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Helga M. BÖHM, Robert HOLLER, Eckhard KROTSCHECK, Martin PANHOLZER

Institute of Theoretical Physics, Johannes Kepler University, Altenbergerstr. 69

A-4040 Linz, Austria

Henri GODFRIN1, Mathias MESCHKE1, Hans-Jochen LAUTER2
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Neutron scattering experiments on a 3He layer on graphite show an unexpected behavior
of the collective mode. After having been broadened by Landau damping at intermediate
wave vectors, the phonon-roton mode resharpens at large wave vectors and even emerges
from the particle-hole continuum at low energies. The measured spectra cannot be ex-
plained by a random phase approximation with any static interaction. We show here
that the data are well described if dynamic two-pair fluctuations are accounted for. We
predict similar effects for electron layers.
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1. Motivation

1.1. An experimentum crucis

Understanding the excitations of quantum fluids has been a major goal of condensed

matter physics for decades. For the helium liquids, a prime example of strongly

correlated systems, Pines1 argued long ago that the phonon-maxon-roton mode

in 4He and 3He has a common physical origin in their strong and identical inter-

atomic interaction. Quantum statistics, though quantitatively relevant, plays a less

important role for the general features of the collective mode. The long wavelength

plasmon in an electron liquid,2,3 caused by a completely different interaction, is

explained by the same theories that proved successful for the neutral systems.

There is, however, a fundamental difference in bosonic and fermionic spectra:

whereas for bosons the collective mode remains well-defined over a wide range of

wave vectors q, it is rapidly damped when it enters the domain of incoherent single-

particle-hole (PH) excitations (“Landau damping”). Now our refined measurements

1
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Fig. 1. Dynamic structure factor of two-dimensional 3He, obtained from inelastic neutron scat-
tering at 4 different wave vectors Q and an areal density of 4.9 nm−2. The shaded area is the
particle-hole continuum. Note the strong peak below it in the lower right figure.

reveal a pronounced excitation at atomic wave vectors (Fig. 1). At the Institut Laue-

Langevin (ILL) we determined the dynamic structure factor S(q, E) of a mono

layer of liquid 3He (E = ~ω is the excitation energy). It is clearly seen that the

collective mode, sharp at small q and damped at intermediate q (Fig. 1 a) and

b) ), recollects strength (Fig. 1c) and even re-emerges at the lower end of the PH

continuum (Fig. 1d).

1.2. Effective static interactions

These unexpected findings put the existing theories to a severe test. In the long

wavelength limit the common paradigm of quasi-particle excitations2,4−5 works well.

For the electron liquid it has led to the random phase approximation (RPA), which

gives the density-density response function χ of a system as

χRPA =
χ0(q, ω)

1 − v(q)χ0(q, ω)
, (1)

where χ0 is the Lindhard function and v(q) is the Fourier transform of the inter-

action. For many systems in nature (e.g. with hard-core or 1/r3 potentials) this

transform does not exist. How the RPA can be extended to such strong interactions
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was shown in Ref. 6; it amounts to replacing the bare v(q) in (1) by an appro-

priately defined effective static interaction. Requiring consistency of ℑm χ and the

static structure via the fluctuation-dissipation theorem unambiguously identifies

this interaction as the “irreducible particle-hole interaction” Vp h̄

χcRPA =
χ0(q, ω)

1 − Vp h̄(q)χ0(q, ω)
. (2)

Different choices of static interactions (formulated via “local field corrections”) were

presented for the electron liquid,3,7 based on different self–consistency requirements.

None of these, however, can provide an excitation spectrum qualitatively different

from a low q collective mode, vanishing into the PH continuum.

1.3. Effective mass

Before entering the PH continuum, measured collective modes visibly deviate from

the (c)RPA predictions based on (2). A common cure8,9 is to introduce an effective

mass m∗, replacing the bare m in the Lindhard function. Again, such an approach

cannot give the newly observed re-emergent zero-sound mode. Furthermore, m∗ in
3He is strongly q-dependent with a peak around the Fermi vector kF and additi-

onally leads to a wrong density dependence of the mode.10 We do not claim that

correcting for effective mass effects is unimportant. Rather we here concentrate on

clarifying the physical reason for the sharpening of the collective mode at high q .

2. Theory: Overview

2.1. Ground state theory

For strongly interacting fermions the variational Jastrow–Feenberg11 ansatz has

highly successfully described most ground state properties:
∣∣Ψ

GS

〉
≡

∣∣Ψ0

〉
= 1√

N
GS

e
1
2

bU
∣∣Φ0

〉
. (3)

Here, N
GS

is the normalization, Φ0 a Slater determinant and Û contains, in principle,

correlation functions of arbitrarily high order n

Û =
∑

i

u(1)(ri) +
∑

i<j

u(2)(ri, rj) +
∑

i<j<k

u(3)(ri, rj , rk) + . . . . (4)

These functions are determined by functionally minimizing the ground state energy

EGS ≡ H0,0, thus providing a parameter-free and robust ab-initio theory. The es-

sential physics contained in Eq. (3) is to intuitively account for core exclusion; in

systems like 3He, where no Fourier transform of the interaction exists, exp{u(n)} is

well-behaved. For the practical evaluation of the energy expectation value, Fermi

hypernetted chain (FHNC) theory has the advantage of being consistent with the

optimization procedure at any order n , summing ladder diagrams exactly and rings

in a local approximation. This way both, short as well as long range correlations

are very well described.12
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If necessary, the nodal surface problem inherent in Eq. (3) can be overcome by

using correlated basis function (CBF) theory.11,12 Here the correlation operator

FGS ≡ exp{ 1
2 Û} (5)

is applied not to the ground state but to determinants describing free excitations

∣∣Ψm

〉
≡ 1√

Nm

FGS

∣∣Φm

〉
. (6)

This creates a complete set of non-orthogonal functions. Conventional basis func-

tions, e.g. plane waves for uniform systems with hard cores, require infinite sum-

mations of large (often divergent) terms: by contrast, CBF incorporates important

aspects of the correlations right from the starting point.

The matrix elements of unity and of the Hamiltonian Ĥ in the basis (6)

Mm,m′ ≡
〈
Ψm

∣∣Ψm′

〉
≡ δm,m′ + Nm,m′

Hm,m′ ≡
〈
Ψm

∣∣Ĥ
∣∣Ψm′

〉
≡ H ′

m,m′ + H0,0Mm,m′

(7)

constitute the essential building blocks of CBF ground state theory. Together with

the matrix elements of the density operator ρ̂(r)

ρm,m′(r) ≡
〈
Ψm

∣∣ρ̂(r)
∣∣Ψm′

〉
(8)

they are also key ingredients of our dynamic approach.

2.2. Boson dynamics

A natural generalization of the Jackson-Feenberg wave function to excited states is

∣∣Ψt

〉
= 1√Nt

e−
i

~
t E

GS F
GS

e
1
2 δ bU(t)

∣∣Φ0

〉
, (9)

where
∣∣Φ0

〉
is unity for bosons. The fluctuation operator

δÛ(t) =
∑

i

δu(1)(ri, t) +
∑

i<j

δu(2)(ri, rj , t) +
∑

i<j<k

δu(3)(ri, rj , rk, t) + . . . (10)

is of a similar form as (4) but is now time dependent. Again, the δu(n) are determined

by functional optimization, now based on the action principle corresponding to

Schrödinger’s equation.

Campbell et al .13 investigated 4He, including fluctuations up to the pair level

(i.e., n=2). A recent study14 demonstrates i) that additional formal approximations

to simplify the numerical treatment (the “uniform limit approximation” in Ref. 13)

yield quite accurate results, and, ii) that pair fluctuations are highly relevant for

correctly explaining large q dynamics. The state of the art for boson dynamics is

to include triplet fluctuations,15 which correct the dynamic pair excitations in a

self-consistent manner.
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2.3. Fermion dynamics

The logical extension of the formalism to fermions is to express δÛ(t) of (10) by

δÛ(t) =
∑

p1h1

δu(1)

p1h1
(t) a†

p1
ah1

+ 1
2

∑

p1h1 p2h2

δu(2)

p1h1 p2h2
(t) a†

p1
ah1

a†
p2

ah2
+ . . . (11)

with pi and hi denoting states which are occupied and unoccupied in the ground

state (“particles” and “holes”); spin-dependencies are not explicitly spelled out. The

sheer increase in the number of variables (δu(2) depends on 4 vectors for fermions

compared to 2 for bosons), prevents a solution on the same level of sophistication.

So-called “local approximations” assume that a quantity depends only on the

momentum-transfer qi = pi−hi of each particle-hole pair. If applied to the fluctua-

tion amplitudes δu(n) , the approach is of the same complexity as the bosonic theory.

Though necessary for some quantities to obtain numerical tractability, making this

simplification for a specific δu(n) squeezes the corresponding n-pair continuum into

a single mode, and cannot give a proper explanation of the data in Fig. (1).

2.4. The cRPA

Omitting all n ≥ 2 fluctuations for bosons yields the Bijl-Feynman spectrum,16,17

where the static structure factor S(q) determines the collective mode dispersion

χBF(q, ω) = −~
2q2/m

ω2 − ε2
q

with εq ≡ ~
2q2

2m S(q)
. (12)

For fermions, not even the case n=1 can be solved analytically for χ. If exchange is

neglected and the collective approximation is used for χ0 (known as “plasmon pole

approximation” in charged systems) the PH continuum shrinks into a single mode.

This results again in the form (12). With the full particle-hole structure (but still

neglecting exchange), Eq. (2), the cRPA, is obtained.6

For systems with a weak v(q) the RPA is equivalent to time-dependent Hartree

theory and the cRPA may also be interpreted as such, with an effectively weak

interaction. Therefore our theory gives a systematic way to microscopically derive

such interactions.18,19

3. Fermion pair fluctuation theory

3.1. Linear response theory

For better clarity of the structure of the theory, we subsume the variables describing

a particle-hole paira into a single number, i ≡ (pi,hi) . The system is subject to

a weak external perturbation hext(r, t) ; this implies small deviations of the wave

function from the ground state
∣∣Ψt

〉
≈

∣∣Ψ
GS

〉
+

∣∣δΨt

〉
+ . . . . (13)

aIn N
m,m′ each index stands for all quantum numbers; e.g., in the case of a single particle-hole

excitation for m= (p1,h2, . . . hN ). Instead of spelling out the occupied states, we write (p1,h1).
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δΨt is obtained by expanding exp{δÛ/2} in (9) linearly in the fluctuations δu(n).

This, in turn, gives the induced density δρ(r) as deviation from the ground state

density ρ
GS

in terms of CBF matrix elements:

1
Nt

〈
Ψt

∣∣ρ̂(r)
∣∣Ψt

〉
≈ ρ

GS
+ δρ(r)

δρ(r) = ℜe
{∑

1

δu(1)

1 δρ0,1(r) + 1
2

∑

1,2

δu(2)

12 δρ0,12(r)
}

(14)

(we suppress normalization factors
√

Nm/N0). The boson theory14 guides us to

simplify (14) this by transforming to modified fluctuations defined as

δρ(r) ≡ ℜe
∑

1

δv(1)

1 δρ0,1(r) . (15)

Obviously, δv(1) implicitly sums two-pair correlations. The connection can be shown

to involve the matrices of Eq. (7) via

δv(1)

1 = δu(1)

1 + 1
2 [M−1]1,2N2,34 δu(2)

43 , (16)

(doubly appearing indices being summed). N2,34 involves the states (p2h2,

p3h3,p4h4) and thus 3-particle correlations. In the local approximation, this

amounts to the (approximate) knowledge of the 3-particle ground state structure

factor. The coefficient of δu(2) in (16) defines a new matrix

M I
1,23 ≡

(
M−1·N

)
1,23

= [M−1]1,4 N4,23 . (17)

Diagrammatically, M I
1,23 is a proper subset of M1,23 = N1,23 . Similarly, certain

diagrams involving 4-particle correlations are canceled from M12,34 by introducing

M I
12,34 ≡

(
M + M I · M · M I

)
12,34

≡ M12,34 + M I
12,5M5,6M

I
6,34 . (18)

3.2. Equations of motion

Equations of motion (eom) follow straightforwardly from minimizing the action

δ

∫
dt

1

Nt

〈
Ψt

∣∣ Ĥ + Ĥext +
~ ∂

i ∂t

∣∣Ψt

〉
= 0 ; Ĥext =

∫
d3r hext(r, t) ρ̂(r, t) (19)

together with Eq. (13). Invoking the transformed fluctuation amplitude δv(1) , the

eom for the two-pair fluctuations δu(2) read

1
2

[
−M I

12,34
~ ∂
i ∂t

− K12,34

]
δu(2)

43 ≡ 1
2

[
E12,34(t)

]
δu(2)

43

= 1
2K1234,0 δu(2) ∗

43 + K12,3 δv(1)

3 + K123,0 δv(1)∗

3 .
(20)

Here, the 4-pair coefficients are (written symbolically as well as explicitly)

Km,m′ ≡
[
H ′ −

(
M I · H ′) −

(
H ′ · M I

)
+

(
H ′ · M I · H ′)

]

m,m′

,

K12,34 ≡ H ′
12,34 − M I

12,5H
′
5,34 − H ′

12,5M
I
5,34 + M I

12,5H
′
5,6M

I
6,34 ,

K1234,0 ≡ H ′
1234,0 − M I

12,5H
′
534,0 − H ′

125,0M
I
5,34 + M I

12,5H
′
56,0M

I
6,34 ,

(21)
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while the 3-pair coefficients take the simpler form

Km,m′ ≡
[
H ′ −

(
M I · H ′)

]

m,m′

,
K12,3 ≡ H ′

12,3 − M I
12,4H

′
4,3 ,

K123,0 ≡ H ′
123,0 − M I

12,4H
′
43,0 .

(22)

Formally solving Eq. (20) yields δu(2) and δu(2)∗ as functions of the 1-pair fluctuations.

These are then inserted into the eom for the 1-pair amplitudes:
[
−M1,3

~ ∂
i ∂t

− H ′
1,3

]
δv(1)

3 − H ′
13,0 δv(1)∗

3 = 2

∫
d3r δρ1,0 hext(r, t)

+ 1
2K1,34 δu(2)

43 + 1
2K134,0 δu(2)∗

43 .

(23)

For practical purposes we neglect the static 4-body correlations K1234,0 ≈ 0.

Fourier transforming from time to frequency ω this implies for u(2)

1
2δu(2) =

[
E−1(ω)

]
·
{

K ·δv(1) + K ·δv(1)∗

}
,

1
2δu(2)

12 =
[
E−1(ω)

]
12,56

{
K65,3 δv(1)

3 + K653,0 δδv(1)∗

3

}
.

(24)

Inserting (24) on the r.h.s. of (23) gives an effective single-particle equation; therefore

knowledge of the CBF matrices K and E−1 provides a 1:1 mapping onto effective

dynamic interactions:

H ′ eff · δv(1) = H ′ · δv(1) + 1
2K · δu(2) =

[
H ′ + K · [E−1(ω)] · K

]
· δv(1)

H ′ eff
1,3 δv(1)

3 = H ′
1,3 δv(1)

3 + 1
2K1,34 δu(2)

43 =
[
H ′

1,3 + K1,45 [E−1(ω)]54,67 K76,3

]
δv(1)

3

(25)

(and the analogue for the H ′
13,0 term).

4. Application of the theory

4.1. Approximations

How exchange effects correct the cRPA, was recently studied20 for bulk 3He; their in-

fluence on multi-pair correlations is, presently, beyond numerical tractability within

reasonable effort. We therefore decrease the number of variables by approximating

Nm,m′ and, consequently, M I and K by their Fermi-sea average

Nm,m′ →
∑

h1...h
m′

Nm,m′

∑
h1...h

m′
n−
p1nh1

. . . n−
p′

m′

n
h′

m′

. (26)

Here, nh denotes the Fermi distribution function and n−
p ≡1−np . The kinetic energy

being intrinsically non-local, we split off the diagonal parts of the Hamiltonian:

H ′
m,m′ ≡ Wm,m′ +

1

2

(
H ′

m,m+H ′
m′,m′

)
Nm,m′ (m 6=m′) , (27)

The Wm,m′ can again be approximated locally by the procedure (26). The optimiza-

tion of the ground state (3)-(4) ensures that the Fermi-sea average of H ′
m,0 = 0,

relating the local approximation of Wm,m′ uniquely to that of Nm,m′ .
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Denoting the Fourier transform of ρ(r) with ρq, the static structure factor S(q)

is expressed by its free value S0
q and CBF matrix elements via

S(q) =

〈
Ψ

GS

∣∣ δρ̂q δρ̂−q

∣∣Ψ
GS

〉

N
〈
Ψ

GS

∣∣Ψ
GS

〉 = S0
q + 1

N

∑

h 6=h′

Nh+qh , h′+qh′ . (28)

This uniquely determines the local approximation of N1,2. Similarly, N1,23 is related

to the 3-particle ground state structure factor, leading finally to

M I
1,23 → S(3)(q1,q2,q3)

S(q1)S0
q2

S0
q3

− S
(3) 0
q1,q2,q3

S0
q1

S0
q2

S0
q3

(29)

Using the uniform limit approximation,13 S(3) factorizes this into products of S(qi).

The 4-particle M12,34 in (18) factorizes, too (neglecting terms of O( 1
N

)). Therefore,

the only input for the dynamics is the ground state S(q).

4.2. 3He

In the experiment21 a mono layer of liquid 3He was adsorbed on high quality exfoli-

ated graphite, preplated by a mono layer of solid 4He. The latter has the advantage

of a weaker adsorption potential than the bare graphite; in addition, it smoothes

out surface defects. At temperatures well below 1K the motion of the 3He fluid is

two-dimensional. It thus forms an atomically thick layer of known areal density. For

the case reported here this is 4.9 atoms/nm2.

On this layer we performed inelastic neutron scattering experiments at the Insti-

tut Laue Langevin (ILL) on the time-of-flight neutron spectrometer IN6. The acces-

sible momentum transfers range from wave vectors q = 2.54 nm−1 . . . 20.46 nm−1.

The energy resolution is of the order of 0.1meV.

For our calculations we use the S(q) obtained from Fermi hypernetted chain

theory12,22 as input. The results are shown in Fig. (2), for the same wave vectors

and areal density as in the ILL experiment. Clearly, there is a large disagreement

between the cRPA prediction (dashed lines) and the one including dynamic pair

fluctuations (full lines), the spectra being qualitatively different. The dotted curves

are obtained by convoluting the theoretical results with the experimental resolution

of 0.1meV and 1nm−1. This reproduces the main features of the experiment very

well: a sharp mode above the PH continuum for q close to the Fermi momentum kF

(Fig. 2a), a very broad mode at intermediate q-values (Fig. 2b,c), and a resharpening

of the mode at 3kF (Fig. 2d).

The main effect of dynamic pair fluctuations is to shift strength towards lower

energies; this is also true in the region of large Landau damping as is clearly seen in

Fig. 2c. This type of qualitative change in S(q, E) cannot be described by a static

effective interaction. For the given areal density of 4.9 nm−2 the phonon-roton curve

does not emerge from the PH band. However, for higher densities a maximum in

S(q, E) below the PH band is obtained, inaccessible to an RPA description.
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Fig. 2. (Color online) Comparison of the dynamic structure factor of 3He, as obtained from the
cRPA, Eq. (2), (dashed blue lines) and from the pair fluctuation theory (full red lines). The density
and wave vectors q match those of Fig. 1. The dotted curves show the theoretical results convoluted
with the experimental resolution.

4.3. Electron layers

For two-dimensional (2D) electrons the first prediction of a collective mode

traversing the PH band was made by Neilson et al .23 from quantum kinetic equa-

tions. Dynamic correlations were found important for density parameters2,3 rs larger

than 10. We here apply our theory to a 2D electron gas at rs =36, close to Wigner

crystallization. In analogy to 3He we study the paramagnetic case.

For a 2D electron gas on graphite this means an areal density of the order of

10−1 nm−2. Other realizations are electron layers in MOSFETS and/or semiconduc-

tor hetero-structures. In a GaAlAs-GaAs-GaAlAs quantum well, with a background

dielectric constant ǫb = 12 and an effective mass of 0.067 electron masses, the effec-

tive Bohr radius is roughly 100Å; rs =36 corresponds to n≈10−2 nm−2.

We obtained the input S(q) for our calculations from Monte Carlo results by

Gori-Giorgi et al .24 Figure (3) shows that the effect of the dynamic pair fluctuations

is the same as in 3He: At small q the plasmon is sharp, though two-pair excitations

cause a finite width while the cRPA plasmon is undamped. The one-pair excitations
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Fig. 3. (Color online) Comparison of the dynamic structure factor of a two-dimensional electron
liquid at rs = 36, in the cRPA, Eq. (2), (dashed blue lines) and from the pair fluctuation theory
(full red lines). In the upper left graph also the bare RPA is seen (chained magenta line).

account for a large portion of the decrease of the dispersion in comparison to the

bare RPA (Fig. 3a). In Fig. 3b, at intermediate q values, we find a broad and highly

Landau-damped plasmon, in marked contrast with a sharp cRPA peak (the bare

RPA plasmon is at a higher energy outside the range displayed). As in 3He, with

a further increase of q the spectrum “leans towards the left” (Fig. 3c) and, finally,

resharpens on the lower side of the PH continuum in Fig. 3d. This recollection of

strength is thus independent of the inter-particle interaction, the same effect arises

for the long-ranged, soft-core Coulomb potential and the short-ranged, hard-core

potential of helium. A close inspection of the data shows that the plasmon, indeed,

re-emerges from the continuum, a feature that is beyond a cRPA approach with

any effective static interaction.

5. Summary

We showed that variational dynamic quantum many body theory based on optimiz-

ing time-dependent fluctuation amplitudes provides a powerful tool for explaining

the excitations of two-dimensional 3He. For a full quantitative agreement with the
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experimental results an inclusion of triplet fluctuations, exchange effects, or effective

mass corrections may be required. The fermionic case being much more demanding

than its bosonic counterpart, we concentrated our studies on the inclusion of two-

pair fluctuations and could demonstrate that these give a major improvement over

RPA-like approaches. The spectra obtained with pair fluctuations agree well with

the scattering data on 3He and qualitatively differ from any RPA result, both for

helium and for electrons.

Our approach satisfies the ω0 and ω1 sum-rules and holds the potential for a sys-

tematic improvement. Aside from significantly changing the collective mode it also

describes multi-pair damping and double-phonon / double-plasmon excitations.25
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