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. To illustrate the power of our approach we prove a local limit theorem together with some rates of convergence for the normal convergence of a standardized version of the quadratic variation of the fractional Brownian motion.

Introduction

Measuring the discrepancy between the law of a given real-valued random variable F and that of its Gaussian counterpart N is arguably an important and recurrent problem both in probability and statistics. For instance, one faces this situation when trying to prove a central limit type theorem, or when wanting to check the asymptotic normality of an estimator. And quite often, the choice of a suitable probability metric reveals to be a crucial step.

In the present paper, we are concerned with this question within the framework of the Malliavin calculus. More precisely, we will focus on the Wiener chaos of a given order and, as a way to measure the proximity betweens laws, we will work either with the L r -distance between densities (especially for r = 1 and r = ∞), or with the relative entropy D(F N),

or with the relative Fisher information J(F ) -1. These three notions, that we will recall now, are strongly related to each other.

Let F be a centered real-valued random variable with unit variance and density p F . We suppose throughout that all needed assumptions on p F (such as its strictly positivity, differentiability, etc.) are always satisfied when required. Let also N ∼ N(0, 1) be standard Gaussian, with density p N (x) = e -x 2 /2 / √ 2π, x ∈ R. The L r -distance between densities of F and N is given by

p F -p N r = R |p F (x) -p N (x)| r dx 1 r , r ∈ [1, ∞);
(1.1)

p F -p N ∞ = sup x∈R |p F (x) -p N (x)| (assuming, say, that p F is continous).
Actually, in what follows we will only consider the particular cases r = 1 and r = ∞. This is because the bounds we will produce are going to be of the same order. So, a bound for the L r -distance will simply follow from the crude estimate:

p F -p N r p F -p N 1/r 1 p F -p N 1-1/r ∞ .
When r = 1 in (1.1), it is an easy exercise (sometimes referred to as the Scheffé's theorem) to show that p F -p N 1 = 2d T V (F, N), where d T V (F, N) is the total variation distance defined as

d T V (F, N) = sup A∈B(R) |P (F ∈ A) -P (N ∈ A)|. (1.2) 
It is clear from its very definition (1.2) that d T V (F, N) represents a strong measure on how close the laws of F and N are.

The relative entropy D(F N) of F with respect to N is given by

D(F N) = R p F (x) log(p F (x)/p N (x))dx. (1.3) 
Our interest in this quantity comes from its link with the total variation distance, as provided by the celebrated Csiszár-Kullback-Pinsker inequality, according to which:

2 d T V (F, N) 2 D(F N). (1.4) 
(In particular, note that D(F N) 0.) See, e.g., [START_REF] Bolley | Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities[END_REF] for a proof of (1.4) and original references.

Inequality (1.4) shows that bounds on the relative entropy translate directly into bounds on the total variation distance. Hence, it makes perfectly sense to quantify the discrepancy between the law of F and that of the standard Gaussian N in terms of its relative entropy. Actually, one can go even further by considering the Fisher information J(F ) of F . Let us recall its definition. Let s F (F ) denote the score associated to F . This is the F -measurable random variable uniquely determined by the following integration by parts:

E[φ ′ (F )] = -E[s F (F )φ(F )]
for all test function φ : R → R.

(1.5)

When it makes sense, it is easy to compute that s

F = p ′ F /p F . Set J(F ) = E[s F (F ) 2 ]
if the random variable s F (F ) is square-integrable and J(F ) = +∞ otherwise. In the former case, it is a straightforward exercise to check that

J(F ) -1 = E[(s F (F ) + F ) 2 ].
In particular, J(F ) 1 = J(N) with equality if and only if F is standard Gaussian. Our interest in the relative Fisher information J(F ) -1 comes from its link with the relative entropy through the following de Bruijn's formula (stated in an integral and rescaled version due to Barron [START_REF] Barron | Entropy and the central limit theorem[END_REF]; see also [START_REF] Johnson | Information theory and the central limit theorem[END_REF]Theorem C.1]). Assume, without loss of generality, that F and N are independent; then

D(F N) = 1 0 J( √ tF + √ 1 -tN) -1 2t dt. (1.6)
Since from, e.g., [START_REF] Johnson | Information theory and the central limit theorem[END_REF]Lemma 1.21] one has J(

√ tF + √ 1 -tN) tJ(F ) + (1 -t)J(N) = 1 + t(J(F ) -1), we deduce that D(F N) 1 2 (J(F ) -1). (1.7) 
By comparing (1.7) with (1.4), we observe that the gap between J(F ) and 1 = J(N) is an even stronger measure of how the law of F is close to the standard Gaussian N. This claim is even more supported by the Shimizu's inequality [START_REF] Shimizu | On Fisher's amount of information for location family[END_REF], which gives a L ∞ -bound between p F and p N provided p F is continuous and satisfies x 2 p F (x) → 0 as x → ±∞:

p F -p N ∞ J(F ) -1.
(1.8) (In the original statement of Shimizu [START_REF] Shimizu | On Fisher's amount of information for location family[END_REF], there is actually an extra factor (1 + 6/π) in the right-hand side of (1.8); but this latter was removed by Ley and Swan in [START_REF] Ley | Stein's density approach and information inequalities[END_REF]).

Let us now come to the description of the main results contained in the present paper. From now on, we will systematically assume that F belongs to a Wiener chaos H q of order q 2, that is, has the form of a qth multiple Wiener-Itô integral (see Section 2 below for precise definitions). Our first result is the following, with DF the norm of the Malliavin derivative of F (again, see Section 2 for details).

Theorem 1.1 Let q 2 be an integer and let F ∈ H q have variance one. Assume in addition that ε > 0 and η 1 satisfy

E[ DF -4-ε ] η.
(1.9)

Then, there exists a constant c > 0, depending on q, ε and η but not on F , such that

J(F ) -1 c(E[F 4 ] -3). (1.10)
In the next result, we take advantage of the conclusion (1.10) of Theorem 1.1 to complete the current state of the art related to the Fourth Moment Theorem of Nualart and Peccati [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF]. See also the discussion located just after the statement of Corollary 1.2.

Corollary 1.2 Fix an integer q 2, and let (F n ) ⊂ H q be a sequence of random variables satisfying E[F 2 n ] = 1 for all n. Then, the following four assertions are equivalent as n → ∞:

(a) E[F 4 n ] → 3; (b) F n law → N ∼ N(0, 1); (c) d T V (F n , N) = 1 2 p Fn -p N 1 → 0; (d) D(F n N) → 0.
Moreover, there exists c 1 , c 2 , c 3 , c 4 > 0 (independent of n) such that, for all n large enough,

c 1 max{|E[F 3 n ]|, E[F 4 n ] -3} d T V (F n , N) c 2 max{|E[F 3 n ]|, E[F 4 n ] -3} (1.11) c 3 E[F 4 n ] -3;
(1.12)

D(F n N) c 4 (E[F 4 n ] -3)| log(E[F 4 n ] -3)|. (1.13)
Suppose in addition that, for some ε > 0,

lim sup n→∞ E[ DF n -4-ε ] < ∞. (1.14)
Then, the four previous assertions (a) -(d) are equivalent to the following two further assertions:

(e) p Fn -p N ∞ → 0;

(f ) J(F n ) → 1.
More precisely, one has the existence of c 5 > 0 (independent of n) such that, for all n large enough, .16) Equivalence between (a) and (b) in Corollary 1.2 is known as the Fourth Moment Theorem. This striking result, discovered by Nualart and Peccati in [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF], has been the starting point of a new and fruitful line of research, consisting in using the Malliavin calculus to prove limit theorems. It has led to a burst of new research in many different fields, such as information theory [START_REF] Nourdin | Entropy and the fourth moment phenomenon[END_REF], stochastic geometry [START_REF] Lachièze-Rey | Fine Gaussian fluctuations on the Poisson space I: contractions, cumulants and random geometric graphs[END_REF][START_REF] Reitzner | Central Limit Theorems for U-statistics of Poisson Point Processes[END_REF], Markov operator [START_REF] Azmoodeh | Fourth Moment Theorems for Markov Diffusion Generators[END_REF][START_REF] Ledoux | Chaos of a Markov operator and the fourth moment condition[END_REF], random matrices of large size [START_REF] Nourdin | Universal Gaussian fluctuations of non-Hermitian matrix ensembles: from weak convergence to almost sure CLTs[END_REF], free probability [START_REF] Kemp | Wigner chaos and the fourth moment[END_REF][START_REF] Nourdin | Poisson approximations on the free Wigner chaos[END_REF], q-calculus [START_REF] Arizmendi | Convergence of the fourth moment and infinite divisibility[END_REF][START_REF] Deya | Nourdin: Fourth Moment Theorem and q-Brownian Chaos[END_REF], computer science [START_REF] De | Deterministic Approximate Counting for Juntas of Degree-2 Polynomial Threshold Functions[END_REF][START_REF] De | Efficient deterministic approximate counting for low-degree polynomial threshold function[END_REF], cosmology [START_REF] Marinucci | Ergodicity and Gaussianity for Spherical Random Fields[END_REF][START_REF] Marinucci | On Nonlinear Functionals of Random Spherical Eigenfunctions[END_REF], statistics [START_REF] Bardet | Moment bounds and central limit theorems for Gaussian subordinated arrays[END_REF][START_REF] Hu | Parameter estimation for fractional Ornstein-Uhlenbeck processes[END_REF], or spin glasses [START_REF] Nourdin | Comparison inequalities on Wiener space[END_REF][START_REF] Viens | Stein's lemma, Malliavin calculus, and tail bounds, with application to polymer fluctuation exponent[END_REF], to name a few. One can also consult the constantly updated webpage http://www.iecn.u-nancy.fr/~nourdin/steinmalliavin.htm for literally hundreds of results related to the Fourth Moment Theorem and its ramifications.

p Fn -p N 2 ∞ c 5 (E[F 4 n ] -3) (1.15) J(F n ) -1 c 5 (E[F 4 n ] -3). ( 1 
Equivalence between (a) and (c) in Corollary 1.2, coming from the bound (1.12), is due to Nourdin and Peccati [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF]. By combining Malliavin calculus with the Stein's method, they were indeed able to show that, for any random variable

F ∈ H q such that E[F 2 ] = 1, d T V (F, N) 2E|1 - 1 q DF 2 | 4q -4 3q E[F 4 ] -3, (1.17) 
see [START_REF] Nourdin | Normal Approximations using Malliavin Calculus: from Stein's Method to the Universality[END_REF]Theorem 5.2.6]. (Note that E[F 4 ] > 3 in (1.17): see, e.g., [START_REF] Nourdin | Normal Approximations using Malliavin Calculus: from Stein's Method to the Universality[END_REF]Lemma 5.2.4].) The refinement (1.11) of (1.12), leading to optimal rates, is taken from [START_REF] Nourdin | The optimal fourth moment theorem[END_REF].

Equivalence between (a) and (d) in Corollary 1.2, as well as the bound (1.13), was shown by Nourdin, Peccati and Swan in [START_REF] Nourdin | Entropy and the fourth moment phenomenon[END_REF]. Their strategy of proof relied on the discovery a novel representation formula for the relative entropy, namely,

D(F N) = 1 2 1 0 t 1 -t E E[N(1 - 1 q DF 2 )| √ tF + √ 1 -tN] 2 dt
for any F ∈ H q with unit variance and where N ∼ N(0, 1) is supposed to be independent of F . When (1.14) is satisfied for ε = 2, the inequality (1.15) (leading to the equivalence between (a) and (e) in Corollary 1.2) was proved by Hu, Lu and Nualart in [START_REF] Hu | Convergence of densities of some functionals of Gaussian processes[END_REF], after adapting Stein's method to handle the supremum distance. Note that combining our Theorem 1.1 with Shimizu inequality (1.8) allows to recover (1.15) (which corresponds to Theorem 4.1 in [START_REF] Hu | Convergence of densities of some functionals of Gaussian processes[END_REF]).

Finally, inequality (1.16) (leading to the equivalence between (a) and (f ) in Corollary 1.2) is new and will be a direct consequence of Theorem 1.1. It is worth noting at this stage that validity of (1.9) is, unfortunately, far to be a small assumption. Let us discuss this point a little bit more. As it is well-known, the Bouleau-Hirsch criterion (see, e.g., [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]Theorem 2.1.3]) asserts that any (smooth and bounded enough) random variable F in the Wiener space admits a density as soon as P ( DF > 0) = 1. This latter condition is always satisfied for F ∈ H q with unit variance, see [START_REF] Shigekawa | Derivatives of Wiener functionals and absolute continuity of induced measures[END_REF]. In fact, one can prove a far better statement, see [29, (3.19)]: there exists a constant c q > 0 such that, for all x > 0 and all F ∈ H q with unit variance,

P ( DF 2 x) ≥ 1 -c q x 1 2q-2 .
(1.18)

As a consequence, using that

E[ DF -r ] = ∞ 0 P ( DF 2 u -2 r )du 1 + ∞ 1 P ( DF 2 u -2 r )du, (1.19) 
one deduces from (1.18) that, for all F ∈ H q with unit variance,

E[ DF -r ] 1 + c q 1 r(q-1) -1 provided r < 1 q-1 . (1.20)
Unfortunately, one cannot deduce (1.14) from (1.20). It means that verifying (1.14) has to be made on a case-by-case basis, and heavily depends on the particular sequence (F n ) we are dealing with. In [START_REF] Hu | Convergence of densities of some functionals of Gaussian processes[END_REF], one can find an application for the least squares estimator of the parameter θ in the Ornstein-Uhlenbeck process dX t = θX t dt + dW t , where W is a standard Brownian motion. In the present paper, we consider a more involved application to the quadratic variation of a fractional Brownian motion B H of index H. We obtain optimal rates for the relative Fisher information when H < 5 8 , and (possibly suboptimal) rates when H < 3 4 . More precisely, let us introduce the so-called fractional Gaussian noise associated with B H , which is the Gaussian sequence given by

ξ k = B H (k + 1) -B H (k), k ∈ N ∪ {0}.
(1.21)

Set

F n := 1 √ n v n n-1 k=0 (ξ 2 k -1), (1.22) 
with

v n > 0 chosen so that E[F 2 n ] = 1.
It is well-known (it is indeed a very particular case of the Breuer-Major Theorem [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF], see also [START_REF] Nourdin | Selected Aspects of Fractional Brownian Motion[END_REF]Theorem 7.2]) that, as n → ∞,

F n law → N(0, 1) ⇐⇒ H ∈ (0, 3/4].
(1.23)

In Section 4, we will show that (1.14) is satisfied for F n defined by (1.22). Then, as a consequence of (1.15) and (1.16) on one hand and of the estimates for E[F 4 n ] -3 computed in [START_REF] Biermé | Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants[END_REF] on the other hand, we will be able to deduce the following local limit theorem for F n .

Theorem 1.3 Let F n be as in (1.22). Then, their exists c, C > 0 independent of n such that, for all n large enough,

p Fn -p N ∞ J(F n ) -1 C ×    n -1 2 if 0 < H < 5 8 n -1 2 log 3 2 n if H = 5 8 n 4H-3 if 5 8 < H < 3 4 and J(F n ) -1 c n -1 2 if H < 5 8 .
A brief outline of the paper is as follows. In Section 2, we introduce the language of the Malliavin calculus, which is the framework in which our study takes place. We also recall the Carbery-Wright inequality, which will play a key role in the proof of Theorem 1.3. Proofs of Theorem 1.1 and Corollary 1.2 are presented in Section 3. Finally, Section 4 contains the proof of Theorem 1.3.

Notation and preliminaries

The language of Gaussian analysis and Malliavin calculus

We start by briefly recalling some basic notation and results connected to Gaussian analysis and Malliavin calculus. The reader is referred to [START_REF] Nourdin | Normal Approximations using Malliavin Calculus: from Stein's Method to the Universality[END_REF][START_REF] Nualart | The Malliavin calculus and related topics[END_REF] for details or missing proofs.

Let H be a real separable Hilbert space with inner product •, • H . The norm of H will be denoted by • = • H . Recall that we call isonormal Gaussian process over H any centered Gaussian family X = {X(h) : h ∈ H}, defined on a probability space (Ω, F , P ) and such that E[X(h)X(g)] = h, g H for every h, g ∈ H. Assume from now on that F is the σ-field generated by X.

For any integer q ∈ N ∪ {0}, we denote by H q the qth Wiener chaos of X. We recall that H 0 is simply R whereas, for any q 1, H q is the closed linear subspace of L 2 (Ω) generated by the family of random variables {H q (X(h)), h ∈ H, h H = 1}, with H q the qth Hermite polynomial given by

H q (x) = (-1) q e x 2 2 d q dx q e -x 2 2 .
For any q 1, we denote by H ⊗q (resp. H ⊙q ) the qth tensor product (resp. the qth symmetric tensor product) of H. Then, the mapping I q (h ⊗q ) = H q (X(h)) can be extended to a linear isometry between H ⊙q (equipped with the modified norm √ q! • H ⊗q ) and H q . For q = 0 and x ∈ R, we write I 0 (x) = x. In the particular case where H = L 2 (A, A , µ), where (A, A ) is a measurable space and µ is a σ-finite and non-atomic measure, one has that H ⊙q = L 2 s (A q , A ⊗q , µ ⊗q ) is the space of symmetric and square integrable functions on A q . Moreover, for every f ∈ H ⊙q , the random variable I q (f ) coincides with the multiple Wiener-Itô integral (of order q) of f with respect to X.

Recall that L 2 (Ω) = ∞ q=0 H q , meaning that every square-integrable random variable F measurable with respect to F admits a unique decomposition of the type

F = E[F ] + ∞ q=1 I q (f q ), (2.24) 
where the series converges in L 2 (Ω), and f q ∈ H ⊙q , for q 1. Identity (2.24) is the socalled Wiener-Itô chaotic decomposition of F . According to a classical result of Shigekawa [START_REF] Shigekawa | Derivatives of Wiener functionals and absolute continuity of induced measures[END_REF], when F is not zero and when the kernels f q in (2.24) all equal zero except for a finite number, then the distribution of F necessarily admits a density with respect to the Lebesgue measure.

Let {e i , i 1} be a complete orthonormal system in H. Given f ∈ H ⊙p and g ∈ H ⊙q , for every r = 0, . . . , p ∧ q, the contraction of f and g of order r is the element of H ⊗(p+q-2r) defined by

f ⊗ r g = ∞ i 1 ,...,ir=1 f, e i 1 ⊗ • • • ⊗ e ir H ⊗r ⊗ g, e i 1 ⊗ • • • ⊗ e ir H ⊗r .
Note that, in the particular case where H = L 2 (A, A , µ) (with µ non-atomic), one has that (f ⊗ r g)(t 1 , . . . , t p+q-2r ) = A r f (t 1 , . . . , t p-r , s 1 , . . . , s r ) g(t p-r+1 , . . . , t p+q-2r , s 1 , . . . , s r )dµ(s 1 ) . . . dµ(s r ).

Moreover, f ⊗ 0 g = f ⊗ g equals the tensor product of f and g while, for p = q, f ⊗ p g = f, g H ⊗p . The contraction f ⊗ r g is not necessarily symmetric, and we denote by f ⊗ r g its symmetrization. We have the following product formula: if f ∈ H ⊙p and g ∈ H ⊙q then

I p (f )I q (g) = p∧q r=0 r! p r q r I p+q-2r (f ⊗ r g).
(2.25)

We will now introduce some standard operators from Malliavin calculus. Let S be the set of all cylindrical random variables of the form

F = g(X(h 1 ), . . . , X(h n )),
where n 1, h i ∈ H, and g is infinitely differentiable such that all its partial derivatives have polynomial growth. The Malliavin derivative of F is the element of L 2 (Ω; H) defined by

DF = n i=1 ∂g ∂x i (X(h 1 ), . . . , X(h n ))h i .
By iteration, for every m 2, we define the mth derivative D m F which is an element of L 2 (Ω; H ⊙m ). For m 1 and p 1, D m,p denote the closure of S with respect to the norm • m,p defined by

F p m,p = E[|F | p ] + m j=1 E D j F p H ⊗j .
One can then extend the definition of D m to D m,p . When m = 1, one simply write D instead of D 1 . As a consequence of the hypercontractivity property of the Ornstein-Uhlenbeck semigroup (see, e.g., [24, Theorem 2.7.2]), all the • m,p -norms are equivalent in any finite sum of Wiener chaoses. This is a crucial result that will be used all along the paper.

The Malliavin derivative D satisfies the following chain rule: if ϕ : R n → R is in C 1 b (that is, belongs to the set of continuously differentiable functions with a bounded derivative) and if {F i } i=1,...,n is a vector of elements of D 1,2 , then ϕ(F 1 , . . . , F n ) ∈ D 1,2 and

Dϕ(F 1 , . . . , F n ) = n i=1 ∂ϕ ∂x i (F 1 , . . . , F n )DF i .
Also, when H = L 2 (A, A , µ) (with µ non-atomic), one has, for any f ∈ L 2 s (A q , A ⊗q , µ ⊗q ),

D x (I q (f )) = qI q-1 (f (•, x)), x ∈ A.
The divergence operator δ, which will play a crucial role in our approach, is defined as the adjoint of D. Denoting by dom δ its domain, one has the so-called integration by parts formula: for every D ∈ D 1,2 and every u ∈ domδ,

E[F δ(u)] = E[ DF, u H ].
(2.26)

We will moreover need the following two properties. For every F ∈ D 1,2 and every u ∈ domδ such that F u and F δ(u) + DF, u H are square integrable, one has that F u ∈ domδ and

δ(F u) = F δ(u) -DF, u H . (2.27)
Also, one has a commutation relationship between the Malliavin derivative and the Skorohod integral:

Dδ(u) = u + δ(Du), (2.28) 
for any u ∈ D 2,2 (H). In particular, for such an u,

E[δ(u) 2 ] = E[ u 2 H ] + E[ Du 2 H ⊗2 ]. (2.29) 

Carbery-Wright inequality

In the proof of Theorem 1.3, we will make use of the following inequality due to Carbery and Wright [8, Theorem 8]: there is an absolute constant c > 0 such that, for any d, n 1, any polynomial Q : R n → R of degree at most d and any Gaussian random vector (X 1 , . . . , X n ),

E[|Q(X 1 , . . . , X n )|] 1 d P (|Q(X 1 , . . . , X n )| x) c d x 1 d , x > 0.
(2.30)

Proofs of Theorem 1.1 and Corollary 1.2

In what follows, c denote positive constants which may depend of q, ε and η but not of F , and whose values may change from one appearance to the next. Also, •, • ( • , respectively) always stands for inner product (the norm, respectively) in an appropriate tensor product H ⊗s .

Proof of Theorem 1.1

Observe first that, without loss of generality, we may and will assume that X is an isonormal process over some Hilbert space of the type H = L 2 (A, A , µ) (with µ non atomic).

Due to (1.9) and the fact that F has moments of all order by hypercontractivity, it is straightforward to check that DF DF -2 ∈ domδ with E[δ(DF DF -2 ) 2 ] < ∞. Let φ : R → R be a test function. We have, on one hand,

E[δ(DF DF -2 )φ(F )] = E[ Dφ(F ), DF DF -2 ] = E[φ ′ (F )].
After setting Σ = 1 -1 q DF 2 and because δDF = qF for any F ∈ H q , we deduce from (1.5) that

s F (F ) + F = -E δ DF DF -2 - 1 q F = -E δ(DF DF -2 Σ) F .
Using the formula

δ(GDF ) = Gδ(DF ) -DF, DG = qF G -DF, DG , one can write for G = DF -2 Σ, -δ(DF DF -2 Σ) = -qF DF -2 Σ + DF, DG .
Notice that

DG = -2 DF -4 (D 2 F ⊗ 1 DF )Σ - 2 q DF -2 (D 2 F ⊗ 1 DF ).
Therefore,

DF, DG = -2 DF -4 D 2 F, DF ⊗ DF )Σ - 2 q DF -2 DF, D 2 F ⊗ 1 DF .
This leads to the estimate

| DF, DG | ≤ 2 DF -2 D 2 F |Σ| + 2 q DF -1 D 2 F ⊗ 1 DF .
As a consequence,

δ(DF DF -2 Σ) 2 ≤ 2q 2 F 2 DF -4 Σ 2 +16 DF -4 D 2 F 2 Σ 2 + 16 q 2 DF -2 D 2 F ⊗ 1 DF 2 .
Thus, using among other properties the hypercontractivity for F , D 2 F 2 and Σ,

J(F ) -1 = E[(s F (F ) + F ) 2 ] E δ(DF DF -2 Σ) 2 c E[ DF -4-ε ] 4 4+ε E[Σ 2 ] + E[Σ 2 ]E[ D 2 F 4 ] 1 2 + E[ D 2 F ⊗ 1 DF 4 ] 1 2 . (3.31)
Now, use the product formula to get that, for any x ∈ A,

(D 2 F ⊗ 1 DF )(x) = q 2 (q -1) A I q-2 (f (x, y, •))I q-1 (f (y, •))dµ(y) = q 2 (q -1) q-2 r=0 r! q -1 r q -2 r I 2q-3-2r A f (x, y, •) ⊗ r f (y, •)dµ(y) = q 2 (q -1) q-1 r=1 (r -1)! q -1 r -1 q -2 r -1 I 2q-1-2r ((f ⊗ r f )(x, •)).
As a result, using again the product formula and with c q,r,s,a some constant whose exact value is useless here,

D 2 F ⊗ 1 DF 2 = q-1 r,s=1 2q-1-2(r∨s) a=0 c q,r,s,a I 4q-2-2r-2s-2a A (f ⊗ r f )(x, •) ⊗ a (f ⊗ s f )(x, •) dµ(x) ,
implying in turn

E D 2 F ⊗ 1 DF 4 c q-1 r,s=1 2q-1-2(r∨s) a=0 A (f ⊗ r f )(x, •) ⊗ a (f ⊗ s f )(x, •) dµ(x) 2 c q-1 r,s=1 2q-1-2(r∨s) a=0 A (f ⊗ r f )(x, •) ⊗ a (f ⊗ s f )(x, •) dµ(x) 2 c q-1 r,s=1 A (f ⊗ r f )(x, •) (f ⊗ s f )(x, •) dµ(x) 2 c q-1 r=1 A (f ⊗ r f )(x, •) 2 dµ(x) 2 = c q-1 r=1 f ⊗ r f 2 2 c(E[F 4 ] -3) 2 ,
the last inequality following from [24, identities (5.2.5)-(5.2.6)]. On the other hand, we can also write

D 2 F 2 = q 2 (q -1) 2 A 2 I q-2 (f (x, y, •)) 2 dµ(x)dµ(y) = q 2 (q -1) 2 q-2 r=0 r! q -2 r 2 I 2q-4-2r A 2 f (x, y, •) ⊗ r f (x, y, •)dµ(x)dµ(y) = q 2 (q -1) 2 q r=2 (r -2)! q -2 r -2 so that, using moreover that f ⊗ r f 2 f 4 = 1/q! 2 , E[ D 2 F 4 ] = q 4 (q -1) 4 q r=2 (r -2)! 2 q -2 r -2 4 (2q -2r)! f ⊗ r f 2 c.
Finally, recall from [START_REF] Nourdin | Normal Approximations using Malliavin Calculus: from Stein's Method to the Universality[END_REF]Lemma 5.2.4] that E[Σ 2 ]

q-1 3q (E[F 4 ] -3). Hence, by plugging all the previous estimates in (3.31), one finally obtains the desired inequality (1.10). ✷

Proof of Corollary 1.2

As we said in the Introduction, the equivalences between (a), (b), (c), (d) and (e) (provided (1.9) holds true for the latter one), as well as the estimates (1.11) and (1.13), are straightforward consequences of the main results contained in [START_REF] Hu | Convergence of densities of some functionals of Gaussian processes[END_REF], [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], [START_REF] Nourdin | Entropy and the fourth moment phenomenon[END_REF] and [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF]. Note in passing that Shimizu's inequality (1.8) indeed takes place for the random variable we are considering. This is because, if F ∈ H q satisfies E[ DF -4-ε ] < ∞ then, by [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]Proposition 2.1.1], F has a continuous density given by

p F (x) = E[1 {F >x} δ(DF DF -2 )].
Hence, using moreover that E[δ(DF DF -2 )] = 0, one deduces that

p 2 F (x) P (|F | > x)E[δ(DF DF -2 ) 2 ] |x| -r E |F | r E[δ(DF DF -2 ) 2 ],
implying in turn that p(x) = o(|x| -n ) as |x| → ∞.

The equivalencebetween (f ) and (a), provided condition (1.14) is fulfilled, follows immediately from Theorem 1.1 (for one implication) and the fact that bounds on the Fisher information translates directly into bounds on the total variation distance through (1.10) and (1.4) (for the other implication).

Inequality (1.16) also follows immediately from (1.10). ✷

4 Proof of Theorem 1.3

Preparation to the proof

For F n as in the statement, recall from [START_REF] Biermé | Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants[END_REF][START_REF] Nourdin | The optimal fourth moment theorem[END_REF] that their exist c, C > 0 independent of n such that, for all n large enough,

E[F 4 n ] -3 C ×    n -1 if 0 < H < 5 8 n -1 log 3 n if H = 5 8 n 8H-6 if 5 8 < H < 3 4 12 and d T V (F n , N) c n -1 if H > 5 8
. Assume for an instant that (1.14) has been checked. Then, as far as the upper (resp. lower) bound is concerned, the desired conclusion directly follows from (1.15) and (1.16) (from (1.4) and (1.7), respectively).

So, in order to complete the proof of Theorem 1.3, it remains to check that (1.9) holds true.

Checking (1.9)

For simplicity, throughout all the proof, we write B instead of B H to indicate the fractional Brownian motion of index H ∈ (0, 1) we are dealing with. We know that B has an integral representation of the form

B t = t 0 K 1 (t, s)dW s , t 0, (4.32) 
where {W t , t ≥ 0} is a standard Brownian motion. By convention we will assume that

K 1 (t, s) = 0 if t ≤ s. Also, we set ∆K 1 (t, s) = K 1 (t, s) -K 1 (t -1, s).
Recall the definition (1.21) of ξ k and the definition (1.22) of F n . We claim that, for any p ≥ 1, there exist n 0 such that

sup n≥n 0 E( DF n -p ) < ∞. (4.33) 
Note that (4.33) implies (1.14). The proof of our claim (4.33) is based on the following approach. First we will derive a lower bound for DF n 2 (in distribution) denoted by B n and defined in (4.34), which can be expressed as the sum of the square norms of n Gaussian random variables. Then, we fix an integer N ≥ 1 and we decompose B n into the sum of N blocks B i n , i = 0, . . . , N -1 of size [n/N]. The basic inequality (4.35) reduces the problem to estimate negative moments of order p N of each block B i n , provided these blocks are independent. These negative moments can be estimated by the Carbery-Wright inequality if N is large enough. Actually, the blocks are not independent, but we can control the conditional expectation of each block given the previous ones, using the properties of the fractional Brownian motion. Then, it suffices to show that these conditional expectations do not vanish as n tends to infinity (condition (4.40)), which is done in the two final steps of the proof.

The random variables ξ k form a centered stationary Gaussian sequence with covariance

ρ(k) = E[ξ r ξ r+k ] = 1 2 |k + 1| 2H + |k -1| 2H -2|k| 2H .
We can thus write, with D the Malliavin derivative with respect to B,

DF n 2 = 4 nv n n j,k=1 ξ j ξ k ρ(j -k).
Suppose that { ξ j , 1 ≤ j ≤ n} is an independent copy of the sequence {ξ j , 1 ≤ j ≤ n}. Then,

DF n 2 = 4 nv n E   n j=1 ξ j ξ j 2   ,
with obvious notations. The sequence ξ j can be chosen of the form ξ j = B j -B j-1 , where B is a fractional Brownian motion of Hurst index H which is independent of B. We know that B has a representation of the form (different in nature from (4.32))

B t = κ H t 0 (t -s) H-1 2 d W s + Z t ,
where W is a standard Brownian motion (independent of W ), Z is a process independent of W (and of W ) and κ H is a constant only depending on H. We set K 2 (t) = t H-1 2 if t > 0 and K 2 (t) = 0 if t ≤ 0, and ∆K 2 (t) = K 2 (t) -K 2 (t -1). With this notation we can write

ξ j = κ H j 0 ∆K 2 (j -s)d W s + Z j -Z j-1 .
As a consequence, and since

v n = 2 n n k,l=1 ρ(k -l) 2 2 j∈Z ρ(j) 2 < ∞ for H ∈ (0, 3 4 ), DF n 2 = c H n E   n j=1 ξ j j 0 ∆K 2 (j -s)d W s 2   = c H n E   n j=1 ξ j j h=1 h h-1 ∆K 2 (j -s)d W s 2   = c H n E   n h=1 h h-1 n j=h ξ j ∆K 2 (j -s) d W s 2   = c H n n h=1 h h-1 n j=h ξ j ∆K 2 (j -s) 2 ds.
Making a change of indices, we obtain

DF n 2 ≥ A n := c H n n h=1 n-h+1 n-h h j=1 ξ n-j+1 ∆K 2 (n -j + 1 -s) 2 ds.
The sequences {ξ j , 1 ≤ j ≤ n} and {ξ n-j+1 , 1 ≤ j ≤ n} have the same law, so A n has the same law as With the change of variable s → n + 1 -s, we get

B n := c H n n h=1 n-h+1 n-h h j=1 ξ j ∆K 2 (n -j + 1 -s)
B n = c H n n h=1 h+1 h h j=1 ξ j ∆K 2 (s -j) 2 ds.
Fix an integer N ≥ 1 and let M = [n/N] be the integer part of n/N. Then, n ≥ NM. As a consequence,

B n ≥ c H n N -1 i=0 (i+1)M h=iM +1 h+1 h h j=1 ξ j ∆K 2 (s -j) 2 ds.
Set

B i n = c H n (i+1)M h=iM +1 h+1 h h j=1 ξ j ∆K 2 (s -j) 2 
ds, i = 0, . . . , N -1.

We are going to use the estimate

(B n ) -p ≤ N -1 i=0 (B i n ) -p N . (4.35) 
Consider again the representation of the sequence ξ as stochastic integrals with respect to a Brownian motion W , and denote by {F W t } the filtration generated by the Brownian motion W . Then,

E[(B n ) -p ] ≤ E N -1 i=0 (B i n ) -p N = E E[(B N -1 n ) -p N |F W (N -1)M ] N -2 i=0 (B i n ) -p N . ( 4 

.36)

Let us estimate the conditional expectation appearing in the right-hand side. In the same spirit that (1.19), it is immediate that

E[(B N -1 n ) -p N |F W (N -1)M ] ≤ 1 + p N 1 0 P B N -1 n x|F W (N -1)M x -p N -1 dx.
By Carbery-Wright's inequality (2.30) with d = 2,

P B N -1 n x|F W (N -1)M ≤ c √ x E B N -1 n |F W (N -1)M -1 d . (4.37) The conditional expectation E B N -1 n |F W (N -1)M
is given by

E B N -1 n |F W (N -1)M = c H n N M h=(N -1)M +1 h+1 h E   h j=1 ξ j ∆K 2 (s -j) 2 |F W (N -1)M   ds. (4.38)
Taking into account that the sequence ξ j is Gaussian, the conditional expectation appearing in the above equation can be bounded below by the conditional variance which is not random. More precisely, 

E   h j=1 ξ j ∆K 2 (s -j) 2 |F W (N -1)M   ≥ Var h j=1 ξ j ∆K 2 (s -j) F W (N -1)M = E     h j=(N -1)M +1 j (N -1)M ∆K 1 (j, u)dW u ∆K 2 (s -j)   2   . ( 4 
i = 0, . . . , N -1, lim inf M →∞ 1 M (i+1)M h=iM +1 h+1 h E   h j=iM +1 j iM ∆K 1 (j, u)dW u ∆K 2 (s -j) 2   ds > 0. (4.40)
Proof of (4.40). First we compute the expectation in (4.40):

E   h j=iM +1 j iM ∆K 1 (j, u)dW u ∆K 2 (s -j) 2   = h j,k=iM +1 ∆K 2 (s -j)∆K 2 (s -k) j∧k iM ∆K 1 (j, u)∆K 1 (k, u)du. Set β M j,k = j∧k iM ∆K 1 (j, u)∆K 1 (k, u)du.
We can write, exchanging the order of the summation

(i+1)M h=iM +1 h j,k=iM +1 h+1 h ∆K 2 (s -j)∆K 2 (s -k)ds β M j,k = (i+1)M j,k=iM +1 (i+1)M h=j∨k h+1 h ∆K 2 (s -j)∆K 2 (s -k)ds β M j,k = (i+1)M j,k=iM +1 α M j,k β M j,k , where α M j,k = (i+1)M +1 j∨k ∆K 2 (s -j)∆K 2 (s -k)ds.
Then we are interested in the liminf, as M tends to infinity, of

1 M (i+1)M j,k=iM +1 α M j,k β M j,k .
We make now the change of indices j → j -iM and k → k -iM and we obtain the expression

Ψ M := 1 M M j,k=1 α M j,k β M j,k , where 
β M j,k = (j+iM )∧(k+iM ) iM ∆K 1 (j + iM, u)∆K 1 (k + iM, u)du = j∧k 0 ∆K 1 (j + iM, u + iM)∆K 1 (k + iM, u + iM)du, and 
α M j,k = M +1 j∨k ∆K 2 (s -j)∆K 2 (s -k)ds.
Step 1: Case H > 1 2 . In this case ∆K 1 and ∆K 2 are nonnegative. On the other hand, by [30, (5.10)], we have

∂K 1 ∂t (t, s) = c H (t/s) H-1 2 (t -s) H-3 2 ,
where c H =

H(2H-1) β(2-2H,H-1/2) . Therefore, assuming j ≥ k ≥ 2, β M j,k ≥ k-1 1 ∆K 1 (j + iM, u + iM)∆K 1 (k + iM, u + iM)du ≥ c 2 H k-1 1 j+iM j+iM -1 x u + iM H-1 2 (x -u -iM) H-3 2 dx × k+iM k+iM -1 y u + iM H-1 2 (y -u -iM) H-3 2 dy du ≥ c 2 H k-1 1 (j + iM -1)(k + iM -1) (u + iM) 2 H-1 2 (j -u) H-3 2 (k -u) H-3 2 du.
The term (j+iM -1)(k+iM -1)

(u+iM ) 2 is lower bounded by 1. Therefore

β M j,k ≥ c 2 H k-1 1 (j -u) H-3 2 (k -u) H-3 2 du = c 2 H k-1 1 (x + j -k) H-3 2 x H-3 2 dx ≥ c 2 H k-1 1 (x + j -k) 2H-3 dx = C (j -k + 1) 2H-2 -(j -1) 2H-2 .
By similar arguments we obtain, assuming again j ≥ k ≥ 2, α M j,k ≥ terms, we can get a lower bound as in the case H > 1 2 . When j = k, the integrands in the definition of β M j,k and α M j,k are nonnegative. On the other hand, for j ≥ k + 1, we can write In this way we obtain the decomposition

α M j,k = α M j,k,1 + α M j,k,2 , where α M j,k,1 = j+1 j (s -j) H-1 2 (s -k) H-1 2 -(s -k -1) H-1 2 ds ≤ 0,
Ψ M = 1 M M j=1 α M j,j β M j,j + 2 M 1≤k≤j-1≤M -1 α M j,k,1 + α M j,k,2 β M j,k,1 + β M j,k,2 = Ψ 1 M + Ψ 2 M + Ψ 3 M , where 
Ψ 1 M = 1 M M j=1 α M j,j β M j,j + 2 M 1≤k≤j-1≤M -1 α M j,k,1 β M j,k,1 + α M j,k,2 β M j,k,2 , Ψ 2 M = 2 M 1≤k≤j-1≤M -1 α M j,k,1 β M j,k,2 ,
and

Ψ 3 M = 2 M 1≤k≤j-1≤M -1 α M j,k,2 β M j,k,1 .
The term Ψ 1 M is nonnegative and it can be bounded below as follows

Ψ 1 M ≥ 2 M 2≤k≤j-1≤M -1 M +1 j+2 ∆K 2 (s -j)∆K 2 (s -k)ds × k-1 1 
∆K 1 (j + iM, u + iM)∆K 1 (k + iM, u + iM)du .

By the same arguments as in the case H > 1 2 we can show that lim inf M →∞ Ψ 1 M > 0. Therefore, it suffices to show that [(s -j) H-1 2 -(s -j -1)

H-1 2 ][(s -k) H-1 2 -(s -k -1) H-1 2 ]ds = M +1-j 1 [x H-1 2 -(x -1) H-1 2 ][(x + j -k) H-1 2 -(x + j -k -1) H-1 2 ]dx ≤ C + M +1-j 2 [x H-1 2 -(x -1) H-1 2 ][(x + j -k) H-1 2 -(x + j -k -1) H-1 2 ]dx ≤ C + C H M +1-j 2 (x -1) H-3 2 (x + j -k -1) H-3 2 dx ≤ C + C H M +1-j 2 (x -1) 2H-3 dx ≤ C ′ .
On the other hand, we have

| α M j,k,1 | ≤ 1 0 x H-1 2 j -k + x -1) H-1 2 -(j -k + x) H-1 2 dx = 1 3 2 -H 1 0 x H-1 2 j-k j-k-1 (u + x) H-3 2 du dx ≤ 1 ( 3 2 -H)( 1 2 + H) (j -k -1) H-3 2 ,
and

| β M j,k,1 | ≤ k k-1 K 1 (k + iM, u + iM)|∆K 1 (j + iM, u + iM)|du = c H k k-1 K 1 (k + iM, u + iM) j+iM j+iM -1 x u + iM H-1 2 (x -u -iM) H-3 2 dx du ≤ c H j + iM -1 k + iM H-1 2 k k-1 K 1 (k + iM, u + iM) j j-1 (x -u) H-3 2 dx du ≤ C(j -k -1) H-3 2 ,
because j+iM -1 k+iM 1, the integral 

∆K 2 1 K 1 ∆K 1

 2111 (s -j)∆K 2 (s -k)ds ≥ 0. Similarly β M j,k = β M j,k,1 + β M j,k,2 , (k + iM, u + iM)∆K 1 (j + iM, u + iM)du ≤ 0, (k + iM, u + iM)∆K 1 (j + iM, u + iM)du ≥ 0.

1 iM∆K 1 iM +k- 1 iM∆K 1 1 iM∆K 1 0 ∆K 1 0 ∆K 1

 1111110101 limits are based on the following estimates. One one hand, β M j,k,2 and α M j,k,2 are uniformly bounded:β M j,k,2 = iM +k-(k + iM, u)∆K 1 (j + iM, u)du ≤ (k + iM, u) 2 du iM +k-(j + iM, u) 2 du ≤ k+iM (k + iM, u) 2 du j+iM (j + iM, u) 2 du = E(|B k+iM -B k+iM -1 | 2 ) E(|B j+iM -B j+iM -1 | 2 ) = 1,

j j- 1 1 K 1

 111 (x -u) H-3 2 dx is bounded by (j -k -1) H-3 2 uniformly in u ∈ [k -1, k], and sup (k + iM, u + iM)du < ∞,as it can be easily checked from the expression of K 1 . Finally,lim M →∞ 1 M 1≤k≤j-2≤M -2 (j -k -1) H-3 2 = 0,which implies both (4.41) and (4.42).

I 2q-2r (f ⊗ r f ),
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other terms in the above expression converge to zero. For instance,

and this last quantity behaves as M 4H-3 , which converges to zero because H < 3 4 . A similar analysis can be done for the other terms.

Step 2: Case H < 1 2 . In this case, see [30, (5.23)], we have that

is negative. Therefore ∆K 1 (j, s) is negative if s < j -1 and positive if j -1 s j. Also,

and ∆K 2 (u) is negative if u 1 and positive if u < 1. Then, it suffices to show that the negative terms do not contribute to the limit, and once we get rid of these negative