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Abstract. Besides their strong contribution to weather fore-

cast improvement through data assimilation, thermal infrared

sounders onboard polar-orbiting platforms are now playing a

key role for monitoring atmospheric composition changes.

The Infrared Atmospheric Sounding Interferometer (IASI)

instrument developed by the French space agency (CNES)

and launched by EUMETSAT onboard the Metop satellite

series is providing essential inputs for weather forecasting

and pollution/climate monitoring owing to its smart com-

bination of large horizontal swath, good spectral resolution

and high radiometric performance. EUMETSAT is currently

preparing the next polar-orbiting program (EPS-SG) with the

Metop-SG satellite series that should be launched around

2020. In this framework, CNES is studying the concept of a

new instrument, the IASI-New Generation (IASI-NG), char-

acterized by an improvement of both spectral and radiomet-

ric characteristics as compared to IASI, with three objectives:

(i) continuity of the IASI/Metop series; (ii) improvement of

vertical resolution; and (iii) improvement of the accuracy and

detection threshold for atmospheric and surface components.

In this paper, we show that an improvement of spectral reso-

lution and radiometric noise fulfil these objectives by leading

to (i) a better vertical coverage in the lower part of the tropo-

sphere, thanks to the increase in spectral resolution; and (ii)

an increase in the accuracy of the retrieval of several ther-

modynamic, climate and chemistry variables, thanks to the

improved signal-to-noise ratio as well as less interference be-

tween the signatures of the absorbing species in the measured

radiances. The detection limit of several atmospheric species

is also improved. We conclude that IASI-NG has the po-

tential to strongly benefit the numerical weather prediction,
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chemistry and climate communities now connected through

the European GMES/Copernicus initiative.

1 Introduction

Infrared sounders are a key element of space observation of

the Earth system. They enable the monitoring of several ther-

modynamic, chemistry and climate variables over land and

sea, night and day. In particular, the Infrared Atmospheric

Sounding Interferometer (IASI) (Chalon et al., 2001), fly-

ing onboard Metop-A since October 2006 and Metop-B

since September 2012, has demonstrated the possibility to

retrieve or detect several chemistry and climate variables

from hyperspectral infrared observation: for instance wa-

ter vapour (H2O), carbon dioxide (CO2), carbon monoxide

(CO), methane (CH4), ozone (O3), sulfur dioxide (SO2), hy-

drogen sulfide (H2S), ammonia (NH3), nitric acid (HNO3),

volatile organic compounds (VOCs) and aerosols (Hilton et

al., 2012; Clarisse et al., 2011) on regional and global scales.

IASI has given access to species that had never previously

been observed from space on a global scale (Clarisse et al.,

2009; Razavi et al., 2011; Duflot et al., 2013) and enables the

monitoring of key gases for climate and atmospheric chem-

istry in near real time. IASI has also highlighted the benefit of

high-performance infrared sounders for numerical weather

prevision (NWP) applications: IASI on Metop-A currently

contributes more impact than any instrument on any satellite

to the skill of the 24 h global forecast of several NWP cen-

tres (Météo-France, UK MetOffice, ECMWF) (Collard and

McNally, 2009; Guidard et al., 2011, J. Eyre, personal com-

munication, 2011).

Despite their good spatial and temporal coverage and their

essential contribution to the three-dimensional characteriza-

tion of the atmosphere, infrared sounders still suffer from a

limited sensitivity to the lower part of the troposphere near

the surface. For instance, with existing instruments, it is still

challenging to identify temperature inversions or to retrieve

with an adequate precision water vapour near the surface

where it is the most abundant. Similarly, the measurement of

the atmospheric concentration of short-lived species that are

rapidly deposited or destroyed by chemical reactions in the

atmosphere (e.g. NH3, methanol) remains difficult since (i)

their concentrations are highest near the surface; and (ii) their

low abundance is such that their spectral signatures are usu-

ally hidden by the radiometric noise. One of the biggest chal-

lenges in chemistry and climate studies is thus the improve-

ment of the characterization of the thermodynamic and atmo-

spheric composition of the lower part of the troposphere. A

better profiling of key atmospheric variables is also needed to

improve NWP, to better understand boundary layer processes

or to assimilate satellite-based retrievals in climate and air

quality models. International programs, such as the World

Climate Research Program (WCRP) or the Global Climate

Observing System (GCOS), have thus stressed the need for

improved atmospheric observations enabling a better charac-

terization of the processes, the validation of models, and the

long-term monitoring of atmospheric composition and cli-

mate (GCOS-107, 2006; GCOS-154, 2011).

As part of the Earth Polar System Second Generation

(EPS-SG) program of the European Organisation for the

Exploitation of Meteorological Satellites (EUMETSAT), the

Centre National d’Etudes Spatiales (CNES) has initiated the

study of the IASI-New Generation (IASI-NG) mission. Its

main objectives are: (i) continuity of the IASI/Metop se-

ries; (ii) improvement of the vertical coverage and resolu-

tion, especially in the lower troposphere; and (iii) improve-

ment of the precision and detection threshold of atmospheric

and surface components. To fulfil these goals, IASI-NG will

measure infrared radiation emitted by the Earth with im-

proved spectral resolution and radiometric noise as compared

to IASI. The spatial resolution of the instrument will be the

same as for IASI (EUMETSAT, 2010), following the recom-

mendation of the Post-EPS Mission Expert Team for answer-

ing the needs of NWP, chemistry and climate applications. In

particular, the size of IASI-NG field of view will be the same

as for IASI (about 12 km at nadir).

This paper presents results of the studies that have led to

the definition of IASI-NG industrial specifications and fo-

cuses on how an improvement in either spectral resolution,

radiometric characteristics or both can improve detection and

retrieval of key atmospheric and surface variables. Section 2

presents the various scenarios and the methodology used to

perform the studies. Section 3 focuses on the retrieval of

thermodynamic variables atmospheric temperature and wa-

ter vapour. Section 4 deals with other climate variables (CO2,

CH4, surface characteristics). Section 5 focuses on the re-

trieval of trace gases (CO, O3, other trace gases). Section 6

summarizes the expected performances of IASI-NG with re-

gard to IASI.

2 Methodology to study the impact of spectral and

radiometric characteristics

2.1 Spectral and radiometric scenarios

Similarly to IASI, IASI-NG will be a Fourier Transform

Spectrometer that will measure infrared radiation emitted

from the Earth. IASI-NG will provide 16923 (8461 for

IASI) spectral samples, between 645.00 and 2760.00 cm−1

(15.5 and 3.63 µm), with a spectral resolution of 0.25 cm−1

(0.50 cm−1 for IASI) after apodization and a spectral sam-

pling of 0.125 cm−1 (0.25 cm−1 for IASI). Apodized spectra

are referred to as level-1c spectra.

Figure 1 shows the radiometric noise, in terms of level-1c

noise-equivalent brightness temperature (NE1T ), expressed

at a reference temperature Tref of 280 K, spanning the spec-

tral range 645–2760 cm−1 for different configurations: IASI

actual noise (black line), IASI noise with a factor of 2 im-
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Table 1. The six infrared sounder (IRS) scenarios.

Spectral resolution IASI noise IASI noise/2 IASI noise/4

IASI (0.5 cm−1) IRS1a (IASI) IRS1b IRS1c

IASI-NG (0.25 cm−1) IRS2a IRS2b IRS2c

provement (dark grey line), IASI noise with a factor of 4 im-

provement (light grey line), and the actual IASI-NG speci-

fications (objective in blue and threshold in red) as specified

by CNES. In the following sections, the radiometric noise for

a given situation will be computed at the temperature of the

scene BT(ν) for channel frequency ν, using the equation

Ne1T (BT(ν))= Ne1T (Tref,ν)×
∂Bν

∂T
(Tref)

/
∂Bν

∂T
(BT(ν)) , (1)

where NE1T is the equivalent noise temperature taken at the

brightness temperature BT, of the channel frequency ν, and

B is the radiance.

In the following, we will use six different scenarios, which

are summarized in Table 1, to evaluate the impact of spec-

tral and radiometric characteristics on the retrieval of vari-

ous atmospheric and surface variables. The three scenarios

IRS1a, IRS1b and IRS1c will assume a spectral resolution

of 0.5 cm−1 (Gaussian apodization) and a noise correspond-

ing to the current IASI noise, the IASI noise divided by 2

and the IASI noise divided by 4 respectively. These scenarios

will help evaluate the improvement of the noise with regard

to the IASI reference scenario (IRS1a). The three scenarios

IRS2a, IRS2b and IRS2c will assume a spectral resolution of

0.25 cm−1 (Gaussian apodization) and the same three noise

scenarios. As can be seen from Fig. 1, the IASI-NG objec-

tive and threshold radiometric noises (recommended upper

and lower limit for noise specifications) pretty much cover

the range of these scenarios.

2.2 Channel sensitivities to atmospheric and surface

variables

Before performing the retrievals of atmospheric variables,

the first step in evaluating the capability of an infrared

sounder to retrieve these variables consists in identifying the

spectral regions offering the optimal characteristics for the

retrieval. Three criteria might be used: the target signal must

be the highest possible, the target signal must be greater than

the signals due to other variables (these will be called “in-

terferences” in the following), and the channels must harmo-

niously cover the whole atmospheric column. To evaluate the

impact of improved spectral resolution and radiometric noise

on the two first criteria, we focus here on the sensitivity of

the channels to major atmospheric and surface variables.

For a given atmospheric situation, the variation of the

brightness temperature induced by a given variation of at-
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Figure 1. Radiometric noise expressed as level1c equivalent noise

temperature Ne1T for a reference temperature of 280 K. The black

line gives the in-flight measured IASI noise. Grey lines give the

IASI noise when divided by a factor of 2 and 4. The current noise

specifications for IASI-NG are plotted in red (threshold specifica-

tion) and in blue (objective specification).

mospheric and surface variables have been computed as

1BT(ν,1T )=

nl∑
j=1

∂BT

∂T
(ν,j)×1T (j) (2)

for temperature and

1BT
(
ν,1qgas

)
=

nl∑
j=1

∂BT

∂qgas

(ν,j)×1qgas (j) (3)

for a gas, where ∂BT
∂T
(ν,j) and ∂BT

∂qgas
(ν,j) are respectively

the temperature and gas Jacobians at pressure layer j and nl

is the number of pressure layers.

Figure 2 displays the channel sensitivity for the spec-

tral resolution of IASI (IRS1a,b,c scenarios) and IASI-NG

(IRS2a,b,c scenarios) to typical variations of the major atmo-

spheric and surface variables, averaged over the whole repre-

sentative tropical situations of the TIGR database (Chédin

et al., 1985; Chevallier et al., 1998) (available at: http:

//ara.abct.lmd.polytechnique.fr/index.php?page=tigr): varia-

tions of 1 K for atmospheric and surface temperatures, 20 %

for H2O, 10 % for O3, 1 % for CO2, 10 % for CH4, 10 % for

CO, 2 % for N2O, and 0.05 for surface emissivity (εs). The

sensitivities computed over the whole temperate and polar

situations of the TIGR database are plotted in the Supplement

(Figs. S1 and S2). For a given channel, a negative sensitivity

for a gas indicates that an increase of the gas concentration

induces a colder BT, and thus a channel mostly sensitive to

tropospheric variation of the gas concentration. Conversely,

a positive sensitivity indicates a channel mostly sensitive to

the stratosphere.

www.atmos-meas-tech.net/7/4367/2014/ Atmos. Meas. Tech., 7, 4367–4385, 2014
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Figure 2. Sensitivities of infrared channels at the spectral resolution

of IRS1/IASI (a) and IRS2/IASI-NG (b) to various atmospheric and

surface variables and averaged over the whole tropical TIGR atmo-

spheric situations. Variations of 1 K of temperature (brown), 20 %

of water vapour (blue), 1 % of CO2 (red), 10 % of O3 (green), 2 % of

N2O (cyan), 10 % of CO (black), 10 % of CH4 (orange) and 1 K of

surface temperature (pink). Also shown is the radiometric noise of

each scenario computed at the BT of the channels (grey): IASI noise

in (a) and IASI noise divided by 2 (dark grey in b) and by 4 (light

grey in b). The computation of channels sensitivities is based on

simulations performed using the forward radiative transfer model

4A/OP (Scott and Chédin, 1981; http://4aop.noveltis.com/) based

on the GEISA09 spectroscopic database (Jacquinet-Husson et al.,

2011).

Figure 2 highlights the dominant role played by tempera-

ture and water vapour in the thermal infrared spectral range.

The absorption bands of the other gases are also well seen

in Fig. 2. They will be discussed in the following sections.

The signatures of each variable given by the variation of BT

can be compared to the radiometric noise computed at the

BT of the scene according to Eq. (1) (grey line in Fig. 2). It

is already apparent that the reduction of noise will particu-

larly matter for gases having very small signature, whereas

for other species, it will be more the improvement of spectral

resolution that will matter in order to isolate the signature of

each gas in the measured radiances.

To complement the study of the channels’ sensitivities,

which inform on the overall sensitivity of a given channel

to variations of atmospheric variables along the whole atmo-

spheric column, it is necessary to study the distribution of the

sensitivity along the vertical which is given by the Jacobians.

Two criteria will be used in the following: the mid-height

width of the Jacobians, which must be the lowest possible,

and the altitude of the maximum of the Jacobians.

2.3 Impact assessment

In the following, specific studies are undertaken to study the

impact of the improvement of both the spectral and radiomet-

ric specifications on the vertical sensitivity and on the error

associated with the retrieved variables. We use the IASI spec-

ifications as a baseline and the scenarios listed in Table 1 as

the input variables for radiative transfer simulations.

The retrieval from space observation of a vertically re-

solved atmospheric profile is ill-conditioned, meaning that

it has no unique solution. A likely solution can be obtained

by regularizing the retrieval with a priori information about

the variables. To study the impact of improved spectral reso-

lution and radiometric noise on the retrieval, we rely on two

retrieval techniques currently used to process IASI observa-

tions: the Optimal Estimation Method (OEM), and a non-

linear inference scheme based on neural networks. They are

briefly detailed below.

To study the scenarios, only nadir observations are consid-

ered. Experience with IASI has shown that retrieval perfor-

mances are almost not affected by the angle of observation.

Clear-sky conditions will also be assumed. Errors from radia-

tive transfer modelling, spectroscopy, cloud residuals, or cal-

ibration will not be taken into account. The positive impact

of a given improved scenario compared to the reference sce-

nario will thus likely be overestimated. To circumvent these

difficulties, it is not the absolute values of the errors that will

be considered but their values for one scenario relative to an-

other.

2.3.1 The optimal estimation method

In the optimal estimation method, which is described in de-

tail by Rodgers (2000), the a priori information consists of a

mean prior state and an a priori covariance matrix Sa, which

represent the best statistical knowledge that we have of the

state prior to any measurement is made. The goal of the re-

trieval is then to find the approximation of the true state of

the atmosphere that agrees best with both the measurements

and the a priori information.

The characterization of the retrieved quantities in terms of

vertical sensitivity and error sources is essential to determine

the quality of the results. In the case of the linear approxima-

tion used here, the OEM provides an efficient way for charac-

terizing the retrieved state. Two quantities will particularly be

used in the following: (1) the Degrees Of Freedom for Sig-

nal (DOFs); (2) the total error variance–covariance matrix,

which gives the a posteriori uncertainty. DOFs indicate the

number of independent values of the state vector that can be

retrieved from the measurements. They are given by the trace

of the averaging kernel matrix A, which is representative of

the sensitivity of the retrieved state to the true state. The total

error variance–covariance matrix Se can be expressed as the

sum of three individual contributions, according to

Se = (I−A)Sa(I−A)T +GSεG
T
+Smodel, (4)

where I is the identity matrix and G is the gain matrix whose

rows are the derivatives of the retrieved state with respect

to the spectral points and which is related to A and to the

Jacobian matrix K by

A=GK. (5)

Atmos. Meas. Tech., 7, 4367–4385, 2014 www.atmos-meas-tech.net/7/4367/2014/
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The first term of Eq. (4) is the smoothing error, which ac-

counts for the vertical sensitivity of the measurements to the

retrieved profile and is related to the a priori covariance ma-

trix Sa. The second term is the measurement error, associated

with the radiometric noise described by its covariance matrix

Sε. The third term represents the imperfect knowledge of the

model parameters. In the following, Sε will be assumed di-

agonal, with the diagonal terms given by the square of the ra-

diometric noise computed at the scene temperature given by

Eq. (3). Smodel has been chosen diagonal with a standard de-

viation of 0.2 K. This representation of forward model noise

is not realistic, both in terms of value and inter-channel corre-

lation, and attention needs to be paid to improving our knowl-

edge of this error. Nevertheless, this value has been widely

used in previous publications (Rodgers, 1996; Prunet et al.,

1998; Crevoisier et al., 2003), and does not impact the val-

ues of the gain in uncertainty and vertical coverage reported

here, since results are presented relative to each other.

2.3.2 Non-linear inference scheme

To avoid the linearization of the radiative transfer equation

and to deal with signal of the order or lower than the radio-

metric noise, neural networks provide a powerful tool that

is currently used to interpret IASI observations in terms of

several trace gases. Here, we will use a non-linear inference

scheme using supervised multi-layer perceptrons (Rumelhart

et al., 1986) with two hidden layers. The learning phase,

which consists in adapting the synoptic weights of the net-

works in order to minimize the output error using known

input–output couples (the “a priori”), is based on the Er-

ror Back-Propagation learning algorithm (Rumelhart et al.,

1986), with stochastic steepest descent. At each step of the

learning phase, the instrument noise is taken into account by

adding to the BT of each channel a random Gaussian noise

characterized by the equivalent noise temperature (NE1T )

computed at the BT of the channel, according to Eq. (1). In

this study, the learning database is the TIGR data set.

3 Impact on the retrieval of thermodynamic variables

Post-launch validation of retrievals of temperature and water

vapour profiles derived from IASI has confirmed an accu-

racy of less than 1 K for temperature between 800 hPa and

the tropopause and better than 10 % for relative humidity

in the 800–300 hPa altitude range (Pougatchev et al., 2009;

Kwon et al., 2012). However, as for any existing thermal in-

frared sounder, IASI still suffers from a limited sensitivity

to the lower part of the troposphere near the surface, and to

the tropopause region. Accordingly, the estimated accuracy

reaches 2–3 K at the surface and ∼ 2 K at the tropopause for

temperature, and is higher than 10 % near the surface for H2O

where it is the most abundant. Improving the retrievals near

the surface is thus a clear priority and one of the main objec-

tives of the IASI-NG mission. It is worth noting that, beyond

the impact on operational meteorology, any improvement in

the characterization of the thermodynamic profiles will pos-

itively impact the retrievals of other atmospheric variables

which usually require a good knowledge of the thermody-

namic state of the atmosphere.

3.1 Atmospheric temperature

3.1.1 Sensitivity of IASI and IASI-NG channels to

atmospheric temperature

Various spectral bands may be used to retrieve atmospheric

temperature profiles. Those sensitive to stable components

with low variability are preferred to ease the decorrelation

between the temperature signature and the interferences in

the infrared radiances. The most commonly used regions are

the absorption bands of CO2 around 667 cm−1 (15 µm) and

around 2350 cm−1 (4.3 µm), even if, for IASI, the latter band

is scarcely used due to the higher radiometric noise encoun-

tered there, as seen in Fig. 3.

In the 660–720 cm−1 region, the typical variation of BT

temperature for a 1 K variation of atmospheric temperature

(hereafter called the temperature signal) is between 0.6 and

1 K (Fig. 3a, c). From 660 to 690 cm−1 and from 704 to

720 cm−1, line-mixing limits the use of channels located in

theQ branch of CO2. Recent work on line-mixing modelling

(e.g. Niro et al., 2004a, b) opens the way to using this part of

the spectrum. These cold regions would therefore strongly

benefit from a reduction of the radiometric noise, which is

still high for IASI (∼ 0.4 K). Beyond 690 cm−1, the range

covered by the temperature signal is higher for the IRS2

(∼ 0.3 K) than the IRS1 (∼ 0.15 K) scenarios. This stems

directly from the higher spectral resolution of IRS2 which

induces an extended vertical resolution as explained below.

For wavenumbers lower than 720 cm−1, variations of BT in-

duced by typical variations of other atmospheric variables

are weak, generally lower than 0.15 K, with the exception

of some channels located near 706 cm−1 and between 712

and 718 cm−1 which become sensitive to H2O (variation of

∼ 0.5 K of the BT for a 20 % variation of H2O). Nonethe-

less, as opposed to IASI, it is possible to find IASI-NG chan-

nels for which temperature is decorrelated from H2O and O3.

They are characterized by a null sensitivity to H2O (blue line)

and O3 (green line) in Fig. 3c illustrating the capability of

IASI-NG to resolve the most intense absorption lines of these

two gases in this region.

In the 2200–2260 cm−1 region, the temperature signal

varies between 0.5 and 1 K, with channels also sensitive

to various atmospheric and surface components (Fig. 3b, d).

The two most promising spectral ranges for temperature re-

trievals are 2200–2220 and 2230–2260 cm−1, with a temper-

ature signal of ∼ 0.8 K and sensitivities to CO2 and N2O

lower than 0.3 K. Due to their stability, CO2 and N2O are

both suitable candidates for temperature retrieval (Lezeaux

www.atmos-meas-tech.net/7/4367/2014/ Atmos. Meas. Tech., 7, 4367–4385, 2014
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Figure 3. As Fig. 2, for the two spectral bands 690–730 and 2180–2280 cm−1. To ease the comparison between the various signals, a factor

of −1 has been applied to variations of BT for all the gases.

et al., 2010). As seen in Fig. 2, N2O has two bands, one cen-

tred at 1258.6 cm−1 (ν2), superpimposed with the ν4 band

of methane, and the ν3 band at 2223.5 cm−1 superimposed

with the end of the CO absorption band. However, N2O nat-

ural variability is still poorly known and the corresponding

channels should be handled with caution. Despite their good

spectral characteristics, both spectral regions are character-

ized by a high noise on IASI (grey line in Fig. 3b), especially

beyond 2230 cm−1. Consequently, no IASI channels are cur-

rently used in this region to give information on atmospheric

temperature. A strong reduction of the radiometric noise in

this region will enable the use of the corresponding chan-

nels, which present the advantage of sounding the lower part

of the atmosphere.

The mid-height width and altitude of the maximum of the

temperature Jacobians are plotted in Fig. 4 for both IRS1 and

IRS2 spectral resolutions. In the two regions of interest, the

temperature Jacobians peak at all pressure levels. However,

because of the higher spectral resolution of IRS2, the corre-

sponding Jacobians peak at more levels than for IRS1 and

are better distributed along the vertical. In particular, more

channels peak at high altitudes, albeit with a larger width.

For instance, IRS2 Jacobians peak between 500 and

1000 hPa when IRS1 Jacobians “only” peak between 700

and 1000 hPa. Moreover, more channels covering the lower

part of the troposphere are available with the IRS2 than with

the IRS1 spectral resolution, and they are generally charac-

terized by thinner Jacobians (half-height width between 300

and 400 hPa). This is also the case for channels located in

the 2230–2260 cm−1 range, for which IRS1 Jacobians peak

between 700 and 300 hPa whereas IRS2 Jacobians peak be-

tween 800 and 100 hPa. The widest IRS2 Jacobians (half-

height width of about 700 hPa) peak at high altitudes that are

not covered by IRS1-IASI.

3.1.2 Impact of spectral and radiometric characteristics

on the retrieval of temperature profiles

To evaluate the expected retrieval accuracy and vertical cov-

erage of each scenario given in Table 1, we use the opti-

mal estimation method described in Sect. 2.3.1 in the gen-

eral framework of NWP applications. The a priori covariance

matrices Sa in Eq. (4) are from the ECMWF centre (Hólm

et al., 2002). The a priori errors are already relatively low

since they come from the assimilation of observations from

several spaceborne instruments, radio-soundings, and surface

networks. Improving them thus remains quite challenging.

However, the resulting errors depend on the chosen a priori.

Therefore, it is not their absolute values that should be con-

sidered but their values from one scenario relative to another.

It must also be kept in mind that the error reduction brought

by a given instrument is overestimated since these values

are based on the use of all channels, and errors from radia-

tive transfer modelling, cloud residuals or calibration are not

taken into account.

First, only the band 645–770 cm−1 (all channels) is used in

the retrieval procedure. As said in Sect. 3.1.1, the Jacobians

of the corresponding channels do not peak at the surface.

Therefore no information on the surface will be brought by

this band alone. The number of degrees of freedom for each

scenario is given in Table 2. The greater the spectral resolu-

tion and the lower the noise, the higher the number of DOFs.

The number of DOFs for IASI (IRS1a) is low, highlighting

the good a priori knowledge on temperature stemming from

the assimilation of several observations. The better perfor-
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Table 2. Number of degrees of freedom for the retrieval of temperature profile for the eight scenarios, using all the channels located in the

645–770 cm−1 range, or a combination of both the 645–770 and the 2250–2420 cm−1 ranges.

IRS1a IRS1b IRS1c IRS2a IRS2b IRS2c

645–770 cm−1 3.2 5.6 7.1 4.4 7.7 9.8

645–770 and 2250–2420 cm−1 3.3 5.8 7.3 4.6 8.0 10.0

Figure 4. Pressure of the maximum (blue line) and of the half-height width (black) of the temperature Jacobians at the IASI spectral resolution

in the 15 µm (a) and 4.3 µm (b) bands and at the IASI-NG spectral resolution in the 15 µm (c) and 4.3 µm (d) bands. The Jacobians have been

computed by 4A and averaged over the whole tropical atmospheric situations of the TIGR database.

mance of the IRS2 scenarios as compared to IASI does not

come only from the improved noise (IRS1b is worse than

IRS2b), but neither from the greater resolution alone (IRS2b

is similar to IRS1c). Taking into account the sole radiomet-

ric noise or also adding the uncertainties in water vapour and

surface characteristics does not change this result.

The relative gain in retrieval uncertainty to the a priori is

given by the difference between the a posteriori and the a

priori errors, normalized by the a priori error. It is plotted

in Fig. 5a. A factor of ∼ 1.5/2 depending on the altitude is

well seen between IRS1a-IASI (dashed blue line) and the

IRS2a (full blue line) scenario. At 500 hPa, the gain is 20 %

for IRS2a compared to 12 % for IRS1a-IASI. The compari-

son between IRS2a and IRS1b or IRS1c reveals that a greater

spectral resolution brings a significant improvement in addi-

tion to the one stemming from the reduction of the radio-

metric noise. The strong reduction of the gain below 950 hPa

comes from the fact that the retrieval of temperature profile is

done independently from the retrieval of surface temperature,

and reveals the lack of information brought by IR sounders

in the lowest vertical layers apart from window channels in-

forming of surface temperature.

Second, a combination of the whole channels located in

the two bands 645–770 and 2250–2420 cm−1 is used. Both

the number of DOFs and the relative gain are close even

if better than when using the first band alone. The differ-

0 0.1 0.2 0.3 0.4 0.5

0

100

200

300

400

500

600

700

800

900

1000

Relative gain in error (%)

P
re

ss
u

re
 (

h
P

a)

(a) 645−770 cm−1

0 0.1 0.2 0.3 0.4 0.5

0

100

200

300

400

500

600

700

800

900

1000

Relative gain in error (%)

(b) 645−770 and 2250−2420 cm−1

 

 

IRS1a IRS1b IRS1c IRS2a IRS2b IRS2c

Figure 5. Impact of spectral resolution and radiometric noise on

the retrieval of temperature profile based on the use of the 645–

770 cm−1 spectral band (a) or of the 645–770 and 2250–2420 cm−1

spectral bands combined (b). The relative gain in error is defined as

the difference between the a priori and a posteriori error, divided by

the a priori error, averaged over the whole tropical TIGR situations.
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ence comes from the lower part of the troposphere as seen

in Fig. 5b. Near the surface, the improvement is significantly

better, as expected from the better coverage of this part of the

atmospheric column by the temperature Jacobians (Fig. 4).

Moreover, the reduction of the noise by a factor better than

2 (IRS1c and IRS2c) compared to IRS1a-IASI strongly im-

proves the retrieval near the surface, highlighting that the re-

duction of the noise in that part of the spectrum is particularly

relevant.

3.2 Water vapour

3.2.1 Sensitivity of IASI and IASI-NG channels to

water vapour

As seen in Fig. 2, H2O absorption lines span the entire

spectral range covered by IASI, with the ν2 absorption

band extending from 1200 to 2150 cm−1. Between 800 and

1200 cm−1, the water vapour continuum is particularly im-

portant. The spectral range between 1400 and 2150 cm−1 is

the most sensitive to water vapour variation (with a signal

around 1.5 K for a variation of 20 % in Fig. 2). In the re-

gions below 770 cm−1 and between 950 and 1050 cm−1 CO2

and O3 interfering absorption lines are found and the chan-

nel sensitivity to a 20 % variation of H2O is lower than 0.5 K.

Moreover, these lines are saturated and could potentially in-

duce a bias or large uncertainties on retrieved quantities.

Therefore, to retrieve atmospheric water vapour information

from high-resolution thermal infrared measurements, many

previous studies using various instruments such as IMG (Za-

kharov et al., 2004; Herbin et al., 2007), TES (Worden et al.,

2006), or IASI (Herbin et al., 2009; Lacour et al., 2012) have

restricted the retrieval spectral range to between 1100 and

1400 cm−1.

Figure 6 represents the half-height widths and altitudes of

the maximum of the H2O Jacobians for the water vapour full

absorption band. Within this spectral range, the Jacobians

reach all pressure levels from 800 to 100 hPa (2 to 16 km).

However, the maxima of water vapour Jacobians cover a

wider range of pressure levels for the IRS2-IASI-NG scenar-

ios thanks to their higher spectral resolution. They are also

better distributed along the vertical. The number of channels

with large Jacobian values at high altitudes is larger, particu-

larly in the 1500–2150 cm−1 spectral band.

3.2.2 Impact of spectral and radiometric characteristics

on the water vapour retrieval

Table 3 summarizes the total DOFs for all scenarios, when

using all channels located in the 1100–1400 cm−1 band. The

impact of reducing the radiometric noise is small on the

DOFs when the improvement of the spectral resolution has

a clear positive impact on the DOFs since the IRS2 scenarios

all give better results than the IRS1c scenario.

Figure 6. Pressure of the maximum (blue line) and of the half-

height width (black) of the H2O Jacobians at the IASI spectral reso-

lution (upper panel) and at the IASI-NG spectral resolution (bottom

panel). Average over the TIGR tropical atmospheric situations.
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Figure 7. Impact of spectral resolution and radiometric noise on

the retrieval of water vapour profile based on the use of the 1100–

1400 cm−1 spectral band. The relative gain in error is defined as the

difference between the a priori and a posteriori error, divided by the

a priori error, averaged over the whole tropical TIGR situations.

Figure 7 shows the relative gain in error, defined as the dif-

ference between the a priori and a posteriori error divided by

the a priori error, for each scenario, from which similar con-

clusions as from DOFs can be drawn. A much larger con-
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Table 3. Number of degrees of freedom for the retrieval of water

vapour profile for the six scenarios, using all channels located in the

1100–1400 cm−1 spectral range.

IRS1a IRS1b IRS1c IRS2a IRS2b IRS2c

1100–1400 cm−1 11.7 11.8 11.8 14.5 14.5 14.6

tribution of the higher spectral resolution than the reduced

noise is well seen: the gain in error is higher for the IRS2

scenarios, whatever the noise reduction is. The most signif-

icant gain is between 700 and 300 hPa (3 and 8 km). Above

300 hPa, the impact of noise and spectral resolution is limited

and of the same order of magnitude.

4 Other climate variables

Since its launch onboard Metop-A in October 2006, IASI

contributes to the establishment of robust long-term data

records of several essential climate variables (ECVs) as de-

fined by GCOS: (i) clouds: cloud physical properties using

the atmospheric opacity of the CO2 absorbing channels and

cirrus bulk microphysical properties based on the spectral

variation between 8 and 12 µm; (ii) greenhouse gases: mid-

tropospheric columns of CO2 and CH4 (Crevoisier et al.,

2009a, b, 2013); (iii) dust aerosols: aerosol optical depth, al-

titude and radius (Peyridieu et al., 2013; Klüser et al., 2012;

Clarisse et al., 2010); (iv) continental surface characteris-

tics: skin temperature and spectral emissivity (Capelle et al.,

2012; Zhou et al., 2011). IASI has the potential to moni-

tor the evolution of these variables in the long term, to as-

sess potential trends, and to detect signatures of specific cli-

mate events, such as ENSO or other sources of climate vari-

ability. The IASI-NG instrument, by extending the tempo-

ral coverage of the IASI mission with a similar approach,

will help in minimizing the risk of strong inter-instrument

bias, thus complying to the GCOS principles. Assuming that

IASI-NG will present the same outstanding spectral and ra-

diometric stability as IASI, it will also strongly contribute

to the GSICS (Global Space-based Inter-Calibration System,

http://gsics.wmo.int) effort.

In the following sections, we focus on three ECVs: CO2,

CH4 and surface characteristics. Despite the fact that infrared

remote sensing provides a way to characterize clouds and

aerosols, as well as the thermal part of their total radiative

forcing, the study of the impact of improved spectral and ra-

diometric characteristics on their retrieval requires extensive

study of several types of particles in non-clear situations (i.e.

taking diffusion into account), inducing heavy computation.

This will thus be addressed in a following paper.

4.1 Carbon dioxide

4.1.1 Sensitivity of IASI and IASI-NG channels to CO2

CO2 has three absorption bands in the part of the spec-

trum covered by the instruments: the ν2 band centred at

667.4 cm−1 (15 µm), the ν3 band centred at 2349.2 cm−1

(4.3 µm), and the weakest laser band centred at 1064 cm−1

(9.4 µm). In the latter region, the channel sensitivity to CO2

variations is very low and the interferences with other species

(H2O, O3) are quite high, preventing the use of the corre-

sponding channels in the retrieval of CO2. In the two other re-

gions, the CO2 signature for a 1 % variation comes to 0.15 K

at 15 µm and 0.2 K at 4.3 µm. In comparison, a 1 K varia-

tion of the atmospheric temperature yields a variation of BT

between 0.7 and 0.9 K at 15 µm and 0.7 and 1 K at 4.3 µm.

Any CO2 retrieval thus requires the decorrelation between

temperature and CO2 signals. In order to make this possi-

ble, channels with the lowest sensitivity to other components

must be found (Chédin et al., 2003; Crevoisier et al., 2003).

In the ν2 absorption band, the use of the 640–690 cm−1

range requires taking into account the line-mixing effect

(Q branches at 660 cm−1). Moreover, channel sensitivities to

CO2 are particularly weak (less than 0.1 K) for both IASI and

IASI-NG, and the channels are sensitive to stratospheric vari-

ations of CO2. Hence, in the following, we will focus on the

690–730 cm−1 spectral range since, for wave numbers higher

than 690 cm−1, the better spectral resolution of IRS2 enables

the selection of channels with lower sensitivities to ozone and

water vapour. The vertical coverage of the channels is similar

for both resolutions. However, channels presenting the high-

est sensitivities to CO2 tend to present CO2 Jacobians that are

thinner and peaking lower for IRS2 than IRS1 scenarios. As

for atmospheric temperature, more pressure levels are cov-

ered by IRS2. The Jacobians of the IRS2 channels presenting

the lowest sensitivities to atmospheric variables other than

CO2 cover the pressure range 110–400 hPa (7–15 km), with

an average mid-height width 210 hPa. Whatever the spectral

resolution is, only information on CO2 in the mid-to-upper

troposphere is available with channels located at 15 µm.

The ν3 absorption band at 4.3 µm complements well the

ν2 absorption band at 15 µm since it gives information on

CO2 in a lower part of the atmosphere, closer to the surface

(Crevoisier et al., 2003). CO2 Jacobians peak between 350

and 600 hPa (4–8 km), with an average mid-height width of

400 hPa. Unfortunately, in this band, IASI radiometric noise

exceeds 3 K (more than 30 times the CO2 signal), thus pre-

cluding the use of the corresponding channels to retrieve

CO2. Reducing the radiometric noise is this part of the spec-

trum is thus a clearly identified need that will also benefit the

retrieval of atmospheric temperature (see Sect. 3.1).
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Table 4. Impact of spectral resolution, radiometric noise on the ac-

curacy of the retrieval of CO2 tropospheric columns, expressed rela-

tive to the IRS1a/IASI accuracy (%). Three spectral ranges are used:

either the 15 µm band, or the 4.3 µm band or both bands. Note that

IRS1a/IASI and IRS2a CO2 retrievals are only performed with the

15 µm band.

IRS1b IRS1c IRS2a IRS2b IRS2c

15 µm 10 24 9 30 40

4.3 µm – 5 – −7 14

15 and 4.3 µm – 41 – 45 54

4.1.2 Retrieval of CO2 tropospheric columns

We now study the impact of spectral resolution and radiomet-

ric noise on the retrieval of CO2 mid and upper tropospheric

columns using the non-linear inference scheme developed

for IASI (Crevoisier et al., 2009a) and briefly described in

Sect. 2.3.2. Only a subset of channels is used for the re-

trievals, based on their high sensitivity to CO2, with no sensi-

tivity to other species. Since infrared CO2-sensitive channels

are intrinsically sensitive to temperature, use is made of si-

multaneous microwave measurements, only sensitive to tem-

perature, to separate these two effects. Now, although a mi-

crowave sounder will be one of the companion instruments

of IASI-NG onboard Metop-SG, its specifications have not

yet been chosen. Therefore, in the following, we will assume

that an AMSU instrument, similar to the one onboard Metop,

will fly onboard Metop-SG. We will also assume that both

microwave and infrared sounders are co-registered, as is the

case with IASI and AMSU.

Table 4 gives the improvement in the relative retrieval er-

ror obtained for the various scenarios with regards to the cur-

rent IASI instrument (with 15 µm channels only) as a refer-

ence. An important characteristic of the retrieval is the CO2

weighting function that indicates which part of the atmo-

sphere the retrievals are representative of (Crevoisier et al.,

2009a). This is plotted in Fig. 8 for various scenarios.

As expected, the better the spectral resolution or the ra-

diometric noise, the larger the improvement of the retrieval

error when the same spectral range is used. At the IASI

spectral resolution, and using only the 15 µm band, reduc-

ing the noise by a factor of 2 or 4 already improves the er-

ror by 10 and 24 %. With similar noise, the improvement

for the IRS2 scenario is even larger – 30 and 40 % respec-

tively. This can be attributed to the better spectral resolu-

tion, which enables the use of more channels with stronger

CO2 signatures and less interference, hence reinforcing the

“signal-to-noise” ratio even more than by simply reducing

the noise. When using the 15 µm band only, the CO2 weight-

ing functions are close: for both the IRS1 and IRS2 scenarios,

the channels give access to a mid-to-upper tropospheric con-

tent of CO2 (100–400 hPa), with a maximum sensitivity near

200 hPa (Fig. 8). Nonetheless, thanks to its greater spectral
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Figure 8. CO2 weighting function associated with the retrieval for

IRS1 scenarios using the channels located in the 15 µm CO2 ab-

sorption band only (red) and for the IRS2 scenarios using the chan-

nels located either in the 15 µm CO2 absorption band (blue), in the

4.3 µm CO2 absorption band (dashed green), or in both bands (dot-

dashed purple).

resolution, and in agreement with the study of the Jacobians

performed in Sect. 3.1.1, the IRS2 CO2 weighting function

peaks at slightly lower altitudes than for IRS1.

When possible, the use of the sole 4.3 µm band gives ac-

cess to a lower part of the atmosphere: the corresponding

CO2 weighting function peaks at 400 hPa (∼ 7 km) and cov-

ers the range 200—650 hPa (Fig. 8). Due to too large a ra-

diometric noise compared to the CO2 signal, the scenarios

IRS1a-IASI, IRS1b and IRS2a do not offer this option. Com-

pared to the retrieval error obtained for IRS1a-IASI using the

15 µm band, the error obtained for IRS2b with the 4.3 µm

band is higher by 7 %; it is lower by 14 % for IRS2c when

the noise is divided by a factor of 4. This is in agreement

with the combination of a CO2-to-noise ratio of the same or-

der as the IRS1a-IASI one and a better spectral resolution.

Therefore, with an increase by 2 of the spectral resolution,

and a reduction by at least a factor of 2 of the radiometric

noise, two pieces of information will be available for CO2

along the vertical, both with improved retrieval errors com-

pared to IASI.

In the case that the two spectral bands are used together,

the retrieval error is divided by a factor of ∼ 2 compared to

IRS1a-IASI, but at the expense of the vertical coverage. The

CO2 weighting function (Fig. 8) now covers a broad alti-

tude range (100–500 hPa) with a maximum sensitivity near

300 hPa (∼ 9 km).
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Figure 9. As Fig. 2, for the CH4ν4 absorption band.

4.2 Methane

4.2.1 Channel sensitivity to CH4

Methane has two absorption bands in the part of the

spectrum covered by the instruments: the ν4 band cen-

tred at 1306.2 cm−1 (∼ 7.7 µm) extending between 1220

and 1400 cm−1, and the ν3 band centred at 3020.3 cm−1

(∼ 3.7 µm) which has lines at the far end of the spectra stud-

ied here, above 2680 cm−1. In the ν4 absorption band, water

vapour absorption largely dominates, with mean sensitivities

of 1 K for a 20 % variation of its mixing ratio (Fig. 9). The

CH4 signature for a 10 % variation of the gas mixing ratio

is similar for IRS1 and IRS2 scenarios, even if a bit higher

(0.2 K) for the latter, with values as high as 1.6 K. Here,

having a better spectral resolution is a real asset since it al-

lows finding spectral intervals where the CH4 signal “comes

out” of the H2O signal: near 1300 cm−1, as for IASI, but

also near 1275 cm−1 (with a slight contamination by N2O),

1247 cm−1 (with a slight contamination by the surface), or

near 1340 cm−1. In these regions, temperature signal is about

0.8 to 0.9 K, and the radiometric noise, which is much lower

than the CH4 signal, should not greatly impact the retrieval.

The CH4 Jacobians for these channels peak at 250 hPa and

cover the range 150–500 hPa.

In the ν3 absorption band at 3.3 µm, which gives access to

channels sensitive to the lower troposphere, atmospheric and

surface temperatures, emissivity and reflectivity have the ma-

jor impact and dominate the CH4 signal. Hence, the use of

this band, which is also sensitive to solar radiation, requires

a good knowledge of surface characteristics. Moreover, the

CH4 signal is much lower than the radiometric noise what-

ever the scenario is, except beyond 2700 cm−1 where it is

lower by a factor of 2 to (of the same level as) the noise im-

proved by a factor of 2 (resp. 4). Retrieving CH4 atmospheric

content from this part of the spectrum, which is also strongly

sensitive to solar radiation, will thus remain very challeng-

Table 5. Impact of spectral resolution and radiometric noise on the

accuracy of the retrieval of CH4 tropospheric columns, expressed

relative to the IRS1a-IASI accuracy (%).

IRS1b IRS1c IRS2a IRS2b IRS2c

Gain (%) 5 9 39 44 47

ing and will only be possible in particular conditions. In the

following, results are presented for the 7.7 µm band only.

4.2.2 Impact of spectral resolution and radiometric

noise on the retrieval of CH4

Using the non-linear inference scheme described in

Sect. 2.3.2 and described in detail in Crevoisier et al. (2009b),

we now study the impact of improving the spectral resolu-

tion and the radiometric noise on the retrieval of a CH4 mid-

tropospheric integrated content. The results are given in Ta-

ble 5. Contrary to CO2, reducing the radiometric noise does

not impact much the retrieval error. This is because the IASI

radiometric noise is already much lower than the CH4 signal.

On the other hand, by giving access to more channels with

reduced sensitivity to water vapour, decreasing the spectral

resolution improves the retrieval by decreasing the error by

∼ 40 %. The CH4 weighting functions (not shown) are very

similar whatever the scenario is with a maximum sensitivity

near 250 hPa, with a covering range between 100–500 hPa.

4.3 Surface spectral emissivity

The MultiSpectral Method (MSM) currently used for re-

trieving mean surface skin temperature and emissivity spec-

tra from 3.7 to 14 µm at a resolution of 0.05 µm from IASI

(Péquignot et al., 2008; Capelle et al., 2012) was used to

evaluate the expected performance of each scenario on the

retrieval of spectral emissivity. As described in these papers,

the standard deviation of the method is evaluated using a

large set of synthetic simulations comprised of a randomly

selected atmospheric situation from the TIGR database, an

emissivity spectrum from a laboratory emissivity database

and a surface temperature randomly selected within a real-

istic range.

Figure 10 displays the mean of the difference between the

retrieved emissivity spectra and the reference ones averaged

over the set of simulations for the IRS1a, b and c scenar-

ios. For IRS1a-IASI, the standard deviation estimated for the

spectral emissivity varies from about 0.01–0.015 % for the

10.5–14 and 5.5–8 µm windows to about 0.04–0.05 around

4 µm. The error is at its maximum in the two Reststrahlen

bands, around 8–10 and 4 µm, because of (i) the higher emis-

sivity variability; (ii) the higher impact of errors in the ther-

modynamic characterization of the atmosphere; and (iii) a

higher radiometric noise (see Fig. 1). Therefore, reducing the

noise helps in decreasing the error: as seen in Fig. 10, a re-
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Figure 10. Impact of radiometric noise on the retrieval of surface

spectral emissivity: standard deviation of retrieved emissivity for

IRS1a-IASI (blue), IRS1b (red), IRS1c (green).

duction of the radiometric noise by a factor of 2 (4) decreases

the error by 1.4 (1.6) at 12 µm and by 1.3 (1.7) at 4 µm. How-

ever, increasing the spectral resolution does not change the

results since the channels used in the MSM method show

similar characteristics for IRS1 or IRS2 scenarios.

5 Atmospheric chemistry

In this section, thermal infrared spectra are analysed for mon-

itoring tropospheric composition and for the study of its

rapid changes. Carbon monoxide, ozone, ammonia and sul-

fur dioxide are among the key products observed by the IASI

mission (Clerbaux et al., 2009; Clarisse et al., 2009). Global

and local distributions of trace gases are routinely derived us-

ing several inverse radiative transfer codes depending on the

application (global maps, local profiles or detection of spe-

cial events).

As described in the previous sections the different

noise/spectral resolution scenarios for IASI-NG (see Table 1)

are used to simulate IASI-NG like spectra in order to assess

the potential improvement for trace gas retrieval or detec-

tion. For air pollution studies, improvement in terms of ac-

curacy and also the ability to sound lower in the atmosphere

are of particular interest. In the following, the retrieval proce-

dure is based on the optimal estimation method described in

Sect. 2.3.1 with error covariance matrices from Hurtmans et

al. (2012): results for O3 and CO are provided with DOFs as a

metric to quantify the improvement in terms of vertical infor-

mation, and retrieval errors are estimated for different layers

of the atmosphere and reported relative to IRS1a-IASI.
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Figure 11. Impact of spectral resolution on the CO lines in the

2135–2185 cm−1 spectral range used for the CO retrieval – aver-

age over the whole tropical TIGR situations.

5.1 Carbon monoxide

5.1.1 Sensitivity of IASI and IASI-NG channels to CO

The absorption band of carbon monoxide (CO) covers the

range 2080 to 2200 cm−1. CO absorbs the infrared radiation

mainly in its 1–0 vibrational band, centred near 2140 cm−1

(Fig. 11). The spectral region has interferences with lines as-

sociated with H2O, CO2, N2O, and O3 absorption (Fig. 2).

At the IASI0-IRS1 spectral resolution, all channels suffer

from weak to medium contamination from these absorb-

ing molecules. The CO content is retrieved using the 2143–

2181.25 cm−1 spectral range, which offers the best com-

promise between information content and interferences with

other gases (De Wachter et al., 2012). As can be seen from

Fig. 11, by increasing the spectral resolution, the lines are

better resolved, yielding an increased information content for

CO. This is in agreement with results comparing the capabil-

ity of AIRS and IASI instruments to retrieve CO (George et

al., 2009; Thonat et al., 2012; Gambacorta et al., 2014).

5.1.2 Retrieval of CO

The CO tropospheric column is usually measured with 10 %

accuracy or better from IASI, and with a maximum of two

independent pieces of information on the vertical (George et

al., 2009; Kerzenmacher et al., 2012). The sensitivity to the

lower layers of the atmosphere is directly linked to thermal

contrast, which is the difference between land surface skin

temperature and surface-level air temperature and varies a

lot according to season, latitude, time of the day and type of

surface.

The simulations performed in this work using the differ-

ent scenarios were done for a range of thermal contrasts,

and for a series of representative atmospheric CO profiles.
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Table 6. Improvement in terms of errors expressed in relative gain

(%) from the IRS1a-IASI scenario for different atmospheric layers:

CO total column, 6–12 km column, 0–6 km column and 0–2 km col-

umn.

IRS1b IRS1c IRS2a IRS2b IRS2c

Total column 19 36 25 39 49

6–12 km 17 34 26 40 52

0–6 km 25 45 32 51 63

0–2 km 13 25 17 27 36

Table 7. Vertical information expressed in DOFs of the CO re-

trievals for each scenario.

IRS1a IRS1b IRS1c IRS2a IRS2b IRS2c

DOFs 1.84 2.20 2.6 2.28 2.65 2.98

The improvement of the error for different atmospheric lay-

ers (total column, 6 to 12, 0 to 6 and 0 to 2 km) is provided

in Table 6. The improvement in terms of vertical informa-

tion is provided in Table 7. As expected, both the improved

spectral resolution and the better signal-to-noise lead to bet-

ter resolved profiles: DOFs range from 1.8 for IRS1a-IASI

to almost 3 for the best-case scenario (IRS2c), on average;

as compared to IRS1a-IASI, reduction in total column error

goes from 19 % for IRS1b to 49 % for IRS2c. The major im-

provement concerns the 0–6 km column with a major impact

of spectral resolution: the reduction of the error is 32 % when

improving the spectral resolution by a factor of 2 and keeping

the noise at the same level (IRS2a) whereas it is only 25 %

when the spectral resolution is kept and the noise is reduced

by a factor of 2 (IRS1b). It should be noticed in particular that

the boundary layer is better sounded, with a gain of 36 % for

the IRS2c scenario. The error still remains more than 4 times

higher than the error on the total column.

These results are confirmed when comparing CO profiles

retrieved for scenarios IRS1a-IASI and IRS2b together with

actual MOZAIC aircraft profiles measured at the Frankfurt

airport in 2008 and 2009 that have already been used by

De Wachter et al. (2012) for IASI-CO validation. In particu-

lar, comparisons have shown that IASI was enable to detect

high CO concentrations in the wintertime/early-spring period

when the boundary layer is low and polluted and the thermal

contrast is low. Agreement between IASI and MOZAIC pro-

files was much better during late-spring/summer when CO

concentrations are lower and the thermal contrast is higher.

We have therefore selected two MOZAIC Frankfurt profiles

representative of these contrasted conditions in order to high-

light the differences between the six scenarios. As seen in

Fig. 12, there is a significant impact near the surface, in par-

ticular for the less favourable polluted winter case (left): a

value of 270 ppbv is retrieved at 1 km, which is close to the

MOZAIC measured value of 265 ppbv, whereas the CO re-

Figure 12. Impact of spectral resolution and radiometric noise on

the CO retrieved profiles for cases IRS1a-IASI (red) and IRS2b

(blue), compared with CO aircraft observation (in black). The left

(right) plot corresponds to observation taken at Frankfurt airport on

6 January 2009 (26 May 2009).

trieved with the IRS1a scenario is too low, at 177 ppbv only

(close to the a priori value of 130 ppbv), as observed with

IASI. This is in agreement with a higher DOFs for IRS2b

(2.4 for this case) than for IRS1a (1.9 for this case). How-

ever, due to the still limited vertical resolution, a positive bias

is seen at 2–3 km for the IRS2b scenario. Even for the more

favourable case of 26 May (Fig. 12, right), the IRS2b sce-

nario gives much better results than the IRS1a scenario at all

altitudes with DOFs reaching 3 and 2.3 respectively.

5.2 Ozone

5.2.1 Sensitivity of IASI and IASI-NG channels to ozone

In the thermal infrared, ozone (O3) has two absorption bands,

the strongest one near 1042 cm−1 (ν3 9.7 µm band) and a

weaker one centred at 701 cm−1 (ν2) where ozone signa-

tures are mixed with those of H2O and CO2 (Fig. 2). The

most prominent band extends from 980 to 1100 cm−1 (see

Fig. 13). It is only slightly perturbed by other weak ab-

sorption features of H2O and CO2. Previous experience has

demonstrated that the TIR measurements provide informa-

tion on the ozone vertical profile from the ground up to an

altitude of about 40 km, with a maximum sensitivity located

in the mid-troposphere (Worden et al., 2007; Boynard et al.,

2009; Dufour et al., 2012). The density of the spectra makes

it difficult to discriminate individual lines and hence infor-

mation in the boundary layer can hardly be obtained.
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Table 8. Improvement in terms of errors expressed in relative gain

(%) from the IRS1a-IASI scenario for different atmospheric layers:

O3 total column, 6–12 km column, 0–6 km column and 0–2 km col-

umn.

IRS1b IRS1c IRS2a IRS2b IRS2c

Total column 25 39 21 39 51

6–12 km 9 17 7 18 31

0–6 km 9 19 7 20 35

0–2 km 4 10 3 11 21

Table 9. Vertical information expressed in DOFs of the ozone re-

trievals for each scenario.

IRS1a IRS1b IRS1c IRS2a IRS2b IRS2c

DOFs 3.59 4.10 4.65 3.97 4.70 5.45

5.2.2 Retrieval of ozone

Improvement in terms of errors and vertical information for

the different scenarios and atmospheric scenarios are sum-

marized in Tables 8 and 9. It is clearly seen that improving

spectral resolution and radiometric noise improves the verti-

cal sensitivity, and that most of the improvement in terms of

accuracy is in the 0–6 km layer. In the lower atmosphere, be-

tween the surface and 2 km, there is only a limited improve-

ment when the instrumental specifications are improved, ex-

cept when both the signal/noise and spectral resolution are

optimized (IRS2c). This is due to the fact that the ozone ra-

diance channels are sensitive to several atmospheric layers

and the density of the lines makes it hard to discriminate

contributions from near the ground and above. On average,

the DOF for IRS1a-IASI is around four pieces of indepen-

dent information. It increases to five for the best-case sce-

nario (IRS2c).

For air quality purposes, there is a need to discriminate tro-

pospheric ozone from stratospheric ozone, which is a compli-

cated task using a nadir thermal infrared sounder as there is

a major absorption contribution due to high levels of strato-

spheric ozone encountered along the optical path. For most of

the atmospheric situations, with the noticeable exception of

high thermal contrast cases, tropospheric columns are associ-

ated with DOFs lower than one, which means that part of the

information in the retrieved tropospheric product comes from

the a priori information. In order to investigate how increas-

ing the spectral resolution and reducing the radiometric noise

helps to improve this situation, a variant of OEM, based on

an altitude-dependent Tikhonov–Philips regularization ma-

trix (Kulawik et al., 2006; Eremenko et al., 2008) instead of

an a priori covariance matrix, has also been used (Sellitto

et al., 2013). Simulations were done to evaluate the tropo-

spheric ozone distributions as observed over Europe using

a regional model, both for the IRS1a/IASI case and the im-
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Figure 13. Impact of spectral resolution on the ozone lines in the

950–1100 cm−1 spectral range used for the ozone retrieval. Average

over the whole tropical TIGR situations.

Figure 14. DOFs (top) and altitude of the maximum sensitivity

(bottom, in kilometres) associated with the 0–6 km ozone retrieved

on 20 August 2009, for IRS1a/IASI (left) and for the IRS2b scenario

(right). This simulation was performed using a regional model that

described an increase of ozone observed in Europe at that time. See

Sellitto et al. (2013) for a full description of this case.

provement by a factor of 2 for spectral resolution and signal-

to-noise ratio (IRS2b scenario). Figure 14 provides the DOFs

(top) associated with the (0–6) km columns for a polluted

case over Europe, as well as the maximum altitude (bottom)

for the corresponding averaging kernel. It can be seen that the

0–6 km DOFs exceeds one for the IRS2b simulation, with as-

sociated maximum sensitivities lower in the atmosphere (2 to

4 km instead of 5 km or higher).

Atmos. Meas. Tech., 7, 4367–4385, 2014 www.atmos-meas-tech.net/7/4367/2014/



C. Crevoisier et al.: Towards IASI-New Generation (IASI-NG) 4381

5.3 Detection limits for weak absorbers

Recent studies have shown that by exploiting weak absorp-

tion lines observed in the IASI spectra, total columns can also

be retrieved for less abundant gases such as sulfur dioxide,

ammonia, methanol and formic acid (Clarisse et al., 2011).

This is especially the case when special events happen, such

as volcanic eruption, large fires and pollution events, for

which a series of molecules can be retrieved simultaneously

(e.g. Coheur et al., 2009, R’Honi et al., 2013). The associated

errors are rather large as the signal barely exceeds the noise

level.

In the following, simulations were performed in order to

determine the potential improvement in terms of detection

limits when increasing the radiometric and spectral resolu-

tion performance. Different atmospheric situations were in-

vestigated. The figures provided here are for the tropical case

situation, for which the impact of water vapour lines interfer-

ences is the strongest.

5.3.1 Sulfur dioxide (SO2)

SO2 absorbs thermal infrared radiation in the ν1 band around

1150 cm−1, the ν3 band around 1350 cm−1 and the ν1+ ν3

band around 2500 cm−1 (Clarisse et al., 2012). The ν3 band

is the most prominent but lies in a range where strong ab-

sorptions by methane and water vapour occur, which makes

it difficult to accurately retrieve tropospheric SO2 concentra-

tions.

Figure 15 illustrates the gain in the detection, as a func-

tion of altitude, obtained when using the ν1, the ν3, and the

ν1+ ν3 bands. The simulations were performed as follows:

different brightness temperature spectra were generated by

increasing the SO2 volume mixing ratio at different altitudes,

in order to access the sensitivity at each altitude for different

concentrations. The impact is checked using different chan-

nels, which were found to be the more intense in each spec-

tral band: for ν1, around 1163.2 and 1166.7 cm−1; for ν3,

around 1348.3, 1352.6,1370.5, and 1371.50 cm−1 (the latter

is as in the study of Clarisse et al., 2012) and for ν1+ ν3,

2498.8, and 2511.25 cm−1. The improvement is quantified

as the ratio between the detection limit for each scenario and

the IRS1a-IASI one. It ranges between 25 % for IRS2a (blue

line) and 80 % for IRS2c (red line) depending on the absorp-

tion band and scenario, provided the altitude is above 5 km.

Between 0 and 3 km the improvement is limited to the ν1

band which lies in an atmospheric window, whereas in the ν3

band the strong interferences with water vapour is hiding the

SO2 signature close to the surface. As expected, due to the

weak atmospheric signature of SO2, a larger gain is obtained

for a reduced noise, and the improvement of the spectral res-

olution has a smaller impact. It is worth noting that the simu-

lations were performed with an unfavorable thermal contrast

(difference between the surface temperature and the atmo-

spheric temperature at the first altitude level) value of zero.
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Figure 15. Impact study on the detection limit for SO2. The plot

represents the relative difference ratio between the detection limit of

each scenario and the IRS1a-IASI scenario, as a function of altitude,

for a case representative of a tropical atmospheric situation, when

using the ν1 band (left), ν3 band (middle) and the ν1+ ν3 band

(right). Note that the sensitivity of the latter band is limited to under

15 km.

Larger values of thermal contrast will enhance the detection

level, especially at the surface.

5.3.2 Ammonia

Ammonia is emitted at surface level and rapidly destroyed.

It absorbs infrared radiation in the ν2 vibrational band with a

clear signature around 950 cm−1 and lines covering the full

region 750–1200 cm−1. Although daily observations are pos-

sible close to the largest emission sources, the absorption

signature in the IASI spectra is often of the same magni-

tude as the noise. In previous publications (e.g. Clarisse et

al., 2009), measurements were averaged over long time pe-

riods in order to increase the signal-to-noise ratio. Here the

simulations were performed using the intense NH3 feature

around 967.3 cm−1 (see Clarisse et al., 2010) and using in-

crements of concentration for NH3, with the different sce-

nario configurations. As can be seen from Fig. 16, a factor

of 2 improvement in the spectral resolution leads to a 25 %

gain in detection sensitivity at the surface level for scenario

IRS2a (blue line), whereas a factor of 2 improvement in the

noise specifications leads to an improvement of 50 %. This

is because ’ammonia has a broad absorption feature around

967.3 cm−1, so the impact of spectral resolution is limited.

As for SO2, the estimation of the detection limit has been

made with a thermal contrast equal to zero. Large positive

or negative thermal contrasts will improve the conditions of

NH3 detection at near-surface level (see Clarisse et al., 2010)

and increase, given the improvement in spectral resolution,

the gain of sensitivity of IASI-NG in comparison to IASI for

boundary layer NH3.

www.atmos-meas-tech.net/7/4367/2014/ Atmos. Meas. Tech., 7, 4367–4385, 2014



4382 C. Crevoisier et al.: Towards IASI-New Generation (IASI-NG)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Gain in detection

A
lt

it
u

d
e 

(k
m

)

NH3

 

 

IRS1b
IRS1c
IRS2a
IRS2b
IRS2c

Figure 16. Impact study on the detection limit for NH3. The plot

represents the relative difference ratio between the detection limit of

each scenario and the IRS1a-IASI scenario, as a function of altitude,

for a case representative of a tropical atmospheric situation.

6 Summary and conclusion

The design of any satellite mission dedicated to atmospheric

and surface remote sensing is a long-term process, which in-

cludes the definition of an instrumental concept that can ful-

fil a list of scientific requirements (Clerbaux and Crevoisier,

2013). Here we report on the detailed studies undertaken in

the framework of the preparation of the EPS-SG payload, and

we focus on the thermal infrared sounder IASI-NG, currently

designed by CNES, that will provide information for the

weather forecast, atmospheric composition and climate com-

munities. The discussion is based on the IASI heritage and

the investigated scenarios include combinations of improved

spectral resolution (by a factor of 2) and improved radiomet-

ric performances (by factors of 2 to 4). These scenarios are

used in radiative transfer simulations and retrieval procedures

in order to investigate the impact on both accuracy and ver-

tical information for various thermodynamic variables (tem-

perature and water vapour profiles), climate variables (spec-

tral emissivity, CO2 and CH4) and chemical tracers (CO and

ozone). The detection limit for weak absorbers (SO2 and am-

monia) is also investigated.

The analysis of the retrieval performances shows that im-

proving both the spectral resolution and radiometric noise

leads to improvement of vertical resolution, accuracy and de-

tection threshold for atmospheric and surface components.

However, the specific impact and importance of both im-

provements depends on the retrieved variable. On the one

hand, increasing the spectral resolution particularly matters

when absorption lines of various gases located in the same

spectral range interfere with each other (e.g. H2O for the

retrieval of CO and CH4). Reducing the interferences thus

leads to better accuracy. A higher spectral resolution also in-

duces a better vertical resolution thanks to thinner weighting

functions and Jacobians (e.g. temperature, CO). On the other

hand, reducing the noise particularly matters for variables for

which typical variations of brightness temperatures are of the

level or much lower than the radiometric noise (CO2, emis-

sivity, and weak absorbers such as SO2 and NH3). Improving

the radiometric noise thus yields improved signal to noise ra-

tio, and translates into more accuracy for the retrieved vari-

ables, and more sensitivity lower in the atmosphere (e.g. T ,

H2O, O3). It should also lead to the detection of new “unex-

pected” species currently hidden in the noise, especially in

large pollution plumes. Finally, at the moment the shortwave

part of the spectrum covered by IASI is not well exploited be-

cause of noise issues. This study demonstrates that the noise

reduction envisaged for IASI-NG is important as channels in

this spectral range present sensitivity to the lower part of the

troposphere. Being also able to use them in retrieval or as-

similation procedures will thus further improve vertical res-

olution and accuracy in that part of the atmosphere.

It is worth noting that the impact of decreasing the size of

the field-of-view (FOV) as compared to IASI has not been

studied here, following the specifications of IASI-NG de-

fined by CNES and EUMETSAT (EUMETSAT, 2010). On

the one hand, reducing the size of the FOV would make it

possible to obtain more clear-sky situations, and thus poten-

tially increase the number of observations used in NWP sys-

tems or in retrievals. It would also help in obtaining more

homogeneous scenes. On the other hand, reducing the pixel

size would increase the radiometric noise and thus degrade

the improvement in both precision and vertical coverage that

is foreseen with the scenarios studied here. It would also im-

pact the homogeneity of long-term climatologies of several

ECVs derived from previous IR sounders (TOVS, ATOVS,

AIRS) which had the same size of FOV as IASI and IASI-

NG. A combined study focusing on determining the impact

of a reduction of the FOV size, along with associated change

in spectral and radiometric characteristics, on the capability

to retrieve atmospheric and surface variables remains to be

performed.

This study has focused on the retrieval of each variable

in a stand-alone approach, without taking into account the

improvement brought simultaneously to every variable. This

will require performing Observing System Simulation Ex-

periments (OSSEs) (e.g. Edwards et al., 2009). In particular,

the expected improvement on the characterization of thermo-

dynamic profiles and surface properties (spectral emissivity

and surface temperature) will positively impact the retrievals

of other atmospheric variables (e.g. trace gases) which usu-

ally require a good knowledge of the thermodynamic state

of the atmosphere and the surface. It will also benefit several

applications based on the retrieved level-2 products. For in-

stance, the detection of ice supersaturation (relative humidity

with respect to ice (RHice) exceeding 100 %), which is a nec-

essary condition for ice nucleation as well as for the persis-

tence of condensation trails induced by air traffic (Lamquin et
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al., 2012), will be improved thanks to the expected improve-

ment of the retrieval of water vapour, as shown by a prelim-

inary comparison between AIRS and IASI (Stubenrauch et

al., 2013).

With the planned launch of three successive instru-

ments onboard the Metop-SG satellite suites (planned to be

launched in 2020, 2027 and 2034), the IASI-NG mission

will extend the 15-years IASI series by 20 years and, thanks

to enhancements in both spectral resolution and radiometric

noise, and will give access to better resolved and more ac-

curate atmospheric and surface variables. IASI-NG will thus

strongly benefit the numerical weather prediction, chemistry

and climate communities now connected through the Euro-

pean GMES/Copernicus initiative.

The Supplement related to this article is available online

at doi:10.5194/amt-7-4367-2014-supplement.
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