding layers. The phase speed of the cells also increases towards 1 as a result of this.

The influence of variations in IX and {>

Fig. 6 shows how the neutra! curve and the corresponding phase speed of the ce lis vary for different values of IX and {> for large fixed values, d = 1 and Pe = 1. Results for IX= 10 and IX = 0.1 are displayed here, while the intermediate IX = 1 case may be found as the d = 1 case in Fig. 2, for comparison. There is little variation in the neutra! curves as IX varies over these two orders of magnitude, but the disturbance phase speed depends strongly on IX. When IX is large, the bounding surfaces are able to react quickly to the moving cells within the porous layer, which causes the phase speed to be close to 1. But when IX is small, and especially when k is also relatively small, then heat penetration into the bounding layers is slow, and this reduces greatly the disturbance phase speed.

An illustration of this is given in Fig. 7 when the wavenumber is given by k = 2. The streamlines and isotherms for the case IX = 1 0 give no indication that there is a horizontal flow in the porous layer, and therefore we may conclude that the bounding layers are reacting very quickly to the moving cells in the porous layer.

When IX= 1, there is an indication of cellular movement, but this is most pronounced when IX= 0.1, where the thermal drag caused by the low diffusivity in the bounding layers is clearly evident.

The influence of variations in Pe.

Fig. 8 illustrates how variations in the Péclet number affects the neutra! curves and the associated phase speeds. Here we have plotted values of cjPe in order to compare different cases easily. The Pe = 0 case actually corresponds to Pe = 10-4 as an approximation to the Pe --+ 0 limit.

In ali cases one finds that increasing values of the Péclet number causes the system to tend towards the Lapwood-Prats problem where Rac = 4n 2 , kc = n and Cc= Pe. That this should happen may be understood by appealing to the fact that when cells pass a given point on the interface between the porous layer and one of the bounding layers, that point will experience very rapid oscillatory changes in the heat transfer. There will be very little time available for the heat in a hot cell to warm up the bounding layer before a cold cell replaces it. Thus the thermal penetration is small when Pe is large, and the phase speed will be almost the same as the value ofPe.

Sorne streamlines and isotherms are displayed in Fig. 9 for the cases, Pe = 0, 1, 1 0 and 1 00. In this We see that the isotherms in the bounding layers become 1.6 increasingly deformed as the Péclet number increases. At the same time the thermal penetration decreases, thereby confirming the above discussion. In addition the critical wavenumber increases towards n, which is equivalent ta the disturbance wavelength decreasing towards 2. In the most extreme case, for which Pe = 1 00, the presence of the thermal disturbance in the bounding layers is shawn only by the zero isotherms. These isotherms tend towards the horizontal as Pe increases stiJl further.
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Variation of critical values

We now summarise much of the above and many more cases in Figs. 1 0-12. 12 shows the effects of increasing values of Pe on the critical parameters. As discussed above in connection with Fig. 9, an increasing value of Pe causes a return ta the Prats case because the cells are moving tao quickly ta transfer beat into or from the bounding layers. Thus Rac---> 4n 2 , kc---> 1t and Cc/Pe---> 1 asPe---> oo.

Unusually-shaped neutra! curves

We complete our survey of the dependence of the onset cri terion on its four governing parameters by exploring one part of the parameter space where the neutra! curves no longer have the standard unimodal shape. As mentioned earlier in the Introduction section, multimodal curves are well-known and often arise in layered systems, such as those studied by Rees and Riley [START_REF] Rees | The three-dimensional stability of finite-amplitude convection in a layered porous medium heated from below[END_REF] and Proctor and jones [START_REF] Proctor | The interaction oftwo spatially resonant patterns in thermal convection. Part 1: Exact 1:2 resonance[END_REF]. For the present system we also obtain multimodal curves, but these are not always a single-valued function of the wavenumber. We show three different cases in Fig. in the neutra! curve bends to the left, although this is difficult to see directly here: its presence is clear in the numerical data but it may also be inferred by the behaviour of Cc. The Pe = 1 case displays the same behaviour but the left-leaning spike appears at a much larger value of k. The presence of the spike is somewhat misleading since c varies as one traverses the neutra! curve. A three-dimensional plot of Ra where k and c are bath horizontal coordinates would find the curve travelling in the c-direction at the tip of the spike. When Pe = 0.3 the overall evolution of the neutra! curve is slightly different as rx decreases. lnstead of first developing two minima, the curve now first becomes multivalued prior to creating a new local maximum and minimum. We see that when rx = 0.0003 the neutra! curve has now developed three minima and two maxima.

By continuity this behaviour must persist in a region of parameter space close to d = o = 1, although we have not investigated the range of existence of these exotically-shaped curves. Finally, in Fig. 14, we display sorne cases where the neutra! curves have two minima corresponding to the same Rayleigh number, and allow these minima and the intermediate maximum to merge together. We have taken the values Pe = d = 1 for this one illustration. The lowest curve corresponds to a parameter set which is very close to that corresponding to the quartic point, which we estimate as being at rx = 128.64 and o = 0.2303 and where Rac=35.7544 and kc=2.516. Other quartic points will existas either or bath of Pe and d are varied.

Conclusions

In this paper we have sought to present concisely as much information as we can on the stability characteristics of a porous layer heated from below which is bounded bath above and below by conducting impermable layers and where there is an overall background flow along the layer which is driven by an extemal pressure gradient. The behaviour of the resulting neutra! curves cannat always be predicted by means of a simple "addition" of the known effects of conducting bounding layers (viz. a smooth variation between the properties of constant temperature surfaces and constant heat flux surfaces) and of a background flow (viz. a movement of the cells along the layer whwere the phase velocity is identical to that of the background flow). While it is clear that, when Pe takes small values then the stability characteristics are close to that for a zero-Pe layer with conducting bounding layers, and when Pe takes sufficiently large values then we have essentially the situation described by Prats [START_REF] Prats | The effect of horizontal fluid motion on thermally induced convection currents in porous mediums[END_REF] and which is independent of the bounding layers, the transition between these two extremes is not straightforward in ali cases. We have found that it is possible for the neutra! stability curve to have more than one minimum. But in general the presence of the bounding layers serves to redu ce the phase speed of the convection ce lis relative to that found by Prats [START_REF] Prats | The effect of horizontal fluid motion on thermally induced convection currents in porous mediums[END_REF] .
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 18 Fig.1. Definition sketch of the configuration being studied. The porous layer is sandwiched between two impermeable but thermally conducting layers. The value, AT, is the temperature drop across the porous layer.
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 2 Fig. 2. Neutra! cmves (left) and the corresponding values of the wavespeed, c, (right) for ex= 1 and Pe = 1 for the stated values of d. The following values of èJ were used: {J = 10,3,1,0.3,0.1,0.03 and 0.01. The dotted line corresponds to {J = 10 and the dashed line to {J = 0.01.
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 1113 Fig. 3. Streamlines ( continuous Ii nes) and isotherms (da shed Ii nes) for d = lJ = ac = Pe = 1. Showing the effect of having different wavenumbers.
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 4 Fig. 4. Streamlines (continuous lines) and isotherms (dashed lines) for lJ =ac= Pe = 1. The wavenumber is k = 1. Showing the effect of having different conductivity ratios.
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 156 Fig. 5. Streamlines (continuous !ines) and isotherms (dashed !ines) for oe = Pe = 1 and d = 5. The wavenumber is k = 1. Showing the effect of having different values of b.12 0
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 7 Fig. 7. Streamlines (continuous !ines) and isotherms (dashed !ines) for li= d = Pe = 1. The wavenumber is k = 2. Showing the effect of having different diffusivity ratios, IX.
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 2328 Fig. 8. Neutra! curves (left) and the corresponding values of the scaled wavespeed, cfPe, (right) d = 1 for the stated values of d,oe and /J. The following values of Pe were used: 0,1,3,10,30,100,300 and 1000. The dotted (lowest) line corresponds toPe= 0 and the dashed (upperrnost) line toPe= 1000.
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 9 Fig. 9. Streamlines (continuous !ines) and isotherms (dashed !ines) ford= o =ex= 1. Showing the effect of having different values of the Péclet number. Each wavenumber corresponds to the minimum in the respective neutra! curves. while the boundary condition, Eq. (33), yields A sinh À + B cash À + C sinh a + D cash a = -y 3 [À(Acosh À+ Bsinh À)+ a(Ccosh a+ Dsinh a)].

  + ).y 3 cosh). cosh). + ).y 3 sinh). sinh 11 + 11y 3 cosh 11 cosh 11 + 11y 3 sinh 11(44) 

  parameters (ot. o 3 , dt. d 3 , oet. oe 3 and Pe) when it is assumed that the values Ra, k and c are determined from the computation of critical values. However, we reduce the system ta four parameters by insisting that the layer is symmetric, i.e. the bounding layers are identical in every way. Therefore we set Ot = o 3 = o, dt = d 3 = d and oet = oe3 = oe.

Fig. 2

 2 Fig. 2 keeps the values of Pe and oe fixed at 1. Neutra! curves are shawn for three values of d in separate graphs and for a range of values of o in each graph. In addition to the behaviour of Ra as a function of the wavenumber, k, we also show the variation of the phase speed, c, with k.The neutra! curves show the very familiar unimodal shape with a single minimum. We note that in those cases which we have computed, including those not present in this paper, the lowest

Fig. 10 .

 10 Fig. 10. Critical values for Ra,k and cas a function of â for cc= Pe = 1 and ford= w-3 , w-2 ,1o-l,t0°,10l,1o2 and 10 3 •

  Figure we have chosen to use the wavenumber corresponding to the respective critical values.

Fig. 12 .

 12 Fig. 12. Critical values for Ra,k,c and cj Pe as a function of Pe for d = 1 and cc= 10 and for セ @ = 10,1 ,0.5,0.2,0.1 ,0.05,0.02 and 0.01. The dotted line corresponds ta セ @ = 0.01.

Fig. 10

 10 shows how Rac,kc and Cc vary with {J for selected values of d while Pe =oc= 1. Bath the critical Rayleigh and wave numbers increase as d increases but decrease as {J increases. There is a very distinct value of {J beyond which these critical values do not change and this is because the width of the bounding plates is grea ter than the thickness of the disturbance field. As the bounding plates decrease in thickness ( decreasing o) the composite layer eventually returns ta one which is identical ta the single-layer Darcy-Bénard problem. However, the critical phase velocity bas a more complicated dependence on d. When d takes very large or very small values either the bounding surfaces resemble very closely the classical Darcy-Bénard problem and are essentially at constant temperature, or else no beat passes into the bounding layers, thereby mimicking the constant-beat-flux form of the Darcy-Bénard problem. In bath cases the bounding surfaces play a minimal raie and the phase speed of disturbances is approximately the same as the Péclet number. At intermediate values of d, there is a thermal interaction between the porous and the bounding layers and therefore the phase speed decreases. Variations of the critical values with d for chosen values of {J are displayed in Fig. 11. With regard ta Rac and kc. we see the full transition between the constant beat flux (Rac = 12 and kc = 0) and the constant temperature ( Rac = 4n 2 and kc = 12) versions of the Darcy-Bénard problem as d increases. Although we do not show it here, for the sake of brevity, the numerical data suggest strongly that there is a form of similarity solution when d « 1, namely that Rac and kc each collapse onto one curve when plotted against dfo. Decreasing values of d and {J correspond respectively ta the constant beat flux and the constant temperature single layer models, and therefore the transition between the two depends in a fairly simple way on the relative sizes of d and o.

Fig.

  Fig.12shows the effects of increasing values of Pe on the critical parameters. As discussed above in connection with Fig.9, an increasing value of Pe causes a return ta the Prats case because the cells are moving tao quickly ta transfer beat into or from the bounding layers. Thus Rac---> 4n 2 , kc---> 1t and Cc/Pe---> 1 asPe---> oo.

Fig. 13 .

 13 Fig. 13. Neutra! curves (left) and the corresponding values of the wavespeed, c, (right) ford= 1 and Pe = 1 for the stated values of cc. The following values of cc were used: cc= 100,30,10,3,1,0.3,0.1, 0.03,0.01,0.003 and 0.001. For the case, Pe = 0.3, the value cc= 0.0003 was also used. The dotted line corresponds to cc= 100 and the dashed line to cc=O.Ol.
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Fig. 14 .

 14 Fig. 14. Neutra! cuiVes displaying two minima for the case d = 1 and Pe = 1. From the lowest to the uppermost, the cuiVes correspond to IX= 128.75 {ô= 0.231589), IX= 135 (ô= 0.270102), IX= 200 {ô= 0.323819), IX= 500 (ô= 0.346877) and IX= 1000 (ô= 0.348371). The bullet symbols denote local minima while the empty circles are local maxima.
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