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Summary. This paper introduces a new Markov Chain Monte Carlo method to perform

Bayesian variable selection in high dimensional settings. The algorithm is a Hastings-

Metropolis sampler with a proposal mechanism which combines (i) a Metropolis adjusted

Langevin step to propose local moves associated with the differentiable part of the target

density with (ii) a shrinkage-thresholding step based on the non-differentiable part of the tar-

get density which provides sparse solutions such that small components are shrunk toward

zero. This allows to sample from distributions on spaces with different dimensions by actually

setting some components to zero. The performances of this new procedure are illustrated

with both simulated and real data sets. The geometric ergodicity of this new transdimen-

sional Markov Chain Monte Carlo sampler is also established.

Keywords: Markov Chain Monte Carlo, Proximal operators, MALA, Bayesian variable

selection, Sparsity

1. Introduction

This paper considers the long-standing problem of Bayesian variable selection in a linear

regression model. Variable selection is a complicated task in high dimensional settings
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where the number of regression parameters P is much larger than the number of obser-

vations N . In this context, it is crucial to introduce sparsity assumptions based on the

prior knowledge that only a few number of regression parameters are significant. Using

a sequence of observations from a linear regression model, the aims are (i) to determine

which components of the regression vector are active and explain the observations and (ii)

to estimate the regression vector.

Many methods have been proposed to perform variable selection, see O’Hara & Sillanpää

(2009) for a review of Bayesian methods. Among the most popular are the penalized

least squares estimators with a L1-norm penalization introduced by Tibshirani (1996), also

known as the Least Absolute Shrinkage and Selection Operator (LASSO); see also e.g.

Bickel et al. (2009), Van de Geer (2009), Bunea et al. (2007) and the references therein.

In a Bayesian framework, many approaches introduce prior distributions both on the

regression vector and on some hyper-parameters. These methods consist then in using a

Gibbs sampler to draw alternatively the regression vector and each hyper-parameter in

order to explore the joint posterior distribution and to find regression vectors with high

posterior probability, see West (2003), Tan et al. (2010), Griffin & Brown (2011). These

algorithms yield approximately sparse estimations of the regression vector which means

that many components are close but not equal to zero. For example, Casella & Park (2008)

proposed a Bayesian LASSO by interpreting the L1 penalization as a double exponential

prior which shrinks regression parameters toward zero.

The Bayesian spike and slab models have been first proposed by Beauchamp & Mitchell

(1988). The model used in Beauchamp & Mitchell (1988) introduces independent priors for

the regression parameters which are mixtures between a uniform flat distribution (the slab)

and a Dirac distribution at zero (the spike), yielding exactly sparse estimators. This model

is extended in George & McCulloch (1993) which uses a binary latent variable to locate

the regression parameters that explain the observations. A normal distribution with high

variance (the slab) is then associated with these parameters, and a normal distribution

with very small variance (the spike) is associated with the other regression parameters.

In Ishwaran & Rao (2005), the scale of the mixture components is set through a prior

distribution on the hyper-variance. See Malsiner-Walli & Wagner (2011) for a comparison

of the different spike and slab priors which can be used, and particularly for a study of the

differences between the priors with a Dirac spike and those with a Gaussian spike. These

spike and slab models based on a (non-degenerated) Gaussian spike provide better results

for high dimensional regression settings. However, they do not allow to actually set to zero
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some regression parameters.

In other Bayesian variable selection approaches, the prior distribution of the regression

vector makes it difficult to sample from the corresponding posterior distribution. Therefore,

Markov Chain Monte Carlo (MCMC) methods such as random walk Hastings Metropolis

algorithms, block-Gibbs samplers which update a subset of regression parameters at each

iteration, or Metropolis adjusted Langevin algorithm (MALA), have been widely used.

In some cases, the prior distribution of the regression vector uses a penalization function

yielding to approximately sparse samples (see Wipf et al. (2011) for a theoretical and em-

pirical comparison of different penalization functions). Lucka (2012) uses a L1-penalization

and compares results obtained by different MCMC samplers. Dalalyan & Tsybakov (2012)

introduces a smooth penalization function to obtain a differentiable posterior distribution

which allows to use MALA. In the case of a non-differentiable penalized posterior distri-

bution, Pereyra (2013) combines MALA with a proximal operator.

Other MCMC approaches for Bayesian variable selection define a posterior distribution

on the model space, where a model is a binary vector locating the active (non null) compo-

nents of the regression vector. The objective is then to explore this posterior distribution,

which is equivalent to estimate probabilities of activation for each regression parameter.

In Brown et al. (2001) for example, this exploration is performed with a Gibbs sampler.

Variants and adaptive versions of the Gibbs sampler for this problem have been proposed

in Nott & Kohn (2005), Lamnisos et al. (2013). Samples from the posterior distribution

of the models are obtained in Shi & Dunson (2011) and in Schäfer & Chopin (2013) with

particle filters. These methods are extended in Rigollet & Tsybakov (2012) to obtain es-

timators of the regression vector using the mean square estimators associated with each

model.

The last class of MCMC methods for Bayesian variable selection is designed to obtain

exactly sparse samples (with some components actually set to zero). These methods jointly

sample a model and the regression parameters active in this model, see e.g. Dellaportas

et al. (2002) and the references therein. The Reversible Jump MCMC (RJMCMC) is

a popular algorithm introduced in Green (1995) which produces a Markov chain evolving

between spaces of different dimensions. The dimension of the sample varies at any iteration

as active parameters are added or discarded from the model. Each new sample is accepted

or rejected using a Metropolis-Hastings step where the acceptance probability is adjusted

to the transdimensional moves. See also Brooks et al. (2003), Karagiannis & Andrieu

(2013) for efficient ways to implement RJMCMC. Carlin & Chib (1995) consider another
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setting that encompasses all the models jointly: at each iteration, pseudo-prior distributions

are used to jointly sample regression parameters associated with all models. For high

dimensional statistical problems, such a joint sampling is computationally too expensive.

A more efficient algorithm is proposed in Dellaportas et al. (2002) which only involves

the simulation of a new model and of the regression parameters corresponding to this

newly sampled model. This method, called Metropolized Carlin and Chib (MCC), avoids

the need to sample from all the pseudo-priors and can be implemented in practice, see

also Petralias & Dellaportas (2013). Ji & Schmidler (2013) use an adaptive Metropolized

algorithm to sample from a posterior distribution which is a mixture of a Dirac at zero

and slab distributions. This algorithm samples independently each regression parameter

according to an adaptive mixture of a Dirac at zero and a Gaussian distribution. It is

therefore not appropriate for high dimensional settings as the proposal strategy does not

take into account the target distribution.

In this paper, we introduce a new MCMC algorithm, called Shrinkage-Thresholding

MALA (STMALA), designed to sample sparse regression vectors by jointly sampling a

model and a regression vector in this model. This algorithm, which is a transdimensional

MCMC method, relies on MALA (see Roberts & Tweedie (1996)). The proposal distri-

bution of MALA is based on the computation of the gradient of the logarithm of the

target distribution. In order to both deal with a non-differentiable target posterior distri-

bution and to actually set some components to zero, we propose to combine MALA with

a shrinkage-thresholding operator by:

- computing a noisy gradient step involving the term of the logarithm of the target distri-

bution which is continuously differentiable;

- then applying a shrinkage-thresholding operator to ensure sparsity and shrink small val-

ues of the regression parameters toward zero.

Such an algorithm is motivated by Bayesian variable selection with non-smooth priors.

This algorithm can perform global moves from one model to a rather distant other one,

which allows to explore efficiently high dimensional spaces (in comparison to local move

algorithms). The geometric ergodicity of this new algorithm is proved for a large class of

target distributions. To our knowledge, it is the first result providing a rate of convergence

for a transdimensional MCMC algorithm (like RJMCMC and MCC); usually, only Harris

recurrence is proved, see Roberts & Rosenthal (2006).

This paper is organized as follows. STMALA and its application to Bayesian variable

selection is described in Section 2. Different implementations are proposed in Section 3.
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The geometric ergodicity of this new sampler is addressed in Section 4. Numerical experi-

ments on simulated and real data sets to assess the performance of STMALA are given in

Section 5. Finally, all the proofs are postponed to Section 6.

2. The Shrinkage-Thresholding MALA algorithm

This section introduces the Shrinkage-Thresholding MALA (STMALA) algorithm which

is designed to sample from a target distribution defined on R
P×T , where P, T ∈ N

∗, under

the sparsity assumption that a large number of rows of each sample should be null.

Let M def
= {0, 1}P be the set of binary vectors locating the non-zero rows of elements of

R
P×T . For any m = (m1, . . . ,mP ) ∈ M, set

Im
def
= {i ∈ {1, · · · , P}; mi = 1} . (1)

We consider target distributions on R
P×T absolutely continuous with respect to the positive

measure dν(x) given by

dν(x)
def
=
∑

m∈M




∏

i/∈Im

δ0(dxi·)




(
∏

i∈Im

dxi·

)
, (2)

where, for x ∈ R
P×T and 1 ≤ i ≤ P , xi· is the i-th row of x. The STMALA algorithm

is based on the MALA algorithm which proposes local moves using information about the

gradient of the logarithm of the target density (when it is differentiable). Nevertheless,

MALA is not designed to produce sparse samples. Therefore, we propose to combine

a gradient step as in MALA with a shrinkage-thresholding step, which produces sparse

matrices of RP×T . This mechanism is followed by an accept-reject step to guarantee the

convergence to the right target distribution. Before describing the algorithm, we introduce

some notations;

Notations For any matrix A ∈ R
ℓ×ℓ′ , Aij denotes the entry (i, j) of the matrix A and Ai·

is the i-th row of A. For any m = (m1, · · · ,mP ) ∈ {0, 1}ℓ, let |m| def= ∑P
i=1mi denotes the

number of positive entries. Am· denotes the |m| × ℓ′ matrix obtained by extracting from

A the active components in m. Similarly, A·m for m ∈ {0, 1}ℓ′ collects the columns of A

indexed by the active components in m. By convention, if m in {0, 1}l (resp. {0, 1}l′ ) is

such that |m| = 0, then Am· = 0 (resp. A·m = 0). A−m· denotes the (P − |m|)× T matrix

obtained by extracting from A the rows indexed by i /∈ Im. Define the Frobenius norm
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‖ · ‖2, the L2,1-norm ‖ · ‖2,1 and the 1-norm ‖ · ‖1 of a ℓ′ × ℓ-matrix A as

‖A‖2 def
=

(
ℓ∑

i=1

ℓ′∑

i=1

A2
i,j

)1/2

, ‖A‖2,1 def
=

ℓ∑

i=1




ℓ′∑

j=1

A2
i,j




1/2

and ‖A‖1 def
=

ℓ∑

i=1

ℓ′∑

j=1

|Ai,j | .

2.1. The STMALA algorithm

It is assumed that

A1 π dν is the target distribution: supRP×T π < ∞ and there exists a continuously

differentiable function g : RP×T → R and a measurable function ḡ : RP×T → R such

that

π(x) ∝ exp {−g(x)− ḡ(x)} .

Let σ > 0 be a fixed stepsize and Ψ : RP×T → RP×T be a shrinkage-thresholding opera-

tor. In this paper, three different operators are considered to sample sparse matrices (see

Section 3 for further comments on these operators): for any γ > 0, any 1 ≤ i ≤ P and any

1 ≤ j ≤ T ,

(Ψ1(u))i,j = ui,j

(
1− γ

‖ui.‖2

)

+

,

(Ψ2(u))i,j = ui,j1‖ui.‖2>γ ,

(Ψ3(u))i,j = ui,j

(
1− γ2

‖ui·‖22

)

+

,

where for a ∈ R, a+ denotes the positive part of a: a+
def
= max(a, 0).

From a current state Xn the algorithm proposes a new point Z according to a proposal

distribution qΨ(X
n, ·) which can be seen as a noisy proximal gradient step: given the

current value of the chain Xn, the candidate Z is defined by

Z = Ψ

(
Xn − σ2

2
∇g(Xn) + σΞn+1

)
, (3)

where Ξn+1 is a R
P×T random matrix with independent and identically distributed (i.i.d.)

standard Gaussian entries. This candidate is then accepted or not with an accept-reject

step. If Ψ is the identity operator, then the candidate becomes

Z = Xn − σ2

2
∇g(Xn) + σΞn+1 ,

which is the proposal mechanism of MALA.

STMALA is outlined in Algorithm 1. It produces a sequence (Xn)n∈N which is a

Hastings-Metropolis Markov chain with proposal distribution qΨ and target distribution



STMALA for Bayesian Variable Selection 7

π dν. The expression of the transition density qΨ is established in Section 3 for different

shrinkage-thresholding operators Ψ. We will also interpret these proposal distributions as

mechanisms to sample both a binary vector m ∈ {0, 1}P and a |m|×T matrix. To motivate

Algorithm 1 One iteration of the STMALA algorithm given Xn

1: Draw a P × T matrix Ξn+1 with i.i.d. entries sampled from N (0, 1).

2: Set Z = Ψ
(
Xn − σ2

2 ∇g(Xn) + σΞn+1
)
.

3: Set

α(Xn, Z) = 1 ∧ π(Z) qΨ(Z,X
n)

π(Xn) qΨ(Xn, Z)
.

4: Draw U ∼ U(0, 1).

5: if U ≤ α(Xn, Z) then

6: Xn+1 = Z.

7: else

8: Xn+1 = Xn.

9: end if

this framework, let us consider the Bayesian variable selection problem.

2.2. Application to Bayesian variable selection

Let Y ∈ R
N×T be the observations modeled as

Y = GX +
√
τE , (4)

where G ∈ R
N×P is a known gain matrix, X ∈ R

P×T is the unknown regression matrix,

and E ∈ R
N×T is a noise matrix. It is assumed that the entries Ei,j for 1 ≤ i ≤ N and

1 ≤ j ≤ T are i.i.d. according to N (0, 1). This Gaussian linear regression model appears in

many different situations in modern applied statistics such as genomics or Magnetic Res-

onance Imaging (MRI) studies. For example, in the case of MRI, a stimulus is delivered

to a patient and his brain activity is measured by magnetoencephalography and electroen-

cephalography. The objective is then to retrieve the original signal X (source amplitudes)

using the measured signal Y . By Maxwell’s equations, the signal measured by the sensors

is a linear combination of the electromagnetic fields produced by all the sources. In this

case, N is the number of sensors, T is the number of measurement times, P is the number

of sources and G is the gain matrix modeling the electromagnetic properties of the brain.

In high dimensional variable selection problems, the regression vector X has to be

recovered under sparsity constraints. A sparse signal X can equivalently be defined by (i)

a binary vector m = (m1, · · · ,mP ) ∈ {0, 1}P with the convention that mk = 1 if and only
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if Xk· is active i.e. is non null; and (ii) the matrix Xm· which collects the |m| active rows

of X. Hence, m ∈ M is a model, |m| is the number of active rows, and Im given by (1) is

the set of indices corresponding to active rows.

An algorithm to sample sparse matrices can be described as a sampler for the exploration

of a posterior distribution absolutely continuous with respect to dν defined in (2). For any

model m ∈ M, denote by Sm the subset of RP×T associated with m, defined by

Sm
def
= {z ∈ R

P×T , zi· 6= 0 ∀i ∈ Im and z−m· = 0} . (5)

Then (Sm)m∈M is a partition of RP×T with non-null ν-measure. Sampling a distribution

absolutely continuous with respect to dν on R
P×T is equivalent to sampling a pair (m,Xm·)

where m is the set of the active rows and given m, Xm· ∈ R
|m|×T collects the value of these

rows.

Under the statistical model (4), for m ∈ M and X ∈ Sm, the likelihood of the observa-

tion Y given X is

π(Y |X)
def
= (2πτ)−NT/2 exp

(
−1

τ
‖Y −G·mXm·‖22

)
= (2πτ)−NT/2 exp

(
−1

τ
‖Y −GX‖22

)
.

The sparsity constraint is expressed by a joint prior distribution: π(Xm·|m) is a prior

distribution on R
|m|×T conditionally to the model m, and (ωm)m∈M is a prior distribution

on M that is (ωm)m∈M is a non-negative sequence satisfying
∑

m∈M ωm = 1. An example

of prior distribution is a L2,1-penalty on the regression vector:

π(Xm·|m)
def
= exp(−λ‖Xm·‖2,1 − |m| ln cλ) ,

with λ ≥ 0 and (see Lemma 6.1)

cλ
def
=





2πT/2(T − 1)!λ−T (Γ (T/2))−1 if λ > 0 ,

1 if λ = 0 ,
(6)

where Γ is the standard Gamma function defined on (0,+∞) by Γ : x 7→
∫ +∞
0 tx−1e−tdt.

Therefore, the posterior density π(X|Y ) on R
P×T is given by, for m ∈ M and X ∈ Sm

π(X|Y ) ∝ ωm c
−|m|
λ exp

(
− 1

2τ
‖Y −Gx‖22 − λ‖x‖2,1

)
. (7)

In this application, the target density is x 7→ π(x|Y ) and it is proportional to exp {−g(x)− ḡ(x)},
with for any m ∈ M and x ∈ Sm,

g(x) =
1

2τ
‖Y −Gx‖22 and ḡ(x) = λ‖x‖2,1 − log

(
wmc

−|m|
λ

)
.
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2.3. Partial updating

In high dimensional settings, STMALA may encounter some difficulties to accept the pro-

posed moves. Following the idea introduced in Neal & Roberts (2006), we introduce in

this section a variant of the algorithm in which only a fixed proportion of components of

Xn are updated at each iteration n. This is achieved by combining STMALA and a Gibbs

sampler in a STMALA-within-Gibbs algorithm, called block-STMALA.

This algorithm depends on a new parameter η ∈ {1, · · · , P} which specifies the number

of rows to be updated at each iteration of the algorithm. Let η be fixed. Denote by Bη the

set of subsets of {1, . . . , P} with exactly η elements. The first step consists in choosing at

random a subset b ∈ Bη. Then, given b, a STMALA algorithm is run with the conditional

distribution of xb· given the other components x−b· under π, denoted by π(xb·|x−b·), as

target distribution.

For b ∈ Bη, denote by qb the proposal transition density of this block-STMALA step,

and by ∇bg(x) the gradient of the function x 7→ g(x) with respect to xb·, i.e. ∇bg(x) =

(∇g(x))b·. The block-STMALA algorithm is summarized in Algorithm 2 with a block size

set to η. The transition kernel associated with the block-STMALA algorithm is given by

Algorithm 2 One iteration of the block-STMALA algorithm given X
n

1: Select uniformly b ∈ Bη.

2: Draw a η × T matrix Ξn+1 with i.i.d. entries sampled from N (0, 1).

3: Define Z: set Z−b· = Xn
−b· and Zb· = Ψ

(
Xn

b· − σ2

2 ∇bg(X
n) + σΞn+1

)
.

4: Set

αb(X
n, Z) = 1 ∧ π(Z) qb(Zb·,X

n
b·)

π(Xn) qb(X
n
b·, Zb·)

,

5: Draw U ∼ U(0, 1).

6: if U ≤ αb(X
n, Z) then

7: Xn+1 = Z.

8: else

9: Xn+1 = Xn.

10: end if

Pblock

def
=

(
P

η

)−1 ∑

b∈Bη

Pb ,

where, for any b ∈ Bη, Pb is given by

Pb(x,dz)
def
=

(
∏

i/∈b

δxi·
(dzi·)

) (
αb(x, z)qb(xb·,dzb·) + δxb·

(dzb·)

∫
(1− αb(x, z̃))qb(x,dz̃)

)
.
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Note that for any b ∈ Bη, the target density π is invariant with respect to Pb, so that π is

also invariant with respect to Pblock.

3. Shrinkage-Thresholding operators for STMALA

We consider in turn three different shrinkage-thresholding operators Ψ. For each of them,

we provide an explicit expression of the proposal distribution qΨ and show that this dis-

tribution is equivalent to (i) first sampling the indices of the active rows of the candidate

matrix by sampling a binary vector m ∈ M; and (ii) sampling a matrix in R
|m|×T . Figure 1

displays these operators in the case P = T = 1.

−4 −2 0 2 4
−4

−2

0

2

4
Prox

−4 −2 0 2 4
−4

−2

0

2

4
HT

−4 −2 0 2 4
−4

−2

0

2

4
STVS

Fig. 1: Shrinkage-Thresholding functions associated with the L2,1 proximal operator (Prox

- left), the hard thresholding operator (HT - center) and the soft thresholding operator

with vanishing shrinkage (STVS - right) in one dimension.

3.1. The L2,1 proximal operator

A first idea is to consider the L2,1 proximal operator Ψ1 : RP×T → R
P×T defined compo-

nentwise by

(Ψ1(u))i,j = ui,j

(
1− γ

‖ui.‖2

)

+

, (8)

for some (fixed) positive parameter γ. The function u 7→ Ψ1(u) is displayed on Figure 1[left]

in the case P = T = 1.

When g is a continuously differentiable convex function such that ∇g is Lg-Lipschitz,

it is known (see e.g. (Beck & Teboulle 2009, theorem 3.1), or Parikh & Boyd (2013)) that

the deterministic sequence (xn)n defined by xn+1 = Ψ1(x
n − σ2∇g(xn)/2) for some fixed
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σ such that σ2/2 ∈ (0, L−1
g ] converges to a minimum of x 7→ g(x) + 2γ/σ2‖x‖2,1. In the

case when π(x) ∝ exp(−(g(x)+2γ/σ2‖x‖2,1)), this remark gives an insight on the proposal

mechanism (3) of STMALA and shows that it can be read as an extension of MALA to non-

differentiable target densities: the proposed sample Z = Ψ1(X
n−σ2∇g(Xn)/2+σΞn+1) is

obtained by moving from the current sample Xn to a point which is a sparse perturbation

of the point Ψ1(X
n − σ2∇g(Xn)/2) which has higher probability under π than Xn (as

soon as σ2/2 ≤ L−1
g ). Therefore, our proposal mechanism can be seen as one iteration

of a stochastic L2,1-gradient proximal algorithm designed to converge to the minima of

x 7→ g(x) + 2γ/σ2‖x‖2,1.
We now provide an explicit expression of the proposal distribution qΨ1

, which is required

in order to compute the acceptance probability in Algorithm 1. Lemma 3.1 applied with

µ = Xn − σ2

2 ∇g(Xn) answers the question.

Lemma 3.1. Let µ ∈ R
P×T and positive constants γ, σ > 0. Set z

def
= Ψ1(µ+σξ) where

ξ ∈ R
P×T is a matrix of independent standard Gaussian random variables. The distribution

of z ∈ R
P×T is given by

∑

m∈M



∏

i/∈Im

p(µi·) δ0(dzi·)



(
∏

i∈Im

f(µi·, zi·)dzi·

)
, (9)

where for any c ∈ R
T and z ∈ R

T \ {0}

p(c)
def
= P {‖c+ ξ‖2 ≤ γ} , with ξ ∼ N (0, σ2IT ) ,

f(c, z)
def
=
(
2πσ2

)−T/2
exp

(
− 1

2σ2

∥∥∥∥
(
1 +

γ

‖z‖2

)
z − c

∥∥∥∥
2

2

)(
1 +

γ

‖z‖2

)T−1

.

Lemma 3.1 is proved in Section 6. It implies that the proposal distribution qΨ1
(x, z) is the

mixture (9) when µ = x− σ2

2 ∇g(x). This proposal distribution is equivalent to sampling a

new binary vector m′ = (m′
1, · · · ,m′

P ) ∈ M conditionally to x; and then sampling a new

matrix with non null rows in R
|m′|×T conditionally to (m′, x) as follows:

(i) sample independently the components (m′
i, i ∈ {1, · · · , P}) such thatm′

i is a Bernoulli

random variable with success parameter

1− P

(∥∥∥
(
x− σ2

2
∇g(x)

)

i·

+ ξ
∥∥∥
2
≤ γ

)
where ξ ∼ N (0, σ2IT ) ;

(ii) for i /∈ Im′ , set zi· = 0; conditionally to (m′, x), sample independent random rows

such that for any i ∈ Im′ , the distribution of zi· is proportional to

exp

(
− 1

2σ2

∥∥∥∥
(
1 +

γ

‖zi·‖2

)
zi· −

(
x− σ2

2
∇g(x)

)

i·

∥∥∥∥
2

2

)(
1 +

γ

‖zi·‖2

)T−1

.
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Other gradient-proximal operators could be considered to define the Shrinkage-Thresholding

operator: for any γ > 0 and any convex function h : RP×T → R set

Ψ(u)
def
= argminx∈X

(
h(x) +

1

σ2
‖x− u‖22

)
. (10)

This operator is such that the deterministic sequence given by xn+1 = Ψ(xn−σ2∇g(xn)/2)
converges to a minimum of x 7→ g+h (see e.g. Beck & Teboulle (2009), or Parikh & Boyd

(2013)). Note that the definition (8) corresponds to the case h(x) = 2γ/σ2‖x‖2,1. When

π(x) ∝ (−(g(x)+ ḡ(x))) with ḡ convex, it is natural to choose h = ḡ as soon as the proposal

distribution qΨ has an explicit expression.

3.2. The hard thresholding operator

Another suggestion of operator for Algorithm 1 is the hard thresholding operator Ψ2 :

R
P×T → R

P×T defined componentwise by

(Ψ2(u))i,j
def
= ui,j1‖ui.‖2>γ . (11)

The function u 7→ Ψ2(u) is displayed in Figure 1[center] in the case P = T = 1. Compared

to the L2,1 proximal operator (8), this operator avoids shrinkage of the active rows caused by

the proximal operator. Lemma 3.2 applied with µ = Xn − σ2

2 ∇g(Xn) gives the expression

of the transition density qΨ2
in this case.

Lemma 3.2. Let µ ∈ R
P×T and positive constants γ, σ > 0. Set z

def
= Ψ2(µ+σξ) where

ξ ∈ R
P×T is a matrix of independent standard Gaussian random variables. The distribution

of z ∈ R
P×T is given by

∑

m∈M



∏

i/∈Im

p(µi·) δ0(dzi·)



(
∏

i∈Im

fht(µi·, zi·)dzi·

)
,

where for any c ∈ R
T and z ∈ R

T

fht(c, z)
def
=
(
2πσ2

)−T/2
exp

(
− 1

2σ2
‖z − c‖22

)
1‖z‖2>γ ,

and c 7→ p(c) is defined in Lemma 3.1.

The proof of Lemma 3.2 follows the same lines as the proof of Lemma 3.1 and is omitted.

Here again, the proposal distribution can be read as sampling first the indices of the active

rows in the candidate matrix by sampling a binary vector m′ ∈ M (with the same sampling

mechanism as with the L2,1 gradient-proximal operator (8) - see Lemma 3.1); and then,

conditionally to (m′, x), sampling independently the active rows of the candidate matrix

with a truncated Gaussian distribution.
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3.3. A soft thresholding function with vanishing shrinkage

The hard thresholding operator Ψ2 proposed in Section 3.2 avoids the shrinkage of the

proposed active rows but also prevents these rows from having a L2-norm lower than a

given threshold. The efficiency of STMALA with Ψ2 as shrinkage-thresholding operator

highly depends on the choice of the threshold, as illustrated in Section 5. To overcome this

difficulty, a soft thresholding operator with a vanishing shrinkage can be used. An example

of such an operator, known as the empirical Wiener operator (see Siedenburg (2012)), is

defined componentwise as follows: for some γ > 0, Ψ3 : R
P×T → R

P×T is given by

(Ψ3(u))i,j
def
= ui,j

(
1− γ2

‖ui·‖22

)

+

. (12)

Figure 1[right] displays u 7→ Ψ3(u) when P = T = 1.

Lemma 3.3, applied with µ = Xn − σ2

2 ∇g(Xn), gives the expression of the transition

density qΨ3
.

Lemma 3.3. Let µ ∈ R
P×T and positive constants γ, σ > 0. Set z

def
= Ψ3(µ+σξ) where

ξ ∈ R
P×T is a matrix of independent standard Gaussian random variables. The distribution

of z ∈ R
P×T is given by

∑

m∈M



∏

i/∈Im

p(µi·) δ0(dzi·)



(
∏

i∈Im

fst(µi·, zi·)dzi·

)
,

where for any c ∈ R
T , z ∈ R

T \ {0}, u > 0

fst(c, z)
def
=
(
2πσ2

)−T/2
(
g

(
γ2

‖z‖22

))T

g̃

(
γ2

‖z‖22

)
exp

(
− 1

2σ2

∥∥∥∥g
(

γ2

‖z‖22

)
z − c

∥∥∥∥
2

2

)
,

g(u)
def
= 1 +

2u

1 +
√
1 + 4u

, g̃(u)
def
=

1√
1 + 4u

,

and c 7→ p(c) is given by Lemma 3.1.

Lemma 3.3 is proved in section 6. Here again, the proposal distribution can be read as

sampling first the indices of the active rows in the candidate matrix by sampling a binary

vector m′ ∈ M (with the same sampling mechanism as with the L2,1 gradient-proximal

operator (8) - see Lemma 3.1); and then, conditionally to (m′, x), sampling independently

the active rows of the candidate matrix under the distribution fst.

Lemma 3.4 shows that Ψ3 compromises between minimizing a (non-convex) function h

and being near to u.

Lemma 3.4. For any γ > 0 and u ∈ R
ℓ,

Ψ3(u) = argminx∈Rℓ

(
h(x) +

1

2
‖x− u‖2

)
,
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where the function h : Rℓ → R is given by

h(x) = γ2
[
asinh

(‖x‖
2γ

)
− 1

2
exp

(
−2asinh

(‖x‖
2γ

))]
.

Proof. The proof of Lemma 3.4 is in Section 6.2.

4. V -Geometric ergodicity of the L2,1 proximal STMALA

In this section, we address the V -geometric ergodicity of the STMALA chain (Xn)n≥0

where, at iteration n, the candidate Z is given by

Z = Ψ1

(
Xn − σ2

2

D∇g(x)
max(D, ‖∇g(x)‖2)

+ σΞn+1

)
, (13)

where (Ξn, n ≥ 1) is a sequence of P × T random matrices with i.i.d. N (0, 1) entries and

Ψ1 is given by (8). Hereafter, γ (in the definition of Ψ1) and D are fixed positive constants.

This update differs from the update proposed in (3) by truncating the gradient, as it

was already suggested in Roberts & Tweedie (1996) and used in Atchadé (2006). This

truncation makes the algorithm more stable in practice. In most of the examples presented

in Section 5, we observed that truncating the gradient has only a minor impact on the

results, which are therefore presented with no truncation. For the real data set presented

in Section 5.3, the truncation prevents the algorithm from moving too far from the current

state and therefore avoids too low acceptance rates.

To make the remainder of the paper less technical, the proof is given in the case T = 1

and Ψ = Ψ1. Extensions to T > 1 and other shrinkage-thresholding operators are not

addressed in this paper.

The sets {Sm,m ∈ M}, where Sm is given by (5), are a partition of RP and we denote

by πm the restriction of π to Sm:

π(x) =
∑

m∈M

πm(x)1Sm
(x) .

The convergence of this STMALA is addressed under the following assumptions on the

target density π.

A2 (i) For any m ∈ M, πm is continuous on Sm.

(ii) π(x) → 0 when ‖x‖2 → ∞.

Assumption A3 below ensures that π is super-exponential, i.e. that the target density π

decreases fast enough when ‖x‖2 is large.
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A3 For any s > 0, m ∈ M,

lim
r→∞

sup
x∈Sm,‖x‖≥r

πm(x+ s n(x))

πm(x)
= 0 , where n(x)

def
=

x

‖x‖ .

When for any m ∈ M, the restriction πm of π to the subset Sm is differentiable, A3 is

satisfied if (see (Jarner & Hansen 2000, Section 4) for details)

∀m ∈ M, lim
x∈Sm,‖x‖2→∞

〈 x

‖x‖2
,∇ log(πm(x))

〉
= −∞ . (14)

Let u, b, ǫ > 0 such that u ∈ (0, b). For any m ∈ M and x ∈ Sm, define

Wm(x)
def
= {xm − u n(xm)− sξ : s ∈ (0, b − u), ‖ξ‖2 = 1, ‖ξ − n(xm)‖2 ≤ ǫ} . (15)

Wm(x) is the cone of R|m| with apex xm − u n(xm) and aperture 2ǫ. We will prove (see

Lemma 6.7) that A4 guarantees that, for ‖x‖2 large enough, the probability to accept a

move from x to any point of Wm(x) equals one.

A4 There exist b,R, ǫ > 0 and u ∈ (0, b) such that for any m ∈ M, for any

x ∈ Sm ∩ {‖x‖2 ≥ R},

∀ y ∈ Sm such that ym ∈Wm(x), πm(x− u n(x)) ≤ πm(y) ,

Note that, when πm is differentiable for any m ∈ M, A4 is implied by

∀m ∈ M, lim sup
x∈Sm,‖x‖2→∞

〈 x

‖x‖2
,

∇πm(x)

‖∇πm(x)‖2

〉
< 0 , (16)

which is similar to the conditions used in (Jarner & Hansen 2000, condition (32)) for

instance (see (Jarner & Hansen 2000, proof of Theorem 4.3) for details).

An example of target density satisfying A1 to A4 and related to the density defined in

Section 2.2 is presented in Appendix A.

Theorem 4.1 establishes the V -geometric ergodicity of the STMALA algorithm with

truncated gradient; denote by Ptrunc the transition kernel associated with the Hastings-

Metropolis chain (Xn)n with proposal distribution given by (13). The dependence upon

the constants D, γ, σ (which are fixed by the user prior any run of the algorithm) is omitted

to simplify the notations.

Theorem 4.1. Assume A1 to A4 hold. Then, for any β ∈ (0, 1), there exist C > 0 and

ρ ∈ (0, 1) such that for any n ≥ 0 and any x ∈ R
P ,

‖Pn
trunc(x, .)− π‖V ≤ C V (x) ρn , (17)

where V (x) ∝ π(x)−β and for any signed measure η, ‖η‖V = sup
f,|f |≤V

|
∫
fdη|.
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By definition of the acceptance probability in Algorithm 1, π is invariant with respect to

Ptrunc. The rate of convergence is then a consequence of Proposition 6.4 and Proposi-

tion 6.5 given in Section 6.3: Proposition 6.4 establishes that the chain is psi-irreducible

and aperiodic and shows that any Borel set C ∈ R
P such that C ∩Sm is a compact subset

of Sm is a small set for Ptrunc; Proposition 6.5 shows that there exists a small set C ∈ R
P

and constants c1 ∈ (0, 1) and c2 <∞ such that for any x ∈ R
P ,

PtruncV (x) ≤ c1V (x) + c21C(x) .

The proof is then concluded by (Meyn & Tweedie 1993, Theorem 15.0.2).

5. Numerical illustrations

In this section, STMALA‡ is compared to the reversible jump Markov chain Monte Carlo

(RJMCMC) algorithm. We detail in Appendix B.1 how RJMCMC is implemented. We

also discuss in Appendix B.2 how to approximate the probability p(c) given by Lemma 3.1,

a quantity which appears in the implementation of STMALA whatever the shrinkage-

thresholding operator Ψ ∈ {Ψ1,Ψ2,Ψ3}.

5.1. STMALA on a toy example

5.1.1. Presentation of the data set

The data Y are sampled from the model (4). The design matrix G is obtained by sampling

i.i.d. N (0, 1) entries. We consider the target distribution described in Section 2.2, with the

prior distribution on M defined by wm = 0.1|m|0.9P−|m| and λ = 1. Moreover, N = 100,

P = 16, T = 1, τ = 1 and Xj = 1j≤S with S = 8. Since T = 1, note that ‖.‖2,1 = ‖.‖1.
In this section, P is chosen small enough (P = 16), so that the posterior distribution

of the models π(m|Y ) can be explicitly computed (see below). This allows to compare the

algorithms using the error when estimating the activation probabilities, defined by

E def
=

P∑

i=1

∣∣∣∣∣P(Xi 6= 0)− 1

Nit

Nit+B∑

n=B

1Xn
i 6=0

∣∣∣∣∣ , (18)

where Nit is the number of iterations used to compute the approximations, B denotes

the number of iterations discarded as a burn-in period, and P(Xi 6= 0) is the posterior

probability of activation of the ith component of X, defined for any 1 ≤ i ≤ P , by

P(Xi 6= 0) =
∑

m∈M

π(m|Y ) mi . (19)

‡MATLAB codes for STMALA are available at the address http://perso.telecom-

paristech.fr/∼schreck/recherche.html
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Let us derive the expression of π(m|Y ). By (7), for any m ∈ M,

π(m|Y ) =∝ wm c
−|m|
λ

∫

R|m|

exp

(
− 1

2τ
‖Y −G·mx‖22 − λ‖x‖1

)
dx .

Then, π(m|Y ) = 0 when the matrix G′
·mG·m is not invertible.; otherwise,

π(m|Y ) ∝ wm c
−|m|
λ exp

(
1

2τ
Y ′AmY

)
(2πτ)|m|/2

(
det
(
G′

·mG·m

))−1/2 · · ·

×
∫

R|m|

φm(x) exp (−λ‖x‖1) dx ,

where X(m) = (G′
·mG·m)−1G′

·mY , Am
def
= G·m(G′

·mG·m)−1(G·m)′ and φm denotes the

probability density function of a Gaussian vector with mean X(m) and covariance matrix

τ (G′
·mG·m)−1. The last integral is not explicit when λ 6= 0, but it can be estimated by a

standard Monte Carlo method.

5.1.2. Discussion on the implementation parameters

Comparison of the shrinkage-thresholding operators Figure 2 provides a comparison of

the three shrinkage-thresholding operators proposed in Section 3 for the model described

in Section 5.1.1. Figure 2 (left) displays the evolution of the mean error given by block-

STMALA, with L2,1 proximal operator (Prox), hard thresholding operator (HT) and soft

thresholding with vanishing shrinkage operator (STVS), over 100 independent trajectories

as a function of the number of iterations. Let Lg be the lipschitz norm of the gradient of g,

Lg
def
= ‖GGt‖/τ . All the algorithms are run with σ =

√
2/Lg. The number of components

to be updated at each iteration is η = 4 (the role of the block size is discussed below) and

the threshold is set to γ = 0.1 (see details on the choice of the threshold below). All the

algorithms start from the null regressor.

As HT (solid blue line) does not shrink the nonzero regression parameters (see figure 1),

it cannot produce any values lower than γ. Therefore, STMALA with hard thresholding

is not robust to the choice of the threshold and did not reach convergence in the situation

presented in Figure 2 (left). On the other hand, the estimation errors of block-STMALA

with STVS (dash-dot red line) and with Prox (dashed green line) decrease at a similar rate

and variability in this case.

Figure 2 (right) displays the mean acceptance rate as a function of the number of samples

Nit for the three algorithms. At each iteration, if the proposed point is sampled into a region

of high probability under the target distribution, the shrinking step of block-STMALA with

proximal shrinkage may drive this sample toward regions of lower probability, and therefore

decrease the mean acceptance-rejection ratio. Figure 2 (right) shows that block-STMALA,
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Fig. 2: (left) Evolution of the mean estimation error (18) of the activation probabilities for

block-STMALA as a function of the number of iterations, when Ψ = Ψ1 (Prox), Ψ = Ψ2

(HT) and Ψ = Ψ3 (STVS) as shrinkage-thresholding operator. (right) Evolution of the

mean acceptance rate.

with no shrinkage (HT), and block-STMALA with a vanishing shrinkage (STVS), accept

twice as many proposed samples as block-STMALA with Prox. For more complex models,

the mean acceptance-rejection ratio of block-STMALA with Prox can even decrease to zero

so that the algorithm remains quickly trapped in one point.

As block-STMALA with STVS combines the best behavior both in terms of acceptance

rate and of mean error, this variant is used for the rest of the numerical experiments.

Therefore, from now on, the shrinkage-thresholding operator is chosen as Ψ = Ψ3.

The block size η When all the components of a point are updated at each iteration (i.e.

if η = P ), the distance between the current point and the proposed one is such that it leads

to a low acceptance-rejection ratio. Figure 3 (left) displays the mean acceptance-rejection

ratio over 100 independent trajectories after Nit = 105 iterations of block-STMALA with

no burn-in period (B = 0) as a function of η (expressed as a percentage of the total number

of regressors) in the model described in Section 5.1.1.

Note that if the acceptance-rejection ratio is too low, the convergence is very slow as few

proposed samples are accepted. However, a slow convergence can also be the consequence

of small block sizes, since two consecutive samples have at least P − η equal coefficients.

We observed that, in general, choosing rather small block sizes yields good results.

The threshold γ The choice of the threshold is crucial. If γ is too large, few nonzero

samples are proposed and the algorithm will converge slowly. If γ is too small, the algorithm
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Fig. 3: (left) Mean acceptance-rejection ratio as a function of the block size (expressed as

a percentage of P ) and (right) mean error as a function of ln(γ).

proposes non-sparse solutions that are not likely to be accepted. This is illustrated in

figure 3 (right) which displays the mean error made by block-STMALA when estimating

the activation probabilities, computed over 100 independent trajectories of Nit = 105

iterations with no burn-in (B = 0), as a function of ln(γ). Here η = 4 and σ =
√

2/Lg,

and the computations are made for the model described in Section 5.1.1.

The standard deviation σ Figure 4 displays the mean acceptance-rejection ratio and the

mean error (18) over 100 independent trajectories, of block-STMALA as a function of σ

(the scale is σ
√
Lg/2 on the x-axis) after 105 iterations. η is set to 4 and the threshold γ

is chosen so that the mean number of thresholded coefficients in one iteration of STMALA

starting from the empty model is about 55%. If σ is too large, the distance between the

current point and the proposed point is high and leads to a low acceptance-rejection ratio

and a slow convergence. If σ is too small, qΨ(z, ·), where z is the proposed point, is a spike

function centered at Ψ3

(
z − τ2

2 ∇g(z)
)
, with γ = τ2λ/2, which could be quite far from

the current point Xn, thus producing too small values of qΨ(z,X
n)/qΨ(X

n, z) and leading

therefore to a low acceptance-rejection ratio and a slow convergence.

5.1.3. Further illustrations

This section provides additional experiments using block-STMALA for the model described

in Section 5.1.1. We set σ =
√

2/Lg, η = 4 and γ = 0.28. The algorithm is initialized to

the null regression vector.

Figure 5 compares the mean error over 100 independent trajectories made by block-

STMALA with STVS operator (solid blue) and RJMCMC (dash-dot red) when estimating
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Fig. 4: (left) Mean acceptance rate. (right) Mean error as a function of σ
√
Lg/2.

the activation probabilities as a function of the number of iterations (right) and displays

the associated boxplots (left). For block-STMALA, we set γ = 0.07, η = 4, σ =
√

2/Lg

and B = 0. RJMCMC is implemented as described in Section B.1 with σRJ = 0.02. The

parameters of block-STMALA and RJMCMC are chosen so that the two algorithms have

similar acceptance rates (about 23 %). Note that both algorithms are compared for the

same number of evaluations of the target density π, i.e. for the same number of iterations,

as the computation time depends on the code efficiency. In Figure 5, block-STMALA

clearly outperforms RJMCMC. For example, after 300.000 iterations, the error made by

RJMCMC is twice as big as the error made by block-STMALA. This is due to the fact

that RJMCMC only modifies one component at each iteration. Therefore, block-STMALA,

which modifies 4 components at each iteration, moves faster.
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Fig. 5: Evolution of the mean error for block-STMALA and RJMCMC as a function of the

number of iterations (left) and the associated boxplots (right).

Figure 6 (left) shows the empirical autocorrelation function of X1 and X8 for the two
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algorithms, with η = 4, γ = 0.07 and σ =
√

2/Lg for block-STMALA and the standard

deviation of the random walk in RJMCMC set to σRJ = 0.02. The autocorrelation is

computed along a single trajectory of 300.000 iterations (with 30% of these iterations

discarded as a burn-in period). The mean regression vectors obtained by block-STMALA

and RJMCMC are displayed in Figure 6 (right).
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Fig. 6: (left) Empirical autocorrelation function of X1 and X8 of block-STMALA and

RJMCMC. (right) Regression vectors estimated by block-STMALA and RJMCMC.

Finally, Figure 7 displays the evolution of the mean estimators of
∫
xi π(x|Y )dν(x) for

i = 1 and i = 8 computed by block-STMALA and RJMCMC as a function of the number

of iterations and the associated boxplots. Once again the computations are made for the

model described in Section 5.1.1 over 100 independent trajectories of 300.000 iterations.

In figure 7 (left), block-STMALA converges faster than RJMCMC. This is confirmed by

the boxplots shown in figure 7 (right).

5.2. A sparse spike and slab model

5.2.1. The model

The model for the observations Y ∈ R
N is assumed to be

Y = GX + ϑ−1/2E ,

where G is a N × P (known) design matrix, E is a Gaussian random vector with i.i.d.

standard entries and ϑ is the (known) precision. We want to find the subset of nonzero

covariate parameters from X ∈ R
N . We consider the following sparse spike and slab

hierarchical model.

- Given m = (mℓ)1≤ℓ≤P ∈ M and positive precisions (ϑℓ)1≤ℓ≤P , the entries of the covariate
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Fig. 7: (left) Evolution of the mean estimators (over 100 independent runs) of
∫
xi π(x|Y )dν(x) for i = 1 and i = 8 computed by block-STMALA and RJMCMC as

a function of the number of iterations. (right) Associated boxplots.

vector X = (Xℓ)1≤ℓ≤P are independent with distribution

(Xk|m,ϑ1, · · · , ϑP ) ∼





δ0(Xk) if mk = 0,

N (0, 1/ϑk) if mk = 1.

- The precision parameters (ϑℓ)1≤ℓ≤P are i.i.d. with Gamma distribution Ga (a, aK), where

a,K are fixed.

- The components of m ∈ M are i.i.d. Bernoulli random variables with parameter ω⋆.

Under this model the posterior density π(X,m,ϑ1, · · · , ϑP |Y ) can be derived analytically:

π(X,m,ϑ1, · · · , ϑP |Y ) ∝ exp

(
−ϑ
2
‖Y −GX‖2

)
ω
|m|
⋆ (1− ω⋆)

P−|m|

×
P∏

ℓ=1

ϑa−1
ℓ exp(−aKϑℓ)1R+(ϑℓ)

{
exp

(
−ϑℓ

2
X2

ℓ

)√
ϑℓ1mℓ=1 + δ0(Xℓ) 1mℓ=0

}
.

By integrating out, we obtain the posterior density of (X,m):

π (X,m|Y ) ∝ exp

(
−ϑ
2
‖Y −GX‖2

)
ω
|m|
⋆ (1− ω⋆)

P−|m|

×
P∏

ℓ=1

{(
1 +

X2
ℓ

2aK

)−(a+1/2)

1mℓ=1 + δ0(Xl) 1mℓ=0

}
.

5.2.2. Numerical illustrations

The performance of block-STMALA with STVS operator is illustrated with the model

introduced in Breiman (1992) and presented in (Ishwaran & Rao 2005, Section 8). It is
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assumed that N = 100, P = 200, ω⋆ = 0.1 and that ϑ is known and fixed to ϑ = 1.

The covariates (G;,i)1≤i≤P are sampled from a Gaussian distribution with E[G·i] = 0 and

E[GjiGki] = ρ|j−k|. In the example below, ρ is given by ρ = 0.3. The nonzero coefficients

of X are in 4 clusters of 5 adjacent variables such that, for all k ∈ {1, 2, 3, 4} and all

j ∈ {1, 2, 3, 4, 5}, X50∗(k−1)+j = (−1)k+1 j1/k. a = 2 and K = 0.08 are chosen so that

the Gamma distribution with parameters a and aK has a mode at ϑ⋆ such that ϑ
−1/2
⋆ =

max(|X|)/2. The other parameters are given by σ =
√

2/Lg, η = 20 and γ = 0.35. The

standard deviation of the RJMCMC proposal is σRJ = 0.01 and chosen so that block-

STMALA and RJMCMC have similar acceptance rates (between 15% and 20%). The

computations are made over 50 independent trajectories of 106 iterations. As the dimension

is high and RJMCMC modifies only one component uniformly chosen at each iteration,

its autocorrelation function is expected to converge more slowly than the autocorrelation

function of block-STMALA. This is illustrated in figure 8 (left) which displays the two

mean autocorrelation functions estimated over the 50 independent trajectories of length

106 iterations (10% of these iterations are discarded as a burn-in period).
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Fig. 8: (left) Mean autocorrelation function of X1 for block-STMALA and RJMCMC.

(right) Regression vectors estimated by block-STMALA and RJMCMC.

Figure 8 (right) shows the true regression vector X and its estimates by block-STMALA

and RJMCMC: it shows that block-STMALA provides a sparse estimation while RJMCMC

needs a lot of components to explain the observations. This is probably because RJMCMC

is more or less equivalent to test each model in turn, which yields slow convergence in

high dimensional settings. This slow convergence is also illustrated in Figure 9. Figure 9

(left) shows the evolution of the mean number of active components |m|. RJMCMC has

not converged after the 300.000 iterations while the mean number of active components

of block-STMALA is stable after few iterations. Figure 9 (right) displays the boxplots of
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the estimation of the first component X1 estimated by block-STMALA and RJMCMC as

a function of the number of iterations.
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Fig. 9: (left) Evolution of the mean number of active components for STMALA and RJM-

CMC. (right) Evolution of the estimation of X1 (mean over iterations) for block-STMALA

and RJMCMC.

Figure 10 (left) shows the signal GX̂ estimated by block-STMALA and RJMCMC as

a function of the actual emitted signal GX (blue circles), where X̂ is the mean regression

vector over a trajectory. To highlight over fitting effects, a test sample Ytest = GtestX +
√

1/ϑEtest, where Gtest ∈ R
100×200 and Etest ∈ R

100 are generated exactly as G and E, is

also used. With green circles, GtestX̂ as a function of GtestX are displayed. This test data

set is also used to compute a test error, which is given by

Etest def
=

‖GtestX̂ −GtestX‖22
100

.

The evolution of the mean test error ǫtest over 100 independent runs, is displayed in Fig-

ure 10 (right). Both figures show that RJMCMC is subject to some over fitting, which is

not the case of block-STMALA.

5.3. Regression for spectroscopy data

We use the biscuits data set composed of near infrared absorbance spectra of 70 cookies

with different water, fat, flour and sugar contents studied in Brown et al. (2001) and Caron

& Doucet (2008). The data are divided into a training data set containing measurements

for N = 39 cookies, and a test data set containing measurements for 31 cookies. Each row

of the design matrix consists of absorbance measurements for P = 300 different wavelengths

from 1202 nm to 2400 nm with gaps of 4 nm. We compare the results obtained by block-

STMALA with those obtained by RJMCMC for the prediction of fat content (i.e. T = 1).
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Fig. 10: (left) Emitted signal GX̂ estimated by block-STMALA and RJMCMC versus

actual emitted signal GX. (right) Evolution of the mean test error for RJMCMC and

block-STMALA.

To improve the stability of the algorithm, the columns of the matrix G containing the

measurements are centered and a column with each entry being equal to one is added.

The model used here is the one presented in Section 2.2 with the unknown noise pa-

rameter set to τ = 0.5. The parameters of the algorithms are given by σ = 2
√

2/Lg,

η = 15, γ = 0.35 for block-STMALA, and by σRJ = 0.9 for RJMCMC. The gradient in

block-STMALA is truncated as suggested in Roberts & Tweedie (1996), so that the norm

of the truncated gradient does not exceed 0.7. The computations are made over 100 inde-

pendent trajectories of Nit = 2.106 iterations, with B = 105. We choose the parameters so

that the two algorithms have similar acceptance-rejection ratios (the final ratios are about

45% for block-STMALA and 42% for RJMCMC). Figure 11 shows the regression vectors

X̂ estimated by block-STMALA and RJMCMC after one trajectory (left) and the mean

regression vector estimated by block-STMALA and RJMCMC over the 100 independent

trajectories (right).

The regression vector estimated by block-STMALA with STVS operator has a spike

around 1726 nm, which is known to be in a fat absorbance region (see Brown et al. (2001),

Caron & Doucet (2008)), in almost all the trajectories. The regression vector estimated

by RJMCMC has also a spike close to this region, but its location is very unstable over

the different trajectories. This instability explains the differences between block-STMALA

and RJMCMC, even if the mean regression vectors estimated by the two algorithms over

the 100 independent trajectories are quite similar.

Figure 12 displays the boxplots of the 100 independent values of the components of the

regression vectors estimated by block-STMALA and RJMCMC associated to 9 wavelengths
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Fig. 11: (left) Regression vectors estimated by block-STMALA and RJMCMC after one

trajectory. (right) Mean regression vectors estimated by block-STMALA and RJMCMC

over 100 independent trajectories.

close to 1726 nm. It illustrates that the location of the spike retrieved by RJMCMC, when

is it retrieved, is not stable, while block-STMALA retrieves a spike centered at 1726 nm

in almost every trajectory, even if the height of this spike fluctuates.
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Fig. 12: Boxplots of the 100 independent values of the components of the regression vectors

estimated by block-STMALA and RJMCMC associated to 9 wavelengths close to 1726 nm.

Figure 13 (left) shows the emitted signal GX̂ estimated over one trajectory by block-

STMALA and RJMCMC as a function of the observations Y . In this numerical experiment,

block-STMALA provides better results than RJMCMC for both the training set and the

test set. This is confirmed by Figure 13 (right) which displays the evolution of the mean
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square error (MSE) on the test dataset, defined by

MSE =
‖GtestX̂ − Ytest‖22

31
,

as a function of the number of iterations (mean over 100 independent trajectories). The

mean MSE after 2.106 iterations is about 0.75 for block-STMALA and about 1.6 times

greater for RJMCMC.
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Fig. 13: (left) Emitted signal GX̂ estimated by block-STMALA and RJMCMC versus the

observations Y . (right) Evolution of the mean MSE (over 100 independent trajectories) on

the test data set for RJMCMC and block-STMALA.

6. Proofs

6.1. Proof of Eq. (6)

Lemma 6.1. The function defined on R
|m|×T by

x 7→
(

λTΓ
(
T
2

)

2πT/2(T − 1)!

)|m|

exp(−λ‖x‖2,1) ,

is a probability density function with respect to the Lebesgue measure. Γ denotes the stan-

dard Gamma function defined on (0,+∞) by Γ : x 7→
∫ +∞
0 tx−1e−tdt.

Proof. By definition of ‖ · ‖2,1,
∫

R|m|×T

exp(−λ‖x‖2,1)dx =

(∫

RT

exp(−λ‖x‖2)dx
)|m|

. (20)

Let ST
def
=
{
x ∈ R

T ; ‖x‖2 = 1
}

and σT−1 be the T − 1 dimensional Hausdorff measure on

ST . On one hand, we have
∫

RT

e−λ‖x‖2dx = σT−1(ST )

∫

R⋆
+

rT−1e−λrdr = σT−1(ST )
(T − 1)!

λT
.
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On the other hand,

πT/2 =

∫

RT

e−‖x‖2
2dx = σT−1(ST )

∫

R
⋆
+

e−r2rT−1dr =
σT−1(ST )

2
Γ

(
T

2

)
.

which implies that σT−1(ST ) = 2πT/2/Γ(T/2). This concludes the proof.

6.2. Proofs of Section 3

6.2.1. Proof of Lemma 3.1

For any 1 ≤ i ≤ P , 1 ≤ j ≤ T , and any y ∈ R
P×T , define the proximal operator

(
proxγ‖.‖2,1

(y)
)

ij
=





0 if i such that ‖yi·‖2 ≤ γ ,

yi,j (1− γ/‖yi.‖2) otherwise .

Let ϕ be a bounded continuous function on R
P×T .

E[ϕ(Z)] =
(
2πσ2

)−TP/2
∫

RP×T

ϕ
(
proxγ‖·‖2,1

(y)
) P∏

i=1

exp

(
−‖yi· − µi·‖2

2σ2

)
dy .

For y ∈ R
|m|×T , denote by y the (|m| × T )-matrix defined by yi· = yi· (1− γ/‖yi·‖2).

Fubini’s theorem yields

E[ϕ(Z)] =
(
2πσ2

)−TP/2 ∑

m∈M

∏

i/∈Im

∫
1‖yi·‖2≤γ exp

(
−‖yi· − µi·‖2

2σ2

)
dyi·

×
∫

R|m|×T

ϕ ((m, y))




|m|∏

k=1

1‖yk·‖2>γ


 exp

(
−‖y − µm·‖22

2σ2

)
dy ,

=
(
2πσ2

)−TP/2 ∑

m∈M

∏

i/∈Im

p (µi·)

∫

R|m|×T

ϕ ((m, y))




|m|∏

k=1

1‖yk·‖2>γ




exp

(
−‖y − µm·‖22

2σ2

)
dy .

By Fubini’s theorem, it is sufficient to compute integrals of the form
∫

RT

ϕ̃

(
v

(
1− γ

‖v‖2

))
1‖v‖2>γ exp

(
−‖v − µi,·‖22

2σ2

)
dv ,

for a generic function ϕ̃. Consider the change of variable R
T → R

T z = v
(
1− γ

‖v‖2

)
. Note

that ‖z‖2 = ‖v‖2 − γ and that v = ψ(z), where for any z ∈ R
T , ψ(z)

def
= ‖z‖2+γ

‖z‖2
z. We now

determine the Jacobian matrix of ψ. Hereafter, z and h are elements of RT . For any h, z

such that z 6= 0,

‖z + h‖2 = ‖z‖2 +
〈 z

‖z‖2
, h
〉
+ o (‖h‖2) .

Then,

1

‖z + h‖2
=

1

‖z‖2
1

1 +
〈

z
‖z‖2

2

, h
〉
+ o (‖h‖2)

=
1

‖z‖2

(
1−

〈 z

‖z‖22
, h
〉
+ o (‖h‖2)

)
.
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Therefore,

ψ(z + h) =

(
1 +

γ

‖z + h‖2

)
(z + h) = ψ(z) +

{(
1 +

γ

‖z‖2

)
IT − γ

‖z‖32
zz⋆
}
h+ o(‖h‖2)

and the Jacobian matrix of ψ at z is

Jψ(z) =

(
1 +

γ

‖z‖2

)
IT − γ

‖z‖32
zz⋆ .

Define the unit vector ω
def
= z/‖z‖2. Then, the determinant of Jψ(z) is given by

Det (Jψ(z)) =

(
1 +

γ

‖z‖2

)T

Det

(
IT − γ

γ + ‖z‖2
ωω⋆

)
,

=

(
1 +

γ

‖z‖2

)T (
1− γ

γ + ‖z‖2

)
=

(
1 +

γ

‖z‖2

)T−1

.

Finally,

∫

RT

ϕ̃

(
v

(
1− γ

‖v‖2

))
1‖v‖2>γ exp

(
−‖v − µi·‖22

2σ2

)
dv

=

∫

RT

ϕ̃ (v) exp

(
−‖ψ(v)− µi·‖22

2σ2

)(
γ + ‖v‖2
‖v‖2

)T−1

dv .

This concludes the proof.

6.2.2. Proof of Lemma 3.3

The proof of Lemma 3.3 follows the same lines as the proof of Lemma 3.1, with the function

ψ replace by ψ̃(z) = g
(
γ2/‖z‖22

)
z. We detail the computation of the Jacobian. We have

∇ψ̃(z) = g

(
γ2

‖z‖22

)
I + g′

(
γ2

‖z‖22

)(
− γ2

‖z‖42

)
2zz⋆ ,

and for any u > 0, g′(u) = 1/
√
1 + 4u. Th proof follows upon noting that for any a, b,

Det(aI − bzz⋆) = aT − aT−1b‖z‖22.

6.2.3. Proof of Lemma 3.4

Proof in the case ℓ = 1. We first compute the derivative of h on ]0,∞[ (note that h is

symmetric). For any x ∈]0,+∞[,

h′(x) = γ2

[
1√

x2 + 4γ2
+

1√
x2 + 4γ2

exp

(
−2asinh

(
x

2γ

))]
.

As exp(−2t) = 2sh2(t) + 1− 2
√

1 + sh(t)2sh(t), this yields

h′(x) =
−x+

√
x2 + 4γ2

2
for any x > 0 .
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Since h is symmetric,

h′(x) =
−x−

√
x2 + 4γ2

2
x < 0 .

Set ψu(x)
def
= h(x)+ (x−u)2/2. Since we have ψ−u(x) = ψu(−x), we only have to consider

the case when u ≥ 0. Hereafter, u ≥ 0. It is easily proved that on ]0,∞[, the derivative ψ′
u

is strictly increasing to infinity, and a solution to the equation ψ′
u(x) = 0 exists on ]0,∞[ iff

u > γ. In this case, this solution is u− γ2/u, and ψu(u− γ2/u) ≤ ψu(0). When u ∈ [0, γ),

infx>0 ψu(x) = ψu(0). Moreover, it can be proved that ψ′
u(x) = 0 has no solution on

]−∞, 0[, and therefore that infx<0 ψu(x) = ψu(0) whatever u > 0 is. Hence, the minimum

is reached at 0 if u ∈ [0, γ[ and at u− γ2/u if u > γ. This concludes the proof.

Proof in the case ℓ > 1. Set x ∈ R
ℓ of the form x = rξ where r > 0 and ξ is on the unit

sphere of Rℓ. Since the function h only depends on the radius r, the minimum over R
ℓ of

x 7→ h(x)+ ‖x−u‖2/2 is reached in the direction ξ⋆ = u/‖u‖. Then, finding the minimum

in this direction is equivalent to find the minimum of the function ψu on R
+, which yields

r⋆ = 0 if ‖u‖ ≤ γ and r⋆ = (1− γ2/‖u‖2) otherwise. This concludes the proof.

6.3. Proof of Theorem 4.1

In this section, let ψ :
⋃

m∈M

(
{m} × (R⋆)|m|

)
→ R

P denote the one-to-one map such that

for any m ∈ M, ψ(m, .) : (R⋆)|m| → R
P is the function such that

ψ(m,x) = y with ym· = x and y−m· = 0 . (21)

Set

µ̃(x)
def
= x− σ2

2

D∇g(x)
max (D, ‖∇g(x)‖2)

. (22)

To make the notations easier, we denote by q the proposal distribution. Since T = 1,

Lemma 3.1 shows that for any m ∈ M and y ∈ Sm

q(x, y) =
∏

i/∈Im

p (µ̃i(x))
∏

i∈Im

f (µ̃i(x), yi) (23)

where p is given by Lemma 3.1 and

f(c, y) = (
√
2πσ)−1 exp

(
− |y + γ sign(y)− c| /(2σ2)

)
. (24)

We start with a preliminary lemma which will be fundamental for the proofs since it allows

to compare the proposal distribution q to gaussian proposals.

Lemma 6.2. Denote by gǫ the one-dimensional centered Gaussian density with variance

ǫ. Set ǫ1
def
= σ2/2, ǫ2

def
= 2σ2 and

k1
def
= exp

(
−
(
γ/σ2 +D/2

)2)
/
√
2 , k2

def
= exp

((
γ/(2σ2) +D/4

)2)√
2 .
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(i) For any x, y ∈ R
P and any 1 ≤ i ≤ P ,

k1 gǫ1(yi − xi) ≤ f(µ̃i(x), yi) ≤ k2 gǫ2(yi − xi) . (25)

(ii) For any x ∈ R
P and y ∈ Sm, q(x, y) ≤ k

|m|
2

∏
i∈Im

gǫ2(yi−xi). Therefore, there exists

a constant C > 0 such that for any x, y ∈ R
P , q(x, y) ≤ C.

Proof. Let x and y be in R
P and i ∈ {1, · · · , P}. By definition of µ̃ (see 22), we have

|µ̃i(x)− xi| ≤ ‖µ̃(x)− x‖2 ≤ Dσ2/2. Thus, on one hand,

|yi − xi| ≤ |yi + γ sign(yi)− µ̃i(x)|+ γ + |µ̃i(x)− xi| ,

≤ |yi + γ sign(yi)− µ̃i(x)|+ γ +
Dσ2

2
,

which implies |yi + γ sign(yi)− µ̃i(x)|2 ≥ 1
2 |yi − xi|2 −

(
γ +Dσ2/2

)2
. Similarly, it holds

|yi + γ sign(yi)− µ̃i(x)|2 ≤ 2 |yi − xi|2 + 2
(
γ +Dσ2/2

)2
. This concludes the proof of (i).

The second statement follows trivially from (23) since p(µ̃i(x)) ≤ 1.

The proof of Theorem 4.1 also requires a lower bound on the probability that a com-

ponent of the proposed point will be set to zero. Such a bound is given in Lemma 6.3.

Lemma 6.3. Let p and µ̃ be given by Lemma 3.1 and (22). It holds

inf
z∈RP

min
i/∈Imz

p(µ̃i(z)) > 0 .

Proof. For any z ∈ R
P , ‖z − µ̃(z)‖2 ≤ Dσ2/2 by definition of µ̃(z) (see (22)). Then,

|µ̃i(z)| ≤ Dσ2/2 for any i /∈ Imz
. Hence, there exists a constant C > 0 such that

inf
z∈RP

min
i/∈Imz

P(|µ̃i(z) + ξ| ≤ γ) ≥ C , (26)

with ξ ∼ N (0, 1).

Proposition 6.4. (i) Let C be a Borel set of RP such that for any m ∈ M, C ∩Sm
is a compact set of Sm, where Sm is defined by (5). Then, C is a one-small set for

the kernel Ptrunc: there exists a positive measure ν̃ on R
P such that Ptrunc(x,A) ≥

ν̃(A)1C(x).

(ii) The Markov kernel Ptrunc is psi-irreducible and aperiodic.

Proof. (i): Let C and K be two Borel sets of R
P such that ν(K) > 0 and for any

m ∈ M, C ∩ Sm and K ∩ Sm are compact subsets of Sm. Since R
P =

⋃
m∈M Sm, we have

inf
x∈C

Ptrunc(x,A) = inf
m∈M

inf
x∈C∩Sm

Ptrunc(x,A) ,
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so that it is enough to establish a minorization on the kernel for any x ∈ C ∩Sm⋆
whatever

m⋆ ∈ M. Let m⋆ ∈ M. By definition of Ptrunc, ψ (see (21)), q (see (23)) and ν (see (2))

Ptrunc(x,A) ≥
∫

A∩K
α(x, y)q(x, y)dν(y) ,

≥
∑

m∈M

∫

A∩K
α(x, y)

∏

i/∈Im

p(µ̃i(x))δ0(dyi)
∏

i∈Im

f(µ̃i(x), yi)dyi ,

≥
∑

m∈M

∫

(A∩K)∩Sm

α(x, y)
∏

i/∈Im

p(µ̃i(x))δ0(dyi)
∏

i∈Im

f(µ̃i(x), yi)dyi ,

≥
∑

m∈M

∏

i/∈Im

p(µ̃i(x))

∫

A∩K∩Sm

α(x, ψ(m, ym))
∏

i∈Im

f(µ̃i(x), yi)dyi ,

≥
∑

m∈M

k
|m|
1

∏

i/∈Im

p(µ̃i(x))

∫

A∩K∩Sm

α(x, ψ(m, ym))
∏

i∈Im

gǫ1(xi − yi)dyi ,

where the last inequality is a consequence of Lemma 6.2(i). For any x ∈ Sm⋆
and y ∈ Sm,

we have

α(x, y) = 1 ∧ πm(y)

πm⋆
(x)

∏
i/∈Im⋆

p (µ̃i(y))
∏

i∈Im⋆
f (µ̃i(y), xi)∏

i/∈Im
p (µ̃i(x))

∏
i∈Im

f (µ̃i(x), yi)
.

There exists a compact set of R such that for any x ∈ C ∩ Sm and y ∈ K ∩ Sm, µ̃i(x) and

µ̃i(y) are in this compact for any i. Hence, A2(i) and Lemma 6.2(i) imply that there exists

εm > 0 such that for any x ∈ C ∩ Sm and y ∈ K ∩ Sm,

α(x, y) ≥ εm , inf
i∈Im

gǫ1(xi − yi) ≥ εm .

This yields for any x ∈ C∩Sm⋆
, Ptrunc(x,A) ≥ infm∈M εm

∫
A 1K(y)dν(y), thus concluding

the proof.

(ii): By (Mengersen & Tweedie 1996, Lemma 1.1), the Markov chain (Xn)n≥0 is psi-

irreducible since for any x, y ∈ R
P , q(x, y) > 0 and π(x) > 0 as a consequence of

Lemma 6.2(i) and A1. The chain is strongly aperiodic since by Proposition 6.4(i) it pos-

sesses a one-small set with positive ν-measure, which concludes the proof.

For any measurable function f : Rp → R
+, Ptruncf : RP → R

+ is a measurable function

defined by x 7→
∫
Ptrunc(x,dz)f(z). Ptrunc is a Hastings-Metropolis kernel with proposal

distribution q(x, y)dν(y) given by (23) and target distribution π(y)dν(y).

Fix β ∈ (0, 1) and set V : RP → [1,∞), x 7→ cβπ
−β(x). Note that such a constant cβ

exists under A1. Define the possible rejection region R(x) by

R(x)
def
= {y ∈ R

P : α(x, y) < 1} = {y ∈ R
P : π(x)q(x, y) > π(y)q(y, x)} .
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We have

PtruncV (x)

V (x)
≤
∫
α(x, y)

π−β(y)

π−β(x)
q(x, y)dν(y) +

∫

R(x)
q(x, y)dν(y) ,

≤
∑

m∈M

Tm(x) +

∫

R(x)
q(x, y)dν(y) ,

where

Tm(x)
def
=

∫

R|m|

α(x, ψ(m, z))
π−β(ψ(m, z))

π−β(x)
q(x, ψ(m, z)) dz . (27)

Proposition 6.5. Assume A1 to A4 hold. For β ∈ (0, 1), set V (x) ∝ π−β(x). Then

lim sup
‖x‖→∞

PtruncV (x)

V (x)
< 1 .

The proof of Proposition 6.5 is detailed below: by Lemma 6.6, lim sup
‖x‖2→∞

Tm(x) = 0 for all

m ∈ M; and by Lemma 6.8, lim sup
‖x‖→∞

∫
R(x) q(x, y)dν(y) < 1.

Lemma 6.6. Assume A1, A2 and A3 hold. Then for any m ∈ M, lim sup
‖x‖2→∞

Tm(x) = 0.

Proof. The proof is adapted from Jarner & Hansen (2000) and Atchadé (2006) who

respectively address the geometric ergodicity of a symmetric Random Walk Hastings-

Metropolis algorithm and the geometric ergodicity of MALA. Let m ∈ M and ǫ > 0

be fixed. Define

B(xm, a) def
= {z ∈ R

|m|, ‖z − xm‖2 ≤ a} ,

Cm(x)
def
= {z ∈ R

|m|, π(ψ(m, z)) = π(x)} ,

Cm(x, u)
def
= {z + sn(z), |s| ≤ u, z ∈ Cm(x)} ,

Am(x)
def
= {z ∈ R

|m|, π(ψ(m, z))q(ψ(m, z), x) ≥ π(x)q(x, ψ(m, z))} ,

Rm(x)
def
= R

|m| \Am(x) .

We write Tm(x) ≤ Tm,1(x, a) +
∑4

j=2 Tm,j(x, a, u) with

Tm,1(x, a)
def
=

∫

Bc(xm,a)
α(x, ψ(m, z))

π−β(ψ(m, z))

π−β(x)
q(x, ψ(m, z))dz ,

Tm,2(x, a, u)
def
=

∫

B(xm,a)∩Cm(x,u)
α(x, ψ(m, z))

π−β(ψ(m, z))

π−β(x)
q(x, ψ(m, z))dz ,

Tm,3(x, a, u)
def
=

∫

Am(x)∩B(xm,a)∩Cc
m(x,u)

π−β(ψ(m, z))

π−β(x)
q(x, ψ(m, z))dz ,

Tm,4(x, a, u)
def
=

∫

Rm(x)∩B(xm,a)∩Cc
m(x,u)

π1−β(ψ(m, z))

π1−β(x)
q(ψ(m, z), x)dz .
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We prove that there exist positive constants C,M such that sup‖x‖≥M Tm(x) ≤ Cǫ. Since

ǫ is arbitrarily small, this yields the lemma. Note that for any z ∈ R
|m|,

α(x, ψ(m, z))
π−β(ψ(m, z))

π−β(x)
≤
(
q(ψ(m, z), x)

q(x, ψ(m, z))

)β

. (28)

Control of Tm,1: By (28), Tm,1(x, a) ≤
∫
Bc(xm,a) q(x, ψ(m, z))

1−βq(ψ(m, z), x)βdz. By

(23) and Lemma 6.2, there exists a constant C > 0 such that

Tm,1(x, a) ≤ Ck
|m|(1−β)
2

∫

Bc(xm,a)

∏

i∈Im

gǫ2(xi − yi)
1−βdyi

≤ Ck
|m|(1−β)
2

∫

Bc(0,a)

∏

i∈Im

gǫ2(yi)
1−βdyi .

Therefore, there exists a > 0 such that supx∈RP Tm,1(x, a) ≤ ǫ.

Control of Tm,2: By (28), Tm,2(x, a, u) ≤
∫
B(xm,a)∩Cm(x,u) q(x, ψ(m, z))

1−βq(ψ(m, z), x)βdz.

By A3, the Lebesgue measure of Bm(x, am) ∩ Cm(x, u) can be made arbitrarily small - in-

dependently of x ∈ R
P - when u is small enough (see (Jarner & Hansen 2000, Proof of

Theorem 4.1) for details). Therefore, since q is bounded (see Lemma 6.2(ii)), there exists

u > 0 such that supx∈RP Tm,2(x, a, u) ≤ ǫ.

Control of Tm,3: Set dr(u)
def
= sup‖x‖2≥r π(x+un(x))/π(x). By A3, choose r large enough

so that (dr−u(u))
1−β ∨ (dr(u))

β ≤ ǫ. By A1 and A2(i), sup
z∈B(0,r)

π(ψ(m, z))−β <∞, so that

by Lemma 6.2(ii)

sup
x∈RP

∫

Am(x)∩B(xm,a)∩Cc
m(x,u)∩B(0,r)

q(x, ψ(m, z))π−β(ψ(m, z))dz <∞ .

A2(ii) implies that

lim sup
‖x‖→∞

∫

Am(x)∩B(xm,a)∩Cc
m(x,u)∩B(0,r)

π−β(ψ(m, z))

π−β(x)
q(x, ψ(m, z))dz = 0 .

Moreover, by definition of Am(x), for any z ∈ Am(x) it holds

π−β(ψ(m, z))

π−β(x)
q(x, ψ(m, z)) ≤ π1−β(ψ(m, z))

π1−β(x)
q(ψ(m, z), x) ;

by Lemma 6.2(ii), there exists a constant C such that for any x ∈ R
P and z ∈ Am(x)

π−β(ψ(m, z))

π−β(x)
q(x, ψ(m, z)) ≤ C

(
π−β(ψ(m, z))

π−β(x)
∧ π1−β(ψ(m, z))

π1−β(x)

)
.

This yields
∫

Am(x)∩B(xm,a)∩Cc
m(x,u)∩Bc(0,r)

π−β(ψ(m, z))

π−β(x)
q(x, ψ(m, z))dz

≤ C

(
sup

z∈Cc
m(x,u)∩Bc(0,r)

πβ(x)

πβ(ψ(m, z))
∧ sup

z∈Cc
m(x,u)∩Bc(0,r)

π1−β(ψ(m, z))

π1−β(x)

)
.
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Let z ∈ Cc
m(x, u) ∩ {z : π(ψ(m, z)) < π(x)} and set x̄

def
= ψ(m, ym) − u n(ψ(m, ym)). By

A2(i), h : s 7→ π(ψ(m, z)−s n(ψ(m, z)))−π(x) is continuous, and by definition of Cc
m(x, u),

h(s) 6= 0 for any 0 ≤ s ≤ u. Since h(0) < 0 (we assumed that π(ψ(m, z)) < π(x)), this

implies that h(u) < 0 i.e. π(x̄) ≤ π(x). Then,

sup
z∈Cc

m(x,u)∩Bc(0,r)

π(ψ(m, z))

π(x)
=
π(ψ(m, z))

π(x̄)

π(x̄)

π(x)
≤ π(ψ(m, z))

π(x̄)
≤ dr−u(u) .

If z ∈ Cc
m(x, u) ∩ {z : π(ψ(m, z)) ≥ π(x)}, we set x̄

def
= ψ(m, ym) + u n(ψ(m, ym)) and

obtain similarly that π(x)/π(ψ(m, z)) ≤ dr(u). Hence, we established that

sup
z∈Cc

m(x,u)∩Bc(0,r)

π(ψ(m, z))

π(x)
≤ dr(u) .

As a conclusion, there exist constants C,M such that sup‖x‖≥M Tm,3(x, a, u) ≤ Cǫ.

Control of Tm,4 Following the same lines as for the control of Tm,3(x, a, u), it can be

shown that there exist constants C,M such that sup‖x‖≥M Tm,4(x, a, u) ≤ Cǫ.

Lemma 6.7. Assume A1, A3 and A4 hold. Let u, b, ǫ,R be given by A4 and Wm(x) be

defined by (15). There exists r > R such that for any m ∈ M and x ∈ Sm ∩ {‖x‖2 ≥ r},
Wm(x) ⊂ {y ∈ R

|m|, α(x, ψ(m, y)) = 1}.

Proof. The proof is adapted from Jarner & Hansen (2000). Let m ∈ M and x ∈ Sm

such that ‖x‖ ≥ r for some r > R to be fixed later (the constant R is given by A4). We

first prove that there exists a positive constant Cb such that

π(x)

π(x− un(x))
≤ Cb ≤ inf

z∈B(xm,b)

q(ψ(m, z), x)

q(x, ψ(m, z))
. (29)

By (23), Lemma 6.2(i) and Lemma 6.3, there exist C,Cb > 0 - independent of x ∈ Sm -

such that

inf
z∈B(xm,b)

q(ψ(m, z), x)

q(x, ψ(m, z))
≥ CP−|m|k

|m|
1 k

−|m|
2 inf

z∈B(xm,b)

∏

i∈Im

gǫ1(xi − zi)

gǫ2(xi − zi)
≥ Cb .

By A3, we can choose r large enough so that π(x)/π(x − un(x)) ≤ Cb. This yields (29).

Let z ∈ Wm(x). Then, ‖z − xm‖2 ≤ b so that z ∈ B(xm, b). Hence, by (29),

q(ψ(m, z), x)/q(x, ψ(m, z)) ≥ Cb. In addition,

π(ψ(m, z))

π(x)
=

π(ψ(m, z))

π(x− un(x))

π(x− un(x))

π(x)
≥ π(ψ(m, z))

π(x− un(x))

1

Cb
≥ 1

Cb
,

where in the last inequality we used A4. Hence,

α(x, ψ(m, z)) =
π(ψ(m, z))

π(x)

q(ψ(m, z), x)

q(x, ψ(m, z))
≥ 1

thus showing the lemma.
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Lemma 6.8. Assume A1 to A4 hold. Then lim sup
‖x‖2→∞

∫
R(x) q(x, y)dν(y) < 1.

Proof. SetAm(x)
def
= {z ∈ R

|m|, α(x, ψ(m, z)) = 1}. By definition of dν, by Lemma 6.2(i)

and by Lemma 6.3, there exists a constant C > 0 such that

1−
∫

R(x)
q(x, y)dν(y) =

∑

m∈M

∫

Am(x)
q(x, ψ(m, z))dz ,

≥
∑

m∈M

k
|m|
1

∏

i/∈Im

p(µ̃i(x))

∫

Am(x)

∏

i∈Im

gǫ1(xi − yi)dyi

≥ k
|mx|
1

∏

i/∈Imx

p(µ̃i(x))

∫

Amx(x)

∏

i∈Imx

gǫ1(xi − yi)dyi

≥ C k
|mx|
1

∫

Amx(x)

∏

i∈Imx

gǫ1(xi − yi)dyi .

By Lemma 6.7, for any x large enough,

1−
∫

R(x)
q(x, y)dν(y) ≥ C k

|mx|
1

∫

Wmx(x)

∏

i∈Imx

gǫ1(xi − yi)dyi .

where Wm(x) is defined in (15). We have

∫

Wmx(x)

∏

i∈Imx

gǫ1(xi − yi)dyi =

∫

Wmx(x)−xmx

∏

i∈Imx

gǫ1(yi)dyi , (30)

where A− x
def
= {z, z + x ∈ A}. Observe that

Wmx
(x)−xmx

= {−un(xmx
)−sξ; 0 < s < b−u, ξ ∈ R

|mx|, ‖ξ‖2 = 1, ‖ξ−n(xmx
)‖2 ≤ ǫ} ,

so that the integrals in (30) depend on x only through mx. Since M is finite, there exists

a constant C ′ > 0 independent of x such that

∫

Wmx(x)−xmx

gǫ1(ymx
)dymx

≥ C ′ .

A. Example of a target density satisfying assumptions A1 to A4

Let v > 0 and λ ≥ 0. We prove that the density π defined on R
P by

π(x) ∝ wm c
−|m|
λ exp

(
− 1

2τ
‖Y −Gx‖22 − λ‖x‖1 − v‖x‖22

)
, (31)

for any x ∈ Sm, satisfies the conditions A1 to A4. Note that since T = 1, ‖x‖2,1 = ‖x‖1.
For any m ∈ M and x ∈ Sm, we have π(x) ∝ exp(−g(x)− ḡ(x)) with

g(x) =
1

2τ
‖Y −Gx‖22 and ḡ(x) = λ‖x‖1 + v‖x‖22 − log

(
wmc

−|m|
λ

)
.
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Hence A1 is satisfied. It is clear that for any m ∈ M, the restriction of πm is continuous.

Moreover, for any x ∈ R
P ,

π(x) ≤ C max
|m|∈{1,··· ,P}

c
−|m|
λ exp

(
−λ‖x‖1 − v‖x‖22

)

and as λ ≥ 0 and v > 0, the RHS tends to zero when ‖x‖2 → ∞. Therefore, A2 is satisfied.

A3 and A4 are proved in Lemma A.1 and Lemma A.2.

Lemma A.1. Let π be given by (31). Then, limr→∞ sup‖x‖2≥r πm(x+s n(x))/πm(x) = 0

for any m ∈ M and s > 0.

Proof. Let m ∈ M, s > 0 and x ∈ Sm. Since x+ s n(x) ∈ Sm, we have

πm(x+ sn(x))

πm(x)
= exp

(
1

2τ

(
‖Y −Gx‖22 − ‖Y −G(x+ sn(x))‖22

))

× exp
(
λ (‖x‖1 − ‖x+ sn(x)‖1) + v

(
‖x‖22 − ‖x+ sn(x)‖22

))
.

First, ‖x‖1 − ‖x+ sn(x)‖1 = −s‖x‖1/‖x‖2 ≤ −s. Moreover,

‖Y −Gx‖22 − ‖Y −G(x+ sn(x))‖22 = −s2‖Gn(x)‖22 + 2s
〈
Y −Gx,Gn(x)

〉
.

And finally,

‖x‖22 − ‖x+ sn(x)‖22 = −2s
〈
x, n(x)

〉
− s2‖n(x)‖22 ≤ −2s‖x‖2 .

This implies that for any x,

πm(x+ sn(x))

πm(x)
≤ exp

( s
τ

〈
Y −Gx,Gn(x)

〉)
exp (−2sv‖x‖2) ,

≤ exp
( s
τ

〈
Y,Gn(x)

〉)
exp

(
−s‖x‖2

τ
‖Gn(x)‖22

)
exp (−2sv‖x‖2) ,

≤ exp

(
s

τ
sup

‖z‖2=1

〈
Y,Gz

〉)
exp (−2sv‖x‖2) .

As v > 0, the RHS tends to zero as ‖x‖2 → ∞, uniformly for ‖x‖2 ≥ r.

Lemma A.2. The target density π defined by (31) satisfies the condition A4.

Proof. Let b > 0 and u ∈ (0, b) be fixed. Let ǫ > 0 be such that

ǫ ≤ inf
z,‖z‖=1

‖Gz‖22/ sup
z,‖z‖=1

‖G′Gz‖2 and ǫ < 1 . (32)

Let m ∈ M and x ∈ Sm such that ‖x‖2 ≥ b. Set x⋆
def
= x−u n(x), and y

def
= x⋆−sξ ∈ Sm

such that ym ∈Wm(x), where by definition of Wm(x) in (15), s ∈ (0, b− u) and ξ ∈ Sm is

such that ‖ξ‖2 = 1 and ‖ξ − n(x)‖ ≤ ǫ. First, note that when ‖x‖2 > b, x⋆ ∈ Sm, and

πm(y)

πm(x⋆)
= exp

(
− 1

2τ

(
‖Y −G(x⋆ − sξ)‖22 − ‖Y −Gx⋆‖22

)
− λ (‖x⋆ − sξ‖1 − ‖x⋆‖1)

)

× exp
(
−v
(
‖x⋆ − sξ‖22 − ‖x⋆‖22

))
.
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Moreover,

‖x⋆ − sξ‖1 − ‖x⋆‖1 = ‖x⋆ − s n(x⋆) + s n(x⋆)− sξ‖1 − ‖x⋆‖1 ,

≤ ‖x⋆‖1
(
1− s

‖x⋆‖2

)
+ s‖n(x⋆)− ξ‖1 − ‖x⋆‖1 ,

≤ −s‖x⋆‖1‖x⋆‖2
+ sǫ

‖n(x⋆)− ξ‖1
‖n(x⋆)− ξ‖2

since y ∈Wm(x). By equivalence of the norm, and as ǫ < 1, there exists a constant C such

that

sup
x∈Sm

‖x⋆ − sξ‖1 − ‖x⋆‖1 ≤ C .

Define φ : s 7→ ‖Y −G(x⋆ − s ξ)‖22; φ is differentiable on R, and

φ′(s) = 2
〈
Y −Gx⋆ + sGξ,Gξ

〉
= 2
〈
Y,Gξ

〉
− 2
〈
Gξ,Gx⋆

〉
+ 2s‖Gξ‖22 ,

= 2
〈
Y,Gξ

〉
− 2‖x⋆‖2

(〈
ξ − n(x⋆), G

′Gn(x⋆)
〉
+ ‖Gn(x⋆)‖22

)
+ 2s‖Gξ‖22 .

By definition of φ, ‖Y − G(x⋆ − sξ)‖22 − ‖Y − Gx⋆‖22 = φ(s) − φ(0). By the mean value

theorem, there exists τ ∈ [0, s] such that

φ(s)− φ(0) = s φ′(τ)

≤ 2sτ‖Gξ‖22 + 2s
〈
Y,Gξ

〉
− 2s‖x⋆‖2

(
‖Gn(x⋆)‖22 +

〈
ξ − n(x⋆), G

′Gn(x⋆)
〉)

,

≤ 2sτ‖Gξ‖22 + 2s
〈
Y,Gξ

〉
− 2s‖x⋆‖2

(
inf

z,‖z‖=1
‖Gz‖22 − ǫ sup

z,‖z‖=1
‖G′Gz‖2

)
.

Therefore, by (32), there exists a constant C > 0 independent of x such that,

sup
x∈Sm

‖Y −G(x⋆ − sξ)‖22 − ‖Y −Gx⋆‖22 ≤ C .

And finally,

‖x⋆ − sξ‖22 − ‖x⋆‖22 ,

= ‖x⋆ − s n(x⋆) + s n(x⋆)− sξ‖22 − ‖x⋆‖22 ,

= ‖x⋆ − s n(x⋆) + s n(x⋆)− sξ‖22 − ‖x⋆ − s n(x⋆)‖22 + ‖x⋆ − s n(x⋆)‖22 − ‖x⋆‖22 ,

= 2s
〈
n(x⋆)− ξ, x⋆ − sn(x⋆)

〉
+ s2‖n(x⋆)− ξ‖22 − 2s‖x⋆‖2 + s2 ,

≤ s2 − 2s‖x⋆‖ (1− ǫ) .

Therefore, as ǫ < 1,

‖x⋆ − sξ‖22 − ‖x⋆‖22 −→
‖x‖2→∞

−∞ .

Therefore, there exists ǫ > 0 and R > 0 such that for any ‖x‖2 ≥ R and any y ∈ Sm with

ym ∈Wm(x), πm(y)/πm(x⋆) ≥ 1.
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B. Appendix for the numerical experiments

B.1. The RJMCMC algorithm

The RJMCMC algorithm proposed by Green (1995) is designed to sample from distribu-

tions defined on a parameter space which is a union of subspaces. Here we use it to sample

from absolutely continuous distributions with respect to dν defined in (2), by iteratively

sampling a binary vector m ∈ {0, 1}P and a point X ∈ Sm. Here we denote by πdν the

target distribution.

Each iteration of this algorithm is decomposed into two steps: (i) first propose a new

binary vector m′, in general “close” to the current one m, according to a transition prob-

ability j(m, ·), and (ii) then compute a new point X ′ ∈ Sm′ from the current one X in a

reversible way. This second step introduces an auxiliary random variable u (resp. u′), sam-

pled from a proposal distribution q specified by the user to balance the components that

are null in X (resp. X ′) and not in X ′ (resp. X). Here we choose q(u) = NT (u; 0, σ
2
rjIT ),

for some σrj > 0 if u 6= 0T and q(0T ) = 1 where 0T is the null 1× T matrix.

In this work, the transition probability j(m,m′) is defined as follows: m′ is obtained

from the current m by adding, or by deleting, or by both adding and removing one of the

active components (ones) of m, or by keeping the same m. The probability of these four

strategies is uniform, except if |m| = 0 (only the adding move can be chosen), or if |m| = P

(only the deleting move can be chosen). The proposed m′ is then chosen uniformly between

all the binary vectors that can be reached by doing the selected move from the current m.

Then, to choose the new point X ′ ∈ Sm′ , we use the following dynamics:

- If the component k is added, i.e. if m′
i = mi for any i 6= k and m′

k = 1, mk = 0,

then X ′
m· = Xm·, X

′
k· = u ∼ NT (0, σ

2
rjIT ), and the other components X ′

j· are null. And

u′ = 0T .

- If one of the active rows k is deleted , i.e. if m′
i = mi for any i 6= k and m′

k = 0, mk = 1,

then X ′
m′· = Xm′· and the othe components X ′

j· are null. This corresponds to setting

u′ = Xk· and u = 0T .

- If an active row is deleted (say k) and a new active row is inserted (say ℓ) then X ′
j· = Xj·

for j /∈ {k, ℓ}, X ′
k· = 0, X ′

ℓ· = u ∼ NT (0, σ
2
rjIT ) and u′ = Xk·.

- Finally, if m′ = m, X ′
m· − Xm· are |m| i.i.d. random variables NT (0, σ

2
rjIT ), and the

other components X ′
j· are null. In this case, we set u = u′ = 0T .
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The candidate (m′,X ′
m′·) is the accepted with probability

α((m,Xm·), (m
′,X ′

m′·)) = 1 ∧
[
π(X ′)j(m′,m)q(u′)

π(X)j(m,m′)q(u)

]
.

Note that in general, a Jacobian term takes part in the acceptance probability of the

RJMCMC. For the dynamics chosen here, this Jacobian term is equal to one.

B.2. Computational aspects

This section provides a method to compute the probability p(c) defined in Lemma 3.1. Let

c ∈ R
T and γ > 0. p(c) is given by

p(c) = P (‖c+ ξ‖2 ≤ γ) = P

(∥∥∥
c+ ξ

σ

∥∥∥
2

2
≤ γ2

σ2

)
,

where ξ ∼ NT (0, σ
2IT ). In this case, ‖(c + ξ)/σ‖22 follows a non-centered chi-squared dis-

tribution with noncentrality parameter given by ‖c‖22/σ2. Then, p(c) can be approximated

by the Matlab ncx2cdf function with parameters
(
γ2/σ2, T, ‖c‖22/σ2

)
. To obtain faster

computations, the following approximation introduced in (Johnson et al. 1995, Section 8)

may also be used:

P

(∥∥∥
c+ ξ

σ

∥∥∥
2

2
≤ x

)
≈ Φ

(
xu(T + ℓ)−u − [1 + uv(u− 1− 0.5(2 − u)wv)]

u
√

2v(1 + wv)

)
,

where Φ is the cumulative distribution function of a standard Gaussian distribution and

ℓ
def
= ‖c/σ‖22, u

def
= 1− 2

3

(T + ℓ)(T + 3ℓ)

(T + 2ℓ)2
, v

def
=

T + 2ℓ

(T + ℓ)2
, w

def
= (u− 1)(1 − 3u) .

References

Atchadé, Y. (2006), ‘An adaptive version for the Metropolis adjusted Langevin algorithm

with a truncated drift’, Methodol. Comput. Appl. Probab. 8, 235–254.

Beauchamp, J. & Mitchell, T. (1988), ‘Bayesian variable selection in linear regression (with

discussion)’, J. Amer. Statist. Assoc. 83, 1023–1036.

Beck, A. & Teboulle, M. (2009), ‘A fast iterative shrinkage-tresholding algorithm for linear

inverse problems’, SIAM J. Imaging Sci. 2(1), 183–202.

Bickel, P., Ritov, Y. & Tsybakov, A. (2009), ‘Simultaneous analysis of Lasso and Dantzig

selector’, Ann. Statist. 37, 1705–1732.

Breiman, L. (1992), ‘The little bootstrap and other methods for dimensionality selection

in regression: X-fixed prediction error’, J. Amer. Statist. Assoc. 87, 738–754.



STMALA for Bayesian Variable Selection 41

Brooks, S., Giudici, P. & Roberts, G. (2003), ‘Efficient construction of reversible jump

Markov chain Monte Carlo proposal distributions’, J. of Royal Statist. Soc. B. 61(1), 3–

39.

Brown, P., Fearn, T. & Vannucci, M. (2001), ‘Bayesian Wavelet Regression on Curves

With Application to a Spectroscopic Calibration Problem’, J. Amer. Statist. Assoc.

96(454), 398–408.

Bunea, F., Tsybakov, A. & Wegkamp, M. (2007), ‘Sparsity oracle inequalities for the

LASSO’, Electron. J. Statist. 1, 169–194.

Carlin, B. & Chib, S. (1995), ‘Bayesian model choice via Markov chain Monte Carlo meth-

ods’, J. of Royal Statist. Soc. B. 157, 473–484.

Caron, F. & Doucet, A. (2008), Sparse Bayesian nonparametric regression, in ‘Proceedings

of the 25th International Conference on Machine Learning (ICML’2008)’, pp. 88–95.

Casella, G. & Park, T. (2008), ‘Bayesian LASSO’, J. Amer. Statist. Assoc. 103(482), 681–

686.

Dalalyan, A. & Tsybakov, A. (2012), ‘Sparse regression learning by aggregation and

Langevin Monte-Carlo’, J. Comput. System Sci. 78(5), 1423–1443.

Dellaportas, P., Forster, J. & Ntzoufras, I. (2002), ‘On Bayesian model and variable selec-

tion using MCMC’, Stat. Comput. 12, 27–36.

George, E. & McCulloch, R. (1993), ‘Variable selection via Gibbs sampling’, J. Amer.

Statist. Assoc. 88(423), 881–889.

Green, P. (1995), ‘ Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination’, Biometrika 82(4), 711–723.

Griffin, J. & Brown, P. (2011), ‘Bayesian hyper-lassos with non-convex penalization’, Aust.

N. Z. J. Stat. 53(4), 423–442.

Ishwaran, H. & Rao, J. (2005), ‘Spike and slab variable selection: frequentist ans bayesian

strategies’, Ann. Statist. 33(2), 730–773.

Jarner, S. & Hansen, E. (2000), ‘Geometric ergodicity of Metropolis algorithms’, Stoch.

Proc. Appl. 85(2), 341–361.

Ji, C. & Schmidler, S. (2013), ‘Adaptive Markov Chain Monte Carlo for Bayesian Variable

Selection’, J. Comput. Graph. Statist. 22(3), 708–728.



42 Schreck et al.

Johnson, N., Kotz, S. & Balakrishnan, N. (1995), Continuous Univariate Distributions,

Volume 2, Wiley Series in Probability and Statistics.

Karagiannis, G. & Andrieu, C. (2013), ‘Annealed Importance Sampling Reversible Jump

MCMC Algorithms’, J. Comput. Graph. Statist. 22(3), 623–648.

Lamnisos, D., Griffin, J. & Steel, M. (2013), ‘Adaptive Monte Carlo for Bayesian Variable

Selection in Regression Models’, J. Comput. Graph. Statist. 22(3), 729–748.

Lucka, F. (2012), ‘Fast Markov chain Monte Carlo sampling for sparse Bayesian inference

in high-dimensional inverse problems using L1-type priors’, Inverse Problems 28(12).

Malsiner-Walli, G. & Wagner, H. (2011), ‘Comparing spike and slab priors for Bayesian

variable selection’, Austrian Journal of Statistics 40(4), 241–264.

Mengersen, K. & Tweedie, R. (1996), ‘Rates of convergence of the Hastings and Metropolis

algorithms’, Ann. Statist. 24(1), 101–121.

Meyn, S. P. & Tweedie, R. L. (1993), Markov Chains and Stochastic Stability, Springer,

London.

Neal, P. & Roberts, G. (2006), ‘Optimal scaling for partially updating MCMC algorithms’,

Ann. Appl. Probab. 16(2), 475–515.

Nott, D. & Kohn, R. (2005), ‘Adaptive sampling for Bayesian variable selection’,

Biometrika 92(4), 747–763.

O’Hara, R. & Sillanpää, M. (2009), ‘A review of Bayesian variable selection methods: what,

how and which’, Bayesian Anal. 4(1), 85–117.

Parikh, N. & Boyd, S. (2013), ‘Proximal algorithms’, Foundation and trends in optimization

1(3), 123–231.

Pereyra, M. (2013), ‘Proximal Markov chain Monte Carlo algorithms’, arXiv:1306.0187 .

Petralias, A. & Dellaportas, P. (2013), ‘An MCMC model search algorithm for regression

problems’, J. Statist. Comput. Simulation 83(9), 1722–1740.

Rigollet, P. & Tsybakov, A. B. (2012), ‘Sparse Estimation by Exponential Weighting’,

Statist. Sci. 27(4), 558–575.

Roberts, G. & Rosenthal, J. (2006), ‘Harris recurrence of Metropolis-within-Gibbs and

trans-dimensional Markov chains’, Ann. Appl. Probab. 16(4), 2123–2139.



STMALA for Bayesian Variable Selection 43

Roberts, G. & Tweedie, R. (1996), ‘Exponential convergence of Langevin distributions and

their discrete approximations’, Bernoulli 2(4), 341–363.

Schäfer, C. & Chopin, N. (2013), ‘Sequential Monte Carlo on large binary sampling spaces’,

Stat. Comput. 23(2), 163–184.

Shi, M. & Dunson, D. (2011), ‘Bayesian Variable Selection via Particle Stochastic Search’,

Stat Probab Lett. 81(2), 283–291.

Siedenburg, K. (2012), Persistent Empirical Wiener Estimation With Adaptive Threshold

Selection For Audio Denoising, in ‘Proceedings of the 9th Sound and Music Computing

Conference’, pp. 426–433.

Tan, X., Li, J. & Stoica, P. (2010), Efficient sparse Bayesian learning via Gibbs sampling,

in ‘International Conference on Acoustics, Speech and Signal Processing (ICASSP)’,

pp. 3634–3637.

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the Lasso’, J. R. Statist. Soc.

B 58(1), 267–288.

Van de Geer, S. (2009), ‘High-dimensional generalized linear models and the LASSO’, Ann.

Statist. 37, 1705–1732.

West, M. (2003), ‘Bayesian Factor Regression Models in the "Large p, Small n" Paradigm’,

Bayesian Statistics 7, 723–732.

Wipf, D., Rao, B. & Nagarajan, S. (2011), ‘Latent Variable Bayesian Models for Promoting

Sparsity’, IEEE Trans. Inform. Theory 57(9), 6236–6255.


