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Abstract
We consider the continental island model for a finite haploid population with a total number
of n demes consisting of one continent and n − 1 islands. We assume viability differences in
the population captured by a linear game within each deme as a result of pairwise interac-
tions. Assuming weak selection, conservative migration and the limit case of the structured
coalescent assumptions, we derive the first-order approximation for the fixation probability
of a single mutant, initially introduced in the continent, with respect to the intensity of selec-
tion. This result is applied to the case of the iterated Prisoner’s Dilemma, when the resident
strategy is always defect and the mutant cooperative strategy is tit-for-tat. In this context, we
investigate the condition under which selection favors the emergence of cooperation and we
derive an extension of the “one-third law” of evolution. When the continent and the islands
are of the same size, we compare the continental island model to its Wright’s island model
counterpart.When the islands have the same size, but this size differs from the size of the con-
tinent, we investigate how the asymmetry in the deme sizes can better promote the evolution
of tit-for-tat compared to its equal deme sizes model counterpart.

Keywords Evolutionary game theory · Finite population · Structured coalescent · Fixation
probability · One third law

1 Introduction

Evolutionary game theory is a mathematical framework that has originally been consid-
ered in the context of infinitely large populations for studying selection of traits with
frequency-dependent fitness [30, 34, 37]. Frequency-dependent selection arises whenever
the fitness values of the traits (strategies) depend on the relative abundance of the different
strategies in the population. The trait of cooperation is a classic example of traits under
frequency-dependent selection [36]. In the context of infinite populations, the evolution of
the frequencies of the traits in the population is modeled by differential equations like the
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wide-spread replicator equations [12, 48] and theoretical predictions of the evolution of the
system are based on the identification of equilibrium states and the analysis of their stability.

In nature, real populations are always finite and the evolutionary processes are subject to
stochastic fluctuations due, in particular, to the finiteness of the population. In this case, the
evolution of a mutant trait may differ significantly from its evolutionary outcome predicted
by the deterministic replicator dynamics in infinite populations. For instance, in the absence
of mutation, any mutant trait will either be eliminated or will take over the whole population
due to random drift. And the probability that a single mutant fixes in a finite population
is always nonzero, even in the case where this mutant is one that would be wiped out by
selection in an infinitely large population.

Besides, real populations, in addition to being finite, are not always well-mixed. They
often exhibit some kind of structure. A substantial amount of studies in evolutionary game
theory investigate the effect of population structure on the evolutionary process. One way
to incorporate structure in a population is to consider group-structured populations models,
which include the traditional island model [19, 23] or models with isolation by distance [42,
44]. Evolutionary games on graphs, in which individuals are viewed as nodes on a graph,
provide another natural extension to the modeling of structured populations [2, 4, 7, 35, 39,
40, 47, 51].

When analyzing evolutionary dynamics in a finite population, whether structured or not,
an interesting quantity is given by the fixation probability of a single mutant. It has been
used by Nowak et al. [38] to define an advantageous mutation in a finite population: selection
is said to favor the replacement of a resident strategy by a mutant strategy, if the fixation
probability of a single mutant is greater than it would be under neutral selection.

From this definition, ensues the one-third law of evolution which specifies conditions for
weak selection to favor the emergence of a wild type strategy in a 2 × 2 coordination game,
in the limit of a large finite population.

The one-third law has been introduced by Nowak et al. [38] in the context of a frequency-
dependent Moran model. It has also been obtained for the Wright–Fisher model [13, 21],
pairwise comparison updating [49], exchangeable models within the domain of Kingman’s
coalescence [26] and games on graphs [39–41]. Then, it has been extended to the d-player
two-strategies game in aMoran population [8, 18]. The extension of the one-third law from the
2-player to the d-player game has been shown to be the same for all exchangeable models in
the domain of application of the Kingman coalescent in the limit of a large neutral population
[25]. Group structured populations [19, 20, 24] have also been investigated. Note, however,
as shown in Traulsen et al. [49] and Sample and Allen [45], that the order in which limits are
taken matters for the rule to be valid: one must first take the weak selection limit and then
apply an approximation for large population sizes.

When applied to the Iterated Prisoner’s Dilemma (IPD) game [5, 50], with the cooperative
“tit-for-tat” (TFT) strategy as a mutant strategy and “always defect” (AllD) as a resident
strategy, the one-third law or its extensions enables one to investigate how the evolution of
cooperation can be better promoted by selection in a finite population. Indeed, when the
number of iterations of this game is large enough, it becomes a coordination game with both
TFT and AllD being evolutionarily stable in the traditional sense. The one-third law states
that, in the limit of a large finite population size, weak selection favors a single mutant TFT
cooperator taking over a population of resident AllD defectors if the proportion of TFT at
the unstable equilibrium of the deterministic replicator’s dynamics is smaller than one-third.

Population subdivision can make the one-third law less stringent, as it happens in group-
structured populations models such as Wright’s island model with a finite number of demes
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of finite sizes [19], in the limit of a large number of small demes [24], as well as in asymmetric
two-demes model with unequal deme sizes and different migration rates [20].

The purpose of this paper is to extend the one-third law to a particular group-structured
population model: the Continental Island model, CI model in short, with n demes [52], in
the limit case of the structured coalescent assumptions [9, 10, 33, 52]. When applied to the
case of the IPD game with the two strategies TFT and AllD, this result will allow us to derive
conditions under which the topology of the CImodel facilitates the emergence of cooperation
compared to some other population structures, including Wright’s Island model, WI model
in short.

We proceed as follows, first we compute an approximation for the first-order effect of
selection on the fixation probability of a single mutant under: weak selection, conservative
migration and the structured coalescent assumptions [9, 10, 33, 52]; and second, we derive
the condition under which a mutant strategy is selectively advantageous. The first step is an
extension of the coalescent approach used in [20], which is adapted from a direct Markov
chain method proposed by Rousset [43] and ascertained in Lessard and Ladret [26].

Note that these calculations could also be performed using a general method recently
developed by McAvoy and Allen [32], which generalizes the approach of Rousset [43] in
the framework of “replacement events” models developed by [1, 3]. This method applies to
a broad class of stochastic evolutionary models, in which the size and spatial structure of the
population are arbitrary, but fixed. But we resorted to a different straightforward extension
of the method used in Ladret and Lessard [20] that is directly adapted to fit the CI model.

As a consequence of the second step, we obtain an extension of the one-third law when
the two strategies are best replies to themselves with respect to the game matrix. Then, for
each of the following model comparisons:

(i) CI model vs panmictic model;
(ii) CI model with equal deme sizes, called symmetric CI or sCI in short, vs a WI model

that has the same deme sizes, the same number of demes, n, and the same expected
total number of migrants per generation after population regulation as the sCI model;

(iii) CI model vs its sCI model counterpart, which shares the same population parameters
as the CI model except for the proportion of individuals living on the continent, which
is equal to P �= 1/n in the latter model and P = 1/n in the former;

we establish the conditions under which the extended one-third law is less stringent in the
first model compared to the second one. For the IPD game with TFT and AllD, this condition
means that the emergence of cooperation is better promoted by the former model compared
to the latter. These conditions will be expressed in terms of the population parameters.

This paper is organized as follows. In Sect. 2, we describe the CImodel. In Sect. 3, we give
a first-order approximation for the fixation probability of a single mutant with respect to the
intensity of selection, underweak selection. In Sect. 4, this approximation is derived under the
structured coalescent assumptions and conservative migration. In Sect. 5, conditions under
which a mutant strategy is favored by selection to replace a resident strategy are derived and
links with evolutionarily stable strategies in the traditional sense are given. In Sect. 6, the
question of the emergence of cooperation is investigated in the framework of a coordination
game. The extended one-third lawobtained for theCImodel is compared to the one associated
with a panmictic population. The results derived for the asymmetric continental island model
are compared to their symmetric model counterparts. And comparisons are made between
the symmetric continental island model (sCI model) and the WI model. Discussion and
conclusions are provided in Sect. 7.
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Fig. 1 Continental Island Model
with n demes. The arrows
indicate migration

2 The Continental Island Linear GameModel

We consider a CI model [52] in which a haploid population is subdivided into n demes, or
subpopulations: a central deme, “the continent,” surrounded by n − 1 identical islands of
equal sizes, with migration only occurring between the continent and each island; see Fig. 1.
Deme 0 (resp. i = 1, . . . , n − 1) will stand for the continent (resp. the islands). The size
of the continent, denoted by N0, is possibly different from that of each island, denoted by
N1, with both sizes remaining fixed. Moreover, we allow for unequal migration rates from
the continent to each island and from each island to the continent, but we assume that the
migration rate from any particular island to the continent is the same for all the islands.
Suppose there are two types of individuals in the population, type A and type B, and that, at
time t = 0, a single mutant A is introduced into the continent.

We assume that the population evolves in discrete, non-overlapping generations repre-
sented by time steps t = 0, 1, 2, . . . The iteration t to t + 1 is done in four steps:
Step 1. Reproduction At the beginning of every generation, each individual in the population
produces the same very large number of offspring (treated as if it were infinite).
Step 2. Migration These offspring then disperse independently among the n demes according
to the migration pattern of a continental island model (see [52], and references therein), as
described below.

An offspring from the continent can migrate to each island, and an offspring from each
island can only migrate to the continent. Hence, migration between islands is not possible in
one step of the migration process, it implies passing through the continent. Let:

m0i denote the proportion of offspring in the continent that come from island i in the previous
generation;

mi0 denote proportion of offspring in island i that come from the continent in the previous
generation;

mi denote the probability that an individual from deme i emigrated from another subpopu-
lation in the previous generation (0 ≤ i ≤ n − 1).

For all i = 1, . . . , n − 1, we assume that m0i = m0/(n − 1) and that mi0 = m1 (here, m1 is
the probability that an individual from island i emigrated from the continent in the previous
generation). Moreover, we suppose all the backward migration probabilities to be constant
over time.
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Let xi denote the frequency of A in deme i at the beginning of a given generation, and x̃i
the frequency of A in the same deme after migration, then we have:

x̃0 = (1 − m0) x0 + m0

n − 1

n−1∑

i=1

xi , (1)

x̃i = m1 x0 + (1 − m1) xi , i = 1, . . . , n − 1 . (2)

Step 3. Selection Migration is then followed by selection among offspring within the same
deme. We consider a linear game scenario with two types of individuals, A and B. Each type
is associatedwith amixed strategy represented as a frequency vector, respectively,pA andpB ,
whose components give the probabilities of using some pure strategies in a contest against
an opponent. Pairwise interactions take place among the individuals within each deme and
affect their viabilities (fitnesses) which read, respectively, for types A and B:

for the continent: f A,0 = 1 + s pA · W p̄0 , fB,0 = 1 + s pB · W p̄0 , (3a)

for island i : f A,i = 1 + s pA · W p̄i , fB,i = 1 + s pB · W p̄i , (3b)

where W is a given game matrix, s > 0 is the selection intensity, x · y is the scalar product
of two vectors x and y, and p̄i is the mean strategy in deme i before selection, that is:

p̄i = x̃i pA + (1 − x̃i )pB = x̃i (pA − pB) + pB , i = 0, . . . , n − 1 . (4)

Following selection, the frequency of A among the individuals in deme i becomes:

x ′
i = x̃i f A,i

x̃i f A,i + (1 − x̃i ) fB,i
. (5)

Step 4. Sampling of a finite population The next generation is obtained by drawing at random
N0 individuals in the continent and N1 individuals in each island. The number of A individuals
in the continent follows a binomial distribution with parameters N0 and x ′

0, and the number
of A individuals in island i , a binomial distribution with parameters N1 and x ′

i .
After this population regulation, the frequency of A in deme i has mean x ′

i . Note that in
the special case when the number of demes is reduced to n = 2, this model reduces to the
asymmetric two-deme model studied in [20].

Throughout the paper, we focus on the weak selection scenario in which the selection
intensity s is small, that is, s = o(1).

3 Fixation Coefficient

For i = 0, . . . , n − 1, let Xi (t) denote the frequency of A in deme i at time t and define:

X(t) := (X0(t), . . . , Xn−1(t)
)
.

Since a single mutant A is introduced into the continent at time t = 0, it follows that
X(0) = x0, where:

x0 := (1/N0, 0, . . . , 0).

We are interested in u(s), the fixation probability of a single mutant A introduced at time
t = 0 into the continent in a population of B individuals when selection intensity is s. More
specifically, in the case of weak selection, we consider the first-order development:

u(s) = u(0) + s u′(0) + o(s) .
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The term u′(0), referred to as the fixation coefficient, is calculated using an adaptation of a
method introduced by Rousset [43] and ascertained in [26]. In the case of a panmictic popu-
lation [21, 22], it allows to calculate the fixation coefficient in terms of expected coalescence
times, under neutrality, that is when s = 0, of samples of individuals. This method has been
applied to the case of exchangeable selection models extending the neutral [6] model in a
finite well-mixed population [26]. It has also been used in frequency-dependent selection
models in finite structured populations in the case of an asymmetric two-deme structure [20]
and in the case of Wright’s island structure [53] with a finite number of demes of finite sizes
[19] in the limit of large deme sizes [16, 17] and in the limit of a large number of demes [24].
It has also been adapted to the case of a frequency-dependent viability and fertility selection
model with a finite population with a fixed age-structure in the limit of a large population
size [46]. Here, we adapt this method to the CI model.

LetE0 (resp. P0) denote the expectation (resp. probability) in the case of neutrality and let
E (resp. P) denote the expectation (resp. probability), in the case of an unspecified selection
intensity s. LetM be the matrix of the backward migration probabilities of this CI model:

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − m0 m0/(n − 1) m0/(n − 1) . . . m0/(n − 1) m0/(n − 1) m0/(n − 1)
m1 1 − m1 0 . . . 0 0 0
m1 0 1 − m1 0 . . . 0 0
m1 0 0 1 − m1 0 . . . 0
.
.
.

.

.

.

m1 0 . . . 0 1 − m1 0
m1 0 . . . 0 0 1 − m1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The stationary distribution u = (u0, . . . , un−1) ofM is defined by:

[u0, . . . , un−1]M = [u0, . . . , un−1] (6)

with ui ≥ 0 and
∑n−1

i=0 ui = 1. We can easily check that:

u0 = m1

m1 + m0
and u1 = u2 = · · · = un−1 = m0

(m0 + m1) (n − 1)
.

Proposition 1 The fixation coefficient for the CI model is given by:

u′(0) = (pA − pB) · κλ W (pA − pB) + (pA − pB) · κδ W pB , (7)

with

κλ := u0
∑

t≥0

λ0(m0,X(t)) + (1 − u0)
∑

t≥0

λ1(m1,X(t)) ,

κδ := u0
∑

t≥0

δ0(m0,X(t)) + (1 − u0)
∑

t≥0

δ1(m1,X(t)) ,

where λ0(m0,X(t)), λ1(m1,X(t)), δ0(m0,X(t)), and δ1(m1,X(t)) can be explicitly written
in terms of the total number n of demes, migration probabilities m0, m1 and coefficients
E0[Xi (t)X j (t)(1 − Xk(t))] and E0[Xi (t)(1 − X j (t))], with i, j, k ∈ {0, . . . , 3} according
to Eqs. (A.3)–(A.4) in Appendix A.

The proof is given in Appendix A.
From Proposition 1, it follows that the calculation of coefficient u′(0) requires the calcu-

lation of:
∑

t≥0

E0

(
Xi (t) X j (t) (1 − Xk(t))

)
and

∑

t≥0

E0

(
Xi (t) (1 − X j (t))

)
,
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for i, j, k ∈ {0, 1, 2, 3}.
In order to calculate those expressions, we shall first introduce an ancestral process,

(σ (t))t≥0. For t ≥ 0, σ(t) will describe the locations of the ancestors of three individuals,
labeled 1, 2 and 3, t generations back, by accounting for the number of distinct ancestors
they have (describing whether they have three distinct ancestors, two distinct ancestors, in
which case whether one is common to individuals 1 and 2, 2 and 3 or 1 and 3, or just a
single common ancestor) and by telling whether these ancestors live on the continent or on
an island, and in the case where at least two of these ancestors live on an island, whether
these islands differ or not. We will partition the state space, S, of this process into 5 ordered
subsets as follows:

S1,2,3 = (000, 001, 010, 100, 011, 101, 110, 111, 012, 102, 120, 123, 112, 121, 122),

S12,3 = (00, 01, 10, 11, 12),

S13,2 = (00, 01, 10, 11, 12),

S23,1 = (00, 01, 10, 11, 12),

S123 = (0, 1).

The subset S1,2,3 is for the case when the ancestors of individuals 1, 2, 3 are all different.
Subsets S12,3, S13,2 and S23,1 are for the case when the number of distinct ancestors is
reduced to two: subset S12,3 means that individuals 1, 2 have a common ancestor which is
different from the ancestor of individual 3; subset S13,2 means that individuals 1, 3 have a
common ancestor which is different from the ancestor of individual 2; subset S23,1 means that
individuals 2, 3 have a common ancestor which is different from the ancestor of individual
1. And subset S123 is for the case when individuals 1, 2 and 3 have a single common ancestor
left.

Any element in S1,2,3 is represented by a 3-digits string as follows:
First digit:

• we assign 0 (resp. 1), as the first digit if the ancestor of individual 1 lives on the continent
(resp. on an island).

Second digit:

• if the first digit is 0, then again, we assign 0 (resp. 1) as the second digit if the ancestor
of individual 2 lives on the continent (resp. on an island).

• If the first digit is 1, the second digit will be assigned 0 (resp. 1; 2), as the second digit
if the ancestor of individual 2 lives on the continent (resp. on the same island as the one
occupied by the ancestor of individual 1; on a different island than the one occupied by
the ancestor of individual 1).

Third digit:

• if the first two digits are 00, then we assign 0 (resp. 1) as the third digit if the ancestor of
individual 3 lives on the continent (resp. on an island).

• If the first two digits are 01, 10 or 11, which means that the total number of islands
occupied by the ancestors of individuals 1 and 2 is reduced to one, we assign 0, 1 or 2,
respectively, as the third digit if the ancestor of individual 3 lives on the continent, on the
same island as the one already occupied by the ancestors of individual 1 and 2 (whether
it is occupied by one or the other or by both of them), or on a different island than the
one already occupied by the ancestors of individual 1 and 2, respectively.

• Finally, if the first two digits are 12, which means that the ancestors of individuals 1 and
2 live on two different islands, we assign 0, 1, 2, or 3, respectively, as the third digit if
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the ancestor of individual 3 lives on the continent, on the same island as the one already
occupied by the ancestor of individual 1, on the same island as the one already occupied
by the ancestor of individual 2, or on a different island than the two ones already occupied
by the ancestors of individual 1 and 2, respectively.

The element 102 in S1,2,3, for instance, means that the ancestors of individuals 1, 2, 3
are all different, and the ancestor of individual 2 is on the continent, while the ancestors of
individual 1 and 2 are on two different islands.

Similarly, elements in S12,3 (resp. S13,2; S23,1) are represented by 2-digits strings. They
are assigned the same way the first two digits of elements of S1,2,3 are assigned, with the first
digit coding for the location of the ancestor common to individual 1 and 2 (resp. 1 and 3; 2
and 3), and the second digit coding for the location of the ancestor of individual 3 (resp. 2;
1).

For example, element 01 in S12,3 means that individuals 1, 2 have a common ancestor in
the continent different from the ancestor of individual 3, whose ancestor is on an island.

Finally, subset S123 has two elements 0, and 1. Element 0 (resp. 1) means that individuals
1, 2, 3 have a common ancestor, and this ancestor lives on the continent (resp. on an island).

For t ≥ 0, let σ(t) denote the state in S the ancestors of three individuals are in, t
generations back. (σ (t))t≥0 is aMarkov chain and its transitionmatrix takes a block formwith
respect to the above ordered subsets in the corresponding order. Without loss of generality,
let:

K =

⎡

⎢⎢⎢⎢⎣

F Q W J R1

0 L 0 0 R
0 0 L 0 R
0 0 0 L R
0 0 0 0 R0

⎤

⎥⎥⎥⎥⎦
(8)

be this transition matrix under neutrality. The submatrices F , Q, L and R are given in
Appendix D. Note that the states in S123 are absorbing for this chain, while all other states
are transient. The Perron–Frobenius theory for non-negative matrices ascertains in particular
that the eigenvalues of F and L are all less than 1 in modulus.

Proposition 2 Expression
∑

t≥0 E0
(
X0(t)2 (1− X0(t))

)
can be written in terms of the con-

tinent size, N0, and submatrices F, Q, L, as follows :

∑

t≥0

E0

(
X0(t)

2 (1 − X0(t))
)

=
(
1 − 1

N0

) (
1 − 2

N0

) (
(I − F)−1Q(I − L)−1u

)

000

+ 1

N0

(
1 − 1

N0

) (
(I − L)−1u

)

00
,

where u is the column vector (1/N0, 1/N0, 0, 0, 0) and index 000, for example, refers to
the vector’s component that corresponds to the chain starting in state 000. Similar formulae
are obtained for

∑
t≥0 E0

(
Xi (t)X j (t)(1 − Xk(t))

)
and

∑
t≥0 E0

(
Xi (t)(1 − X j (t))

)
, for

i, j, k ∈ {0, . . . , 3} [see Eq. (A.8)].

The proof, which makes use of the ancestral process σ(t) and its transition matrix K , is
given in Appendix B
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4 Fixation Coefficient in the Limit Case of the Structured-Coalescent
Scenario and Conservative Migration

In this section, we focus on the limit case of the structured coalescent assumptions [9, 10,
33, 52], in which the total population size, cN , is assumed to be large, with demes sizes
N1 = · · · = Nn−1 = c1N and N0 = c0N of order N and c = c0 + (n − 1)c1, and backward
migration rates of order inversely proportional to N ,m01 = M0/(2N (n−1)),m0 = M0/2N
andm1 = · · · = mn−1 = M1/2N , so that c0, c1, c, M0 and M1 are all of order 1. Throughout
the rest of this article, it will be assumed that s � 1/(cN ).

Using these notations, the stationary distribution (u0, . . . , un−1) of migration matrix M
[see (6)] can be written as follows:

u0 = M1

M0 + M1

ui = M0

(M0 + M1) (n − 1)
= (1 − u0)

n − 1
, i = 1, . . . , n − 1 .

In the remainder of this article, we restrict to the case of conservative migration, which takes
place when the relative size of each deme is maintained after migration (which means that
the deme sizes remain constant, or, equivalently, that the emigration exactly balances the
immigration for every deme). Thus, in this model, this requires that:

c0 M0 = c1 (n − 1) M1.

Let P = c0/c denote the proportion of the total population that lives in the continent, and let
M be the “migration rate” defined as:

M := c1 M1 = c0 M0

n − 1
.

Consequently, under the conservative migration assumptions, we have:

M0 = (n − 1) M

c P
, M1 = M (n − 1)

c (1 − P)
,

c0 = c P , c1 = c (1 − P)

n − 1
, and u0 = P .

Let C0 denote the constant term of u′(0) as N goes to infinity so that:

u′(0) = C0 + O
( 1
N

)
.

By (7), (A.3) and (A.4), we find that C0 can be written as:

C0 = (u0 γ0 + (1 − u0) γ1
)
(pA − pB) · W (pA − pB)

+ (
u0 δ0 + (1 − u0) δ1

)
(pA − pB) · W pB ,

where:

γi := lim
N→+∞

∑

t≥0

E0

(
X2
i (t)(1 − Xi (t))

)
,

δi := lim
N→+∞

∑

t≥0

E0

(
Xi (t)(1 − Xi (t))

)
(9)
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for i = 0, 1, since all the other terms in (7) are multiplied by migration rates of order 1/N
and are thus, of order 1/N of smaller.

From (A.8a) and (A.8b), we obtain:

γi = lim
N→+∞

(
1 − 1

Ni

) (
1 − 2

Ni

) (
(I − F)−1Q(I − L)−1u

)

i i i

+ 1

Ni

(
1 − 1

Ni

) (
(I − L)−1u

)

i i
, i = 0, 1 ,

and from (A.8c) and (A.8d):

δi = lim
N→+∞

(
1 − 1

Ni

) (
(I − L)−1u

)

i i
, i = 0, 1.

The calculation of these limits as functions of the population parameters M, n and P , which
cannot be done by hand because of the size of the matrices, are performed using a symbolic
computing software like Maple and are given by (A.9)–(A.11) in Appendix. We find that:

u0 δ0 + (1 − u0) δ1 = 1,

and we get the following result.

Proposition 3 Consider the CI model under the structured coalescent assumptions and con-
servative migration described in this section. Ignoring terms of order 1/N or higher, the
fixation coefficient u′(0) can be approximated by:

C0 = (u0 γ0 + (1 − u0) γ1
)
(pA − pB) · W (pA − pB) + (pA − pB) · W pB (10)

where γi is given by (9).

In (10), we define explicitly:

�(M, n, P) := u0 γ0 + (1 − u0) γ1 (11)

as a function of the migration rate, M , the total number of demes, n, and the proportion of
the total population living on the continent, P . An explicit expression, derived using Maple,
is given by (A.12) in Appendix. As we will see in Sect. 6, coefficient �(M, n, P) will show
up in the generalization of the one-third law that holds for the CI model.

Note that when n = 2, using the proper parameter rescalings, the values of C0 and � are
already known since, in this case, the model corresponds to the asymmetric two-deme linear
gamemodel [20].Moreover, still in the case n = 2, assuming identical deme sizes (P = 1/2),
Proposition 3 tells us thatC0 = ( 13 + 1

12(M+1)

)
(pA −pB) ·W (pA −pB)+ (pA −pB) ·W pB

in accordance with the first-order approximation of the fixation probability of a single mutant
in a (symmetric) finite island linear game model with 2 demes [19, 20].

5 Conditions Against Replacement in a Finite Continental IslandModel
Population

In the context of a finite population, Nowak et al. [38] specified a natural definition of an
advantageous mutation: selection is said to favor A replacing B if the fixation probability of
a single mutant A is greater than its value in the absence of selection, that is, u(s) > u(0) =
u0/N0, where u0 denotes the first coordinate of the stationary distribution ofmigrationmatrix
M [see (6)]; whereas it is said to oppose A replacing B, if u(s) < u0/N0.
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From (9), we see that �(M, n, P) ≥ 0, then it follows from (10) that provided selection
is weak enough, selection opposes A replacing B if and only if:

C0 = �(M, n, P) (pA − pB) · W (pA − pB) + (pA − pB) · W pB < 0 . (12)

In the case when pA is different but close enough to pB , (12) is equivalent to:

(pA − pB) · WpB < 0 , (13a)

or:

(pA − pB) · WpB = 0 , and (pA − pB) · W (pA − pB) < 0 . (13b)

Remark 1 (Links with ESS) For a fixed pB , suppose there exists a neighborhood of pB such
that condition (13) holds for every strategy pA �= pB in that neighborhood. Then, for any
strategy pA �= pB (not necessarily in that neighborhood), there exist ε > 0, provided it is
small enough, such that pA′ defined as pA′ = pB + ε(pA − pB) is also a strategy which,
in addition, falls in that particular neighborhood. Thus, (13) is met for pA′ . It follows that
since (pA − pB) = (pA′ − pB)/ε with ε > 0, (13) is also met for pA. As a consequence,
for a fixed pB , if condition (13) holds for every pA close enough but different from pB , then
condition (13) will be met for every pA �= pB ; this implies that pB is an evolutionary stable
strategy (ESS) for the game matrix W [29, 31], which means that when almost fixed in the
population, pB cannot be invaded by any alternative mutant strategy, when in a low enough
frequency, in the context of an infinite population. Conversely, suppose that pB is an ESS,
that is (13) is met for every pA �= pB . In this case, we do not necessarily have that C0 < 0,
but:

1. if pB has all positive components, then C0 < 0 for all pA �= pB ;
2. if pB has some null components, then C0 < 0 either for all pA �= pB that share the same

null components as pB or for all pA �= pB close enough to pB .

Indeed, if pB has all positive components, then we have an equality in (13a) for all
pA �= pB . Suppose it were not the case, then there would exist a strategy pA �= pB for which
(pA−pB)·WpB < 0. Since pB has all positive components, providedwe choose ε > 0 small
enough, the vectorwhose components sum to one defined aspA′ = pB−ε(pA−pB)will have
all non-negative components and hence will also be a strategy. Then, (pA′ − pB) · WpB =
−ε(pA −pB) ·WpB > 0, which contradicts the fact that every strategy must meet condition
(13). As a consequence, if pB has all positive components, then we have an equality in (13a)
for all pA �= pB , which implies (13b) and C0 < 0 for all pA �= pB . Whereas, if pB has
some null components: for all pA �= pB that share the same null components as pB , using
a dimension reduction in the space of strategies, we are brought back to the previous case
and then C0 < 0; while a strict inequality in (13a) can hold for some pA �= pB which has
at least one positive component corresponding to a null component of pB , therefore, in case
where (pA − pB) · W (pA − pB) is positive, pA has to be close enough to pB to make sure
that C0 < 0.

In other words, as long as selection is weak enough, a resident strategy pB is selectively
favored against replacement

• by any alternative mutant strategy pA, if pB makes use of all pure strategies and satisfies
(13);

• (i) by any mutant strategy pA using the same subset of pure strategies as pB , and (ii) by
anymutant strategy pA close enough to pB using some new pure strategies, if pB satisfies
(13) and uses a strict subset of pure strategies.
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6 Extension of the One-Third Law

Suppose the two strategies pA and pB associated with type A and B, respectively, are pure
strategies of the form pA = (1, 0) and pB = (0, 1), respectively, with respect to the 2 × 2
game matrix

W =
(
a b
c d

)
,

and assume W is a coordination game, i.e., a > c and d > b, which means that pA and pB

are best replies to themselves for W (i.e., they are strict Nash equilibria). The deterministic
replicator equation in an infinite panmictic population [11, 48] with game matrix W implies
that there exists a unique unstable equilibrium at a frequency of A, which is equal to:

x∗ := d − b

a − c − b + d
. (14)

In a finite population, Nowak et al. [38] proved in the context of a frequency-dependent
Moran process that weak selection favors a single type A mutant replacing a population of
type B individuals in the limit of a large finite well-mixed population, if x∗ is smaller than
1/3. In other words, for a coordination game, provided selection is weak enough and the
population size is large enough, the fixation probability of a single mutant strategy is larger
than under neutrality if the basin of attraction of the wild type strategy in the traditional
replicator dynamics is less than one-third.

In this section, in the context of a CI model with a total number of n demes in which both
strategies are best replies to themselves with respect to the game matrix, we investigate con-
ditions under which the replacement of a resident strategy by a mutant strategy is selectively
favored. In particular, we find that in this case, the one-third law [38] can be generalized as
follows.

Proposition 4 When the population is finite, selection, provided it is weak enough, will favor
A replacing B if:

x∗ < �(M, n, P) . (15)

This stems from the fact that selection, as long as it is weak enough, will favor A replacing
B if inequality (12) is reversed, which is equivalent to (15). This result extends the one-third
law to the case of a continental island linear game model with n demes. In the special case
n = 2, (15) reduces to the extended one-third law for an asymmetric two-deme linear game
model [20]. Inequality (15) means that if it is met, then selection favors a single mutant A
taking over the whole population.

In the remainder of this section, we derive analytical results for the symmetric CI model,
i.e., a CI model in which the deme sizes are equal (P = 1/n) and we present numerical
results in the general case of an asymmetric CI model (a CI model with P �= 1/n).

6.1 Analytical Comparisons in the Symmetric Case

Let us consider the symmetric CI model, sCI in short, as the particular case of a symmetric
population structure with identical deme sizes, i.e.:

P = 1/n
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Fig. 2 sCI model (left) vs WI model (right) for n = 4

which also means that N0 = N1, i.e., the size N0 of the continent is the same as the size N1

of each island.
In this case, for any island i ∈ {1, . . . , n − 1}, the backward migration probabilities m0i

and mi0 are identical and satisfy m0i = mi0 = nM
2cN .

In this context, combining (11) with (A.12) leads to the following extended one-third law
for an sCI model:

x∗ < �sCI(M, n) := �(M, n, 1/n) = 1

3
+ (n − 1)

3 n2
f (M, n)

g(M, n)
, (16)

where:

f (M, n) := n2 (n + 2) (n − 1) M3 + n (5 n2 + 4 n + 4) M2

+ (10 n2 + 8 n + 8) M + 8 n ,

g(M, n) := n2 (n + 2) M4 + 2 (n3 + 5 n2 + 4 n + 4) M3

+ 4 (n + 2) (3 n + 2) M2 + 8 (4 + 3 n) M + 16 .

Since �sCI ≥ 1
3 , the modified one-third law for the sCI model is always less stringent than

the one-third law.
Expression (16) is known when n = 2, where �sCI = 1

3 + 1
12(M+1) [19, 20]. It is also

known when n = 1, which corresponds to a panmictic population, where �sCI = 1/3 [13,
21].

We now compare the sCI model to the Wright’s island linear game model, WI model in
short, given in Ladret and Lessard [19] (see Fig. 2): the sCI model will be considered to
outperform the WI model if the condition for selection to favor a mutant A taking over the
population of B is less stringent in the sCI model than in the WI model, i.e., �sCI > �WI.

The two models share the same game matrix W and the same geographic structure (n
demes of equal sizes equal to c N/n). They only differ in the migration scenario, which, in
the latter model, occurs according to a Wright’s island scenario. More precisely, in the WI
model:mi j,WI = mWI/(n−1)wheremWI denotes the probability that an individual from any
given deme emigrated from a different deme in the previous generation and mi j,WI denotes
the probability that an individual from deme i emigrated from deme j �= i , in the previous
generation.

Additionally, we suppose that the WI model and the sCI model have the same average
expected number of migrants per generation after population regulation. Since in the sCI
model this number is (n− 1) M , this implies that mWI = (n − 1) M/(N c). In the context of
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the WI model, the condition for selection to favor a mutant strategy A replacing a resident
strategy B takes the form:

x∗ < �WI(M, n) , (17)

where:

�WI(M, n) := 1

3
+ 1

6 (M + 1)

(
1 − 1

n

)
,

as shown in [19] (after a suitable rescaling of M). From (16) and (17), we find that:

�sCI(M, n) − �WI(M, n) = (n − 1) (n − 2)

(
n − 1 + √

1 + 4M2

M2

)
γ (M, n) , (18)

where:

γ (M, n) = M3 (2M + 2 + M n)
(
n +

√
1+4M2−1

M2

)

6 n2 (M + 1) ψ(M, n)
,

and

ψ(M, n) = 2M3 n3 + M4 n3 + 10M3 n2 + 12M2 n2 + 2M4 n2

+ 24M n + 32M2 n + 8M3 n + 16 + 16M2 + 32M + 8M3.

Since γ (M, n) ≥ 0, from (18), �sCI(M, n) − �WI(M, n) has the same sign as (n − 1)

(n − 2) (n − 1+√
1+4M2

M2 ), hence:

(i) When n = 1 or 2, �sCI(M, n) = �WI(M, n).

(ii) When n ≥ 3, let n0(M) := 1+√
1+4M2

M2 , then for any given M > 0, we have:
{

�sCI(M, n) > �WI(M, n) ⇐⇒ n > n0(M) ,

�sCI(M, n) = �WI(M, n) ⇐⇒ n = n0(M) .

Note that condition n > n0(M) (resp. n = n0(M)) can be explicitly rewritten M > n−1
0 (n)

(resp. M = n−1
0 (n)) where n−1

0 (n) = √
2 n + 4/n.

The case (i) is not surprising, since in both cases, the sCI and WI model coincide: when
n = 1, they correspond to a linear game in a panmictic population and �sCI = �WI = 1

3
[13, 21, 26]; while when n = 2, the CI model with two demes and the WI model with two
demes are identical and �sCI = �WI = 1

3 + 1
12 (M+1) [19, 20].

Note that in case (ii), when M >
√
10/3 � 1.054: �sCI > �WI for any n ≥ 3.

For example, when M = 1, n0(M) � 3.236, thus �sCI > �WI as soon as n ≥ 4. When
M = 0.5, n0(M) � 9.657, thus �sCI > �WI provided n ≥ 10. Similarly, when M = 0.1,
n0(M) � 201.98 and �sCI > �WI provided n ≥ 202. On the other hand, when n = 3,
�sCI > �WI, as soon as M > n−1

0 (n) � 1.0541. For n = 10 (resp. n = 100), �sCI > �WI

provided M > n−1
0 (n) � 0.4899 (resp. M > n−1

0 (n) � 0.1428).
These results are illustrated in Figs. 3, 4. Figure 3 represents numerical evaluations of the

threshold frequencies �sCI (left figure) and �WI (right figure), as functions of the migration
rate, M , and the number of demes, n. Whereas, Fig. 4 plots the effect of parameters M and
n on their difference, �sCI − �WI. Figure 5 illustrates how �sCI − �WI changes with the
migration rate, M , for different fixed values of the number of demes n (left figure) and how
it changes with the number of demes, n, for four fixed values of M (right figure).
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Fig. 3 Threshold �sCI (left) and �WI (right) as functions of M and n. M ranges from 0.1 to 10 and n from 2
to 200

Fig. 4 Effect of the number of demes, n, and themigration rate,M , on the difference�sCI(M, n)−�WI(M, n)

(log-log plot). The green line is for the casewhen n = n0(M) = (1+
√
1 + 4M2)/M2, at which�sCI(M, n)−

�WI(M, n) = 0. When M = 0.1 (resp. M = 0.5; M = √
10/3) (vertical black lines), we find that n0(0.1) �

201.98 (resp. n = n0(0.5) � 9.66; n = n0(
√
10/3) = 3); whereas the horizontal black lines corresponding

to n = 10 (resp. n = 50) cross the green line at M = n−1
0 (10) � 0.4899 (resp. M = n−1

0 (50) � 0.2039)

As reminded earlier, in the context of the IPD with TFT versus AllD, the frequency x∗
decreases to zero with the number of rounds [38,see, e.g.]. As a consequence, an sCI model
with n demes and a fixed migration rate M greater than

√
10/3 will require less rounds of the

game than its WI model counterpart to ensure that cooperation fixes in the population with a
selective advantage; whereas, in the case of a fixed migration rate M ≤ √

10/3, this will be
the case provided the number of demes is large enough (namely, n > n0(M) ≥ 3). On the
other hand, if the number of demes n is fixed, an sCI model will require less rounds of the
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Fig. 5 Left: effect of the scaled migration rate, M , on the difference �sCI(M, n) − �WI(M, n) for different
values of the number of demes, n: n = 3 (blue), n = 10 (green), n = 50 (red). The vertical lines correspond
to M = n−1

0 (n). Right: effect of the number of demes, n, on the difference �sCI(M, n) − �WI(M, n) for

different values of M : M = 0.1 (blue), n = 0.5 (green), M = √
10/3 (red) and M = 10 (cyan). The vertical

lines correspond to n = n0(M) (Color figure online)

Fig. 6 Left: sCI model with n = 4, P = 1/4. Right: CI model with n = 4, P �= 1/4

game than its WI model counterpart provided M is not too small (namely, M > n−1
0 (n)), to

ensure that selection favors cooperation taking over the whole population.

6.2 Numerical Comparisons in the General Case

In this section, we compare the asymmetric CI model, in which the size N0 of the continent
differs from the size N1 of the islands, that will be referred to as the asymmetric model (CI),
to its symmetric (sCI) model counterpart (see Fig. 6). In other words, for all (M, n, P), we
compare the CI model with parameters (M, n, P �= 1/n), to the CI model with parameters
(M, n, P = 1/N ), i.e., the sCI model with parameters (M, n); both models sharing the same
game matrix W and the same total population size c N .

Here again, the two models are compared by comparing their respective threshold value:
�(M, n, P) given by (11) for the CI model vs �sCI(M, n) given by (16) for the sCI model.
These threshold values are also compared to 1/3, the threshold value for a panmictic popu-
lation as given by the one-third law.

For M and n fixed, we are interested in determining:

PM,n := {P ∈ [0, 1] ; �(M, n, P) ≥ �sCI(M, n)
}

the set of P for which the condition for selection to favor a single mutant A taking over a
population of B is less stringent in the CI model than in the sCI model. We are also interested
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Fig. 7 Case of n = 2 demes. Left: (M, P) �→ �(M, 2, P) − �sCI(M, 2). The central pink zones correspond
to the set PM,P . The upper and lower green curves correspond to the roots P ′ = P ′(M, 2) and P ′′ = 1/2
of �(M, 2, P) − �sCI(M, 2) = 0. The central white curve shows M → P∗(M, 2). Right: (M, P) �→
�(M, 2, P)

in determining the values of P at which the maximum of �(M, n, · ) is reached:
P∗(M, n) := argmax

0≤P≤1
�(M, n, P) ∈ PM,n .

Case n = 2

In Fig. 7, we consider the case of two demes (n = 2), already treated in Ladret and Lessard
[20], and we plot �(M, 2, P) − �sCI(M, 2) as a function of M and P . The numerical
evaluations suggest that for any fixed value of M in the considered range, the following
equation:

�(M, 2, P) − �sCI(M, 2) = 0 (19)

has exactly two roots P ′ = P ′(M, 2) and P ′′ = 1
2 , for some 0 ≤ P ′(M, 2) < 1/2 and

PM,2 = [P ′, P ′′]; moreover, P∗(M, 2) is unique and P∗(M, 2) ∈ (P ′, P ′′). They also
suggest, see Fig. 7 (right) and Figs. 12 and 13 (blue curve), that P �→ �(M, 2, P) increases
from 1

3 until it reaches its maximum at P = P∗(M, 2), and then decreases back to 1/3.

Case n ≥ 3

In Fig. 8, we consider (n, P) �→ �(M, n, P) − �sCI(M, n) for fixed values of M , and in
Fig. 9, we consider (M, P) �→ �(M, n, P) − �sCI(M, n) for fixed values of n.

The numerical evaluations suggest that for any fixed value of M ranging from 0.01 to 10;
there exists an integer n∗(M) ≥ 2 such that:

• if n ≤ n∗(M), the results are similar to the case when n = 2, in the sense that the
following equation:

�(M, n, P) − �sCI(M, n) = 0 (20)

has exactly two roots P ′ = P ′(M, n) and P ′′ = 1
n , for some 0 ≤ P ′(M, n) < 1

n .
Moreover, PM,n = [P ′, P ′′] and P∗

M,n is unique and belongs to (P ′, P ′′);
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Fig. 8 (n, P) �→ �(M, n, P) − �sCI(M, n) for M = 0.1 (left), M = 1 (center) and M = 10 (right). The
red zones correspond to PM,n . The upper and lower green curves correspond to the roots P ′ = P ′(M, n)

(lower curve) and P ′′ = 1/n (upper curve) of �(M, n, P)−�sCI(M, n) = 0. The central white curve shows
n → P∗(M, n) (Color figure online)

Fig. 9 (M, P) �→ �(M, n, P) − �sCI(M, n) for n = 3 (left), n = 4 (center) and n = 10 (right). The
red zones correspond to PM,n . The upper and lower green curves correspond to the roots P ′ = P ′(M, n)

(lower curve) and P ′′ = 1/n (upper curve) of �(M, n, P)−�sCI(M, n) = 0. The central white curve shows
M → P∗(M, n) (Color figure online)

• if n > n∗(M), Eq. (20) has a single root P ′′ = 1
n and PM,n = [0, P ′′]. Moreover, P∗

M,n
is unique and belongs to [0, P ′′).

Some values of n∗(M) are:

M 0.01 0.1 1 10 100
n∗(M) 7 4 2 2 2

In addition, numerical results performed for M ranging from 0.1 to 10 suggest that n∗(M) is
a decreasing function of M , with 2 ≤ n∗(M) ≤ 4 (see Figs. 8, 9). Similar results hold when
M ranges from 0.01 to 100, in which case 2 ≤ n∗(M) ≤ 7.

Regarding the condition for the replacement of the resident strict Nash equilibria pB by
the other mutant strict Nash equilibria pA, those results suggest that:
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• for 2 ≤ n ≤ n∗(M), this condition is less stringent in the CI model than in the sCI model
if the size of the islands exceeds the size of the continent provided it is not too much
larger (P ′(M, n) < P < 1/n);

• for n > n∗(M), this condition is less stringent in CImodel than in the sCImodel provided
the size of the islands exceeds the size of the continent (P < 1/n).

Now, let us focus on P∗(M, n) the optimal relative sizes of the continent at which�(M, n, · )
is maximized. It emerges from numerical simulations (Figs. 8, 9) that P∗(M, n) is unique
with P∗(M, n) < 1/n and that for any fixed values of the migration rate, M , there exists an
integer n∗∗(M) ≥ n∗(M) such that:

• if n ≤ n∗∗(M), then P∗(M, n) is nonzero and coefficient �(M, n, · ) increases with
P from �(M, n, 0) = 1/3 + (n−2)

3(M+2)(n−1) until its reaches its maximum located at
P = P∗(M, n) and then, decreases back to 1/3.

• if n > n∗∗(M), then �(M, n, · ) is a decreasing function of P so P∗(M, n) = 0.

Some values of n∗∗(M) are given in the following table:

M 0.01 0.1 1 10 100
n∗∗(M) 17 7 4 3 3

Numerical results, performed for M ranging from 0.1 to 10, suggest that n∗∗(M) is a
decreasing function of M , with n∗∗(M) not exceeding 7 for M in that range (see also Figs.
12, 13, 14).

As a consequence, we deduce from those numerical evaluations that for any fixed migra-
tion rate M , and any fixed number of demes n, provided it remains small enough (in the sense
that n ≤ n∗∗(M)), there exists a single “optimal” relative continent size P = P∗(M, n) ∈
(0, 1/n) at which the condition for the replacement of the resident strict Nash equilibria pB

by the other mutant strict Nash equilibria pA is the least stringent. In other words, given a
migration rate M and a total number of demes n ≤ n∗∗(M), the model for which the propor-
tion of individuals living on the continent is equal to P = P∗(M, n), is the one for which
the threshold value for x∗ is maximized, i.e.,�(M, n, P∗(M, n)) = maxP∈[0,1] �(M, n, P).
Whereas, if the number of demes, n, is larger than n∗∗(M), then the maximum of�(M, n, · )
is reached at the limit when P goes to zero, i.e., P∗(M, n) = 0.

Figure 14 (top left) shows numerical evaluations of the maximum threshold frequency
�∗∗(M, n) = maxP∈[0,1] �(M, n, P) = �(M, n, P∗(M, n)) as a function of the number of
demes n for different fixed values of the migration rate, M , versus�sCI(M, n). Whereas, Fig.
14 (top right) represents P∗(M, n) as a function of n, for the same values of M . Numerical
evaluations (Fig. 14) suggest that when the number of demes, n, is fixed, �∗∗(M, n) and
�sCI(M, n) are both decreasing functions of M . On the other hand, for any fixed M , we find
that they share the same limit, 1

3 + 1
3(M+2) , as n goes to infinity.

As an example, let us see what happens when M = 1 (Figs. 8, 12, 13 and 14 and Table
1). In this context, numerical calculations illustrated in Figs. 8 and 13 suggest that only in
the case n = 2 does Eq. (20) have two roots (which are then, 1/2 and P ′(1, 2) < 1/2).
Thus, n∗(1) = 2. In the case of two demes (n = 2), it is known [20] that �(1, 2, P) >

�sCI(1, 2) = 3/8, which means a larger threshold value for x∗ than in the sCI model if and
only if P ′(1, 2) � 0.224 < P < 0.5. Whereas, as soon as n ≥ 3, we find that P = 1/n is
the only root of Eq. (19) and �(1, n, P) > �sCI(1, n) if and only if P < 1/n.
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Table 1 Approximations of the
values taken by � at P = 0, i.e.,
�(1, n, 0), and at P = 1/n, i.e.,
�sCI(1, n), at its maximum,
�∗∗(1, n), at P = P∗(1, n),
when the migration rate M = 1
and n ranges from 2 to 4

n P∗(1, n) �(1, n, 0) �sCI(1, n) �∗∗(1, n)

2 0.349 1/3 0.375 0.37904

3 0.395 0.38889 0.38866 0.39528

4 0.0182 0.40741 0.3969 0.40753

Moreover, when n is held fixed, numerical evaluations show that the optimal relative
continent size at which the maximum of � is reached, P = P∗(1, n), is nonzero as long as
n does not exceed 4. The values of �(1, n, 0), �sCI(1, n), �∗∗(1, n) and P∗(1, n) can be
found in Table 1, for 2 ≤ n ≤ 4.

On the other hand, as soon as n ≥ 5, numerical evaluations suggest that �(1, n, P) is a
decreasing function of P which decreases from its maximum, which is reached at the limit
when P tends to zero (P∗(1, n) = 0), to 1/3 (at P = 1). This suggests that n∗∗(1) = 4.

These results are illustrated in Figs. 8, 13, and 14. Figure 8 (central figure) shows the
effect of the number of demes, n, and the relative continent size, P , on �(1, n, P) compared
to �sCI(1, n). Figure 13 shows how the difference �(M, n, P) − �sCI(M, n) evolves with
P , for four values of n: 2 ≤ n ≤ 5. We also refer to the red curves in Fig. 14 which represent
the impact of n on the evolution of both �∗∗(1, n) and �sCI(1, n) (left figure) and its effect
of P∗(1; n) (right figure).

Let us go back to the IPD with TFT versus AllD. Since in this framework, x∗ decreases
to zero with the number of rounds [38], we find that for a fixed migration rate, M , depending
on the value of the number of demes, n, there are two types of conditions, regarding P ,
under which an asymmetric (CI) model will require less rounds of the game than its sCI
model counterpart to ensure that cooperation will take over the population with a selective
advantage : in the case when the number of demes remains small enough (i.e., n ≤ n∗(M)),
this will happen if P is not too small and remains below 1/n, as it is already known in the
case of a two-deme (n = 2) continental island model [20]; whereas for larger values of n
(i.e., n > n∗(M)), it will only require P to be smaller than 1/n (i.e., it will only require the
continent’s size to be smaller than the size of the islands).

6.2.1 Comparisons with the One-Third Law

For a fixed number of demes n ≥ 2, numerical evaluations performed forM ranging from 0.1
to 10 (Figs. 7, 10, 11 and 14) indicate that 1/3 < �(M, n, P) ≤ 1/2 for every P ∈ (0, 1).
Similar results hold when M ranges between 0.01 and 100 (not shown). In particular, this
implies that condition (15) is less stringent than the one-third law.

Going back to the case of TFT versus AllD, a CI model will require less rounds of the
game than a panmictic model to ensure that cooperation invades the whole population with
a selective advantage.

7 Discussion

We have considered an n-deme continental island linear game model [52], for which we
have calculated the first-order approximation of the fixation probability of a single mutant
A initially introduced into the continent, with respect to the intensity of selection, in the
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Fig. 10 Threshold� as a function of n and P for three different values of M : M = 0.1 (left); M = 1 (center);
M = 10. P ranges from 0 to 1 and n from 2 to 100

Fig. 11 Threshold � as a function of M and P for three different values of n : n = 3 (left); n = 4 (center);
n = 10 (right). P ranges from 0 to 1 and M from 0.05 to 10. The white curve corresponds to M �→ P∗(M, n)

Fig. 12 Threshold � (solid
curve) versus its value in the sCI
model (dashed line) as functions
of the relative continent size, P ,
in the case when M = 1 for
different fixed values of n
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Fig. 13 Difference
�(M, n, P) − �sCI(M, n) as a
function of the relative continent
size, P , in the case when M = 1
for different fixed values of n
(Color figure online)

Fig. 14 Top left: maximum value taken by threshold �, �∗∗(M, n) = maxP∈[0,1] �(M, n, P), (dots) versus
�sCI(M, n) (diamonds), as functions of the number of demes, n, for 3 different values of the migration
rate, M : M = 0.1 (blue); M = 1 (green); M = 10 (red). n ranges from 2 to 30. Top right: P∗(M, n) =
argmax0≤P≤1�(M, n, P) as a function of the number of demes, n, for the same values of the migration rate,
M : M = 0.1 (blue); M = 1 (green); M = 10 (red). n ranges from 2 to 10. The black dots correspond to the
value taken by P in the sCI model (P = 1/n). Bottom: �∗∗(M, n) = maxP∈[0,1] �(M, n, P), (solid curve)
versus �sCI(M, n) (dashed curve), as functions of the migration rate M for 3 different values of the number
of demes, n: n = 3 (blue); n = 4 (green); n = 10 (red). M ranges from 0.05 to 10 (Color figure online)
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context of weak selection and conservative migration, in the limit of the structured coalescent
assumptions [9, 10, 33, 52].

In this model, the population is subdivided into a continent of size N0 = c0N , surrounded
by n−1 islands of identical size N1 = c1N , with symmetric migration occurring between the
continent and each islandwith no direct island-to-islandmigration in one step of themigration
process. The same gamematrixW is assumedwithin each deme, the continent and the islands.
The total population size denoted by c N , where c = c0 + (n − 1) c1, is assumed to be large,
and the backward migration rates are of the formm0i = M0/(2N (n−1)), for the probability
that an individual from the continent emigrated from island i in the previous generation, and
mi0 = M1/(2N ), for the backward probability that an individual from island i emigrated
from the continent, and M0 and M1 are of order 1, which hold under the structured coalescent
assumptions [9, 10, 33, 52]. Moreover, assuming conservative migration, the parameter M0

is related to M1 by c1M1 = c0M0/(n − 1) = M , where the “migration rate” M is of order
1. In the context of weak selection (s � 1/(cN ) � 1), we have shown that the fixation
probability can be approximated by:

u(s) = u0
N0

+ s
{
(pA − pB) · (u0 γ0 + (1 − u0) γ1

)
W (pA − pB)

+ (pA − pB) · (u0 δ0 + (1 − u0) δ1
)
W pB

}
+ o(s), (21)

where u0 denotes the first coordinate of (u0, u1, . . . , u1), the stationary distribution of the
backward migration matrix M, and coefficients δi , γi , i = 0, 1, are explicit functions that
depend on the migration rateM , the proportion of the total population living on the continent,
P = c0/c, and the total number of demes, n.

In the special case when the model is reduced to n = 2 demes, up to the proper parameter
rescaling, approximation (21) corresponds to the one obtained for an asymmetric two-deme
linear game model [20], since in this particular case the two models coincide. The proof in
the case n ≥ 3 is a straightforward adaption of the Markov chain method used in Ladret and
Lessard [20] to the case of the CI model and is an extension of Rousset [43]. It expresses the
first-order effect of selection on the fixation probability as a function of quantities of the form∑

t≥0 E0(Xi (t)X j (t)(1−Xk(t)) and
∑

t≥0 E0[Xi (t)(1−X j (t))], where Xi (t) represents the
frequency of A in deme i at time t and E0 an expectation under neutrality. These expressions
are then computed using a coalescent [15]-based approach for a structured population [33]
that allows to express them as functions of the transition matrix, under neutrality, of the
ancestral process that traces the lineages of a set of 3 individuals backwards in time, under a
large population and the structured coalescent assumptions.

Note that McAvoy and Allen [32] give a different and unifying method for computing
the first-order effect of selection on the fixation probability of a mutant that generalizes
the approach of Rousset [43]. This method indeed applies to a broad class of evolutionary
models in which the population has an arbitrary fixed size and arbitrary forms of frequency
dependence and spatial structure, and into which the CImodel fits. They use the framework of
“replacement events” [1, 3], and their expressions for the first-order expansion of the fixation
probability are written as functions of a set of sojourn times for neutral drift and require the
resolution of a system of linear equations.

Their results allow the computation of the first-order expansion of the fixation probability;
they nevertheless lead, with different methods, to less explicit expressions.

Also, unlike the present paper, McAvoy and Allen [32] do not conduct a large population
analysis; they just point out that their expression requires some care to lend itself to a large
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population analysis in that the number of terms in the formulae for the first-order expansion
of the fixation probability grows exponentially with the population size.

In the context of the finite population continental island model with n ≥ 3 demes under
weak selection, we have investigated conditions under which a resident strategy is selectively
favored against replacement by a mutant strategy as defined by Nowak et al. [38]. This
condition corresponds to the traditional ESS condition in an infinite population, provided the
mutant strategy remains close enough to the resident strategy if the mutant strategy uses some
new pure strategies. This also holds when the model is reduced to a single deme [21, 26],
when the population structure follows a symmetric finite islandmodel with n ≥ 2 demes [26],
or when the continental island model is reduced to only n = 2 demes, which corresponds to
the case of the asymmetric two-deme model [20].

In the case of two pure strategies pA = (1, 0) and pB = (0, 1) that are best replies to
themselves with respect to the 2 × 2 game matrix:

W =
(
a b
c d

)

which means that a > c, d > b, we have specified a condition for the resident strategy
to be selectively favored against replacement by the mutant strategy. We have shown that
this condition translates into a criterion of the form x∗ < � where x∗ denotes the unstable
equilibrium frequency of the mutant, and where the coefficient� is an explicit function of the
population parameters M , n and P . This inequality extends the one-third law to the n-deme
continental island model and when n = 2, it reduces to the modified one-third law for an
asymmetric two-deme model. We have found that this condition is less stringent than the
one-third law.

We have compared the modified one-third law for an asymmetric continental island model
with unequal deme sizes (P �= 1/n) with its equivalent for its symmetric (in the sense of equal
deme sizes, i.e., P = 1/n) model counterpart. The two models share the same population
parameters except for the proportion of individuals living on the continent, which is equal
to P �= 1/n in the latter model and P = 1/n in the former. We have found that when the
migration rate, M , is fixed, there exists a threshold value, n∗(M) ≥ 2, for the number of
demes, n, such that, if n ≤ n∗(M), then the condition for the asymmetric model is less
stringent than the one for its symmetric model counterpart, provided the relative size of the
continent, P , is not too small and remains less than 1/n, as it is already the case for n = 2
[20]; while, if the number of demes exceeds n∗(M), it only requires the relative size of the
continent to be less than 1/n. Moreover, we have found that numerical evaluations suggest
that n∗(M) does not exceed 4 when M ranges from 0.1 to 10 and does not exceed 7 when
0.01 ≤ M ≤ 100.

On the other hand, we have compared the n-deme symmetric continental island model
with its symmetric finite island model counterpart. In both models, there are n demes of
equal size cN

n with identical game matrix W within each deme and both models have the
same expected total number of migrants per generation after population regulation, only the
migration scenario differs. When the number of demes, n, is larger than 3 (otherwise both
models are equivalent) and the migration rate, M , is fixed, we have found that as long as M
remains larger than

√
10/3, the extended one-third law for the continental island model is

always less stringent than the extended one-third law for its island model counterpart. On
the other hand, for smaller values of M (i.e., M ≤ √

10/3), we have found that this remains
true, provided the number of demes is large enough (more precisely, provided it remains
larger than n0(M) = 1 + √

1 + 4M2/M2). Equivalently, when the number of demes, n, is
fixed, we have shown that the extended one-third law for the continental island model is less
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stringent than its Wright’s island counterpart, provided the migration rate, M , remains large
enough (namely, larger than n−1

0 (n) = √
2n + 4/n).

Applying these results to the IPD with the strategies TFT versus AllD, we have found
that the condition for the cooperative TFT strategy to fix in the population with a selective
advantage is less stringent in a continental island model than in a panmictic model, in the
sense that it requires less repetitions of the game. Moreover, the population structure of the
symmetric continental island model can facilitate the evolution of cooperation compared
to its finite island model counterpart. On the other hand, the asymmetry in the population
structure of a continental islandmodel with unequal deme sizes can outperform its symmetric
model counterpart when promoting the emergence of cooperation.

Note that while the present paper focuses on the case where the single mutant is initially
introduced into the continent, it would be interesting to investigate how a change in its initial
location would affect its fixation probability.

Moreover, in addition to the condition for a mutant strategy A to be favored over a neu-
tral mutation studied in this paper, a second complementary criterion, traditionally used to
measure the evolutionary success of a strategic type, A, would be worth being investigated.
It compares the fixation probability of a single A mutant in an otherwise population of type
B, to the fixation probability of a single B mutant in a population of all A’s: following this
criterion, type A is said to be favored over B if the former probability exceeds the latter [8, 18,
27, 28, 38]. Note that in the case of the Moran process in evolutionary game theory, Sample
and Allen [45] have shown that this latter condition has the advantage of not being affected
by the order in which the weak selection and large population size limits are taken, unlike
the former condition. It would be interesting to address this second criterion in the specific
case of this CI model.

Acknowledgements I would like to thank Fabien Campillo for his comments and support.

Appendix A Proof of Proposition 1

Here, we prove Proposition 1. For t = 0, 1, . . ., let us define Z(t), the weighted frequency
of A, as:

Z(t) = u0 X0(t) + · · · + un−1 Xn−1(t) ,

where u = (u0, . . . , un−1) denotes the stationary distribution of migrationmatrixM. For any
given selection intensity s ≥ 0, the discrete-time stochastic process (Z(t))t≥0, is a Markov
chain on the finite state space:

{
u0

k0
N0

+∑n−1
i=1 ui

ki
N1

; k0 = 0, . . . , N0 , ki = 0, . . . , N1 , i = 1, . . . , n − 1

}
.

Its initial state is Z(0) = u0/N0, and there are two absorbing states z = 0 and z = 1, which
correspond to the fixation of B and A, respectively; all the other states being transient.

This process converges in probability to a random variable Z(∞), which takes the value
1 with probability u(s), and 0 otherwise. In the neutral scenario (s = 0), this process is a
bounded martingale. By the stopping time theorem [14], we find that the fixation probability
of A, which occurs when the absorbing state z = 1 is reached, is equal to:

u(0) = E0(Z(∞)) = Z(0) = u0
N0

.
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In the general case when selection intensity is s, we can write following [43] that:

E[Z(∞) − Z(0)] =
∑

t≥0

E[Z(t + 1) − Z(t)] ,

which is equivalent to:

u(s) − u(0) =
∑

t≥0

E[Z(t + 1) − Z(t)] .

After differentiating with respect to s and assuming the interchangeability of summation
and derivation (for a formal proof under mild regularity conditions see [26]), we get:

u′(0) =
∑

t≥0

d

ds
E[Z(t + 1) − Z(t)]

∣∣∣
s=0

.

Conditioning on the values x = (x0, x1, . . . , xn−1) taken by X(t), we can write:

E[Z(t + 1) − Z(t)] =
∑

x

E
[
Z(t + 1) − Z(t)

∣∣X(t) = x
]
P(X(t) = x) ,

which implies that:

d

ds
E[Z(t + 1) − Z(t)]

∣∣∣
s=0

=
∑

x

d

ds
E
[
Z(t + 1) − Z(t)

∣∣X(t) = x
]∣∣∣
s=0

P0
(
X(t) = x

)

+
∑

x

E0

[
Z(t + 1) − Z(t)

∣∣∣X(t) = x
] d

ds
P
(
X(t) = x

)∣∣
s=0 .

In the neutral case (s = 0), the expected change in Z(t) from one generation to the next
is zero, that is:

E0
[
Z(t + 1) − Z(t)

∣∣X(t) = x
] = 0 .

This leads to:

u′(0) =
∑

t≥0

∑

x

P0
(
X(t) = x

) d

ds
E
[
Z(t + 1) − Z(t)|X(t) = x

]∣∣∣
s=0

. (A.1)

Since the change in the weighted frequency of A from one generation to the next has condi-
tional expectation :

E
[
Z(t + 1) − Z(t)|X(t) = x

] =
n−1∑

i=0

ui
(
E
[
Xi (t + 1)|X(t) = x

]− xi
)
,

it follows from (3), (4) and (5), that:

d

ds
E
[
Z(t + 1) − Z(t)

∣∣X(t) = x
]∣∣∣
s=0

=
n−1∑

i=0

ui x̃
2
i (1 − x̃i ) (pA − pB) · W (pA − pB)

+
n−1∑

i=0

ui x̃i (1 − x̃i ) (pA − pB) · Wi pB . (A.2)
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If we plug Eqs. (1) and (2) into (A.2), it follows from (A.1) that:

u′(0) = (pA − pB)

·
⎧
⎨

⎩u0
∑

t≥0

λ0(m0,X(t)) +
n−1∑

i=1

ui
∑

t≥0

λi (m1,X(t))

⎫
⎬

⎭W (pA − pB)

+ (pA − pB)

·
⎧
⎨

⎩u0
∑

t≥0

δ0(m0,X(t)) +
n−1∑

i=1

ui
∑

t≥0

δi (m1,X(t))

⎫
⎬

⎭ W pB ,

= (pA − pB) · κλ W (pA − pB) + (pA − pB) · κδ W pB ,

where λ0(m0,X(t)), λi (m1,X(t)), δ0(m0,X(t)), and δi (m1,X(t)) can be explicitly written
in terms of coefficients E0[Xi (t)X j (t)(1− Xk(t))] and E0[Xi (t)(1− X j (t))], with i, j, k ∈
{0, . . . , n−1}. Due to the interchangeability of the islands, those expressions can be reduced
to equations involving coefficients E0[Xi (t)X j (t)(1 − Xk(t))] and E0[Xi (t)(1 − X j (t))]
only for i, j, k ∈ {0, 1, 2, 3}, as follows:

λ0(m0,X(t)) = (1 − m0)
3
E0[X0(t)

2 (1 − X0(t))]
+ m0 (1 − m0)

2
E0[X2

0(t) (1 − X1(t))]
+ 2m0 (1 − m0)

2
E0[X0(t) (1 − X0(t)) X1(t)]

+ 2 (1 − m0)m
2
0
n − 2

n − 1
E0[X0(t) X1(t) (1 − X2(t))]

+ 2 (1 − m0)
m2

0

n − 1
E0[X0(t) X1(t) (1 − X1(t))]

+ (1 − m0)
m2

0

n − 1
E0[X2

1(t) (1 − X0(t))]

+ (1 − m0)m
2
0
n − 2

n − 1
E0[X1(t) X2(t) (1 − X0(t))]

+ m3
0

(n − 1)2
E0[X2

1(t)(1 − X1(t))]

+ m3
0(n − 2)

(n − 1)2
E0[X2

1(t)(1 − X2(t))]

+ 2m3
0

(n − 2)

(n − 1)2
E0[X1(t) X2(t) (1 − X1(t))]

+ m3
0

(n − 2) (n − 3)

(n − 1)2
E0[X1(t) X2(t) (1 − X3(t))] ,

δ0(m0,X(t)) = (1 − m0)
2
E0[X0(t) (1 − X0(t))]

+ m0 (1 − m0)E0[X0(t) (1 − X1(t))]
+ m0(1 − m0)E0[X1(t) (1 − X0(t))]

+ m2
0

n − 1
E0[X1(t) (1 − X1(t))]

+ m2
0
n − 2

n − 1
E0[X1(t) (1 − X2(t))] , (A.3)
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and for all i = 1, . . . , n − 1:

λi (m1,X(t)) = m3
1 E0[X0(t)

2 (1 − X0(t))]
+ m2

1 (1 − m1)E0[X0(t)
2 (1 − X1(t))]

+ 2m2
1 (1 − m1)E0[X0(t) (1 − X0(t)) X1(t)]

+ 2m1 (1 − m1)
2
E0[X0(t) X1(t) (1 − X1(t))]

+ m1 (1 − m1)
2
E0[X1(t)

2 (1 − X0(t))]
+ (1 − m1)

3
E0[X2

1(t) (1 − X1(t))] ,
δi (m1,X(t)) = m2

1 E0[X0(t) (1 − X0(t))]
+ m1 (1 − m1)E0[X0(t) (1 − X1(t))]
+ m1 (1 − m1)E0[X1(t) (1 − X0(t))]
+ (1 − m1)

2
E0[X1(t) (1 − X1(t))] . (A.4)

Appendix B Proof of Proposition 2

Here, we calculate E0
[
Xi (t) X j (t) (1 − Xk(t))

]
and E0

[
Xi (t) (1 − X j (t))

]
with i, j, k ∈

{0, 1, 2, 3}, in terms of the submatrices L, F, Q of (8) the transition matrix K of the ancestral
process σ(t), that describes the locations of the ancestors of 3 individuals.

For each k ∈ {1, . . . N1} and i ∈ {0, . . . n − 1}, let ξk,i denote the random variable that
assigns the value 1 to the k-th individual in deme i if it is of type A and the value 0, otherwise:

ξk,i (t) :=
{
1 , if individual k in deme i at time t is of type A,

0 , otherwise.

Let us first focus on
∑

t≥0 E0
[
X2
0(t) (1 − X0(t))

]
. The frequency of A in the continent at

time t can be written in terms of the ξk,0(t) as:

X0(t) = 1

N0

N0∑

k=1

ξk,0(t) .

Thus, we have:

E0
[
X2
0(t)(1 − X0(t))

] = 1

N 3
0

E0

⎡

⎣
(

N0∑

k=1

ξk,0(t)

)2 ( N0∑

l=1

(1 − ξl,0(t))

)⎤

⎦

= 1

N 3
1

N1∑

k=1

N1∑

l=1

N1∑

m=1

E0
[
ξk,0(t) ξl,0(t) (1 − ξm,0(t))

]

=
(
1 − 1

N0

) (
1 − 2

N0

)
α0(t) + 1

N0

(
1 − 1

N0

)
β0(t) , (A.5)

where:

α0(t) := P0

(
ξ1,0(t) = ξ2,0(t) = 1 , ξ3,0(t) = 0

)
,

β0(t) := P0

(
ξ1,0(t) = 1 , ξ2,0(t) = 0

)
.
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Now, let us calculate
∑

t≥0 α0(t). According to its definition, α0(t) is the probability that
individuals 1, 2 and 3 from deme 0 at time t are of respective types A, A and B. Since a
single mutant A was introduced in the continent at time 0, individuals 1, 2 and 3 in deme
0 at time t are of types A, A and B, respectively, if a single coalescence occurs from time
t to time 0, this event being a coalescence between the lineages of individuals 1 and 2, and
the two distinct ancestors at time 0 of these three individuals are of respective types A (for
the common ancestor of individuals 1 and 2) and B (for the ancestor of individual 3). This
implies that the state σ(t) in S, the ancestors of those three individuals are in t generations
back, must either be 00 or 01, while the type of the ancestor common to individuals 1 and
2 is A. Thus, α0(t) is equal to the probability that the process σ(t) is in state 00 or 01 at
time t given that σ(0) is in state 000 in S1,2,3, times 1/N0, which is the frequency of A in
the continent at time 0. Using the notations in Eq. (8) for the block form of K , the transition
matrix of σ(.), this translates as follows:

α0(t) =
t∑

τ=1

(
Fτ−1 Q Lt−τ u

)

000
,

where u is the column vector u = (1/N0, 1/N0, 0, 0, 0), and index 000 refers to the vector’s
component that corresponds to the chain starting in state 000. As a consequence, since
matrices I − F and I − L are invertible, where I refers to an identity matrix of appropriate
order, if we sum α0(t) over t ≥ 0, we find that:

∑

t≥0

α0(t) =
(
(I − F)−1 Q (I − L)−1 u

)

000
. (A.6)

Similarly, we find that:

β0(t) := P0
(
ξ1,0(t) = 1 , ξ2,0(t) = 0

) = (Ltu)00 ,

leading to:
∑

t≥0

β0(t) =
(
(I − L)−1u

)

00
. (A.7)

Let:

U := (I − L)−1 u , and V := (I − F)−1 Q (I − L)−1u .

We then derive from (A.5), (A.6) and (A.7) that:
∑

t≥0

E0
(
X0(t)

2 (1 − X0(t))
) = (1 − 1

N0
) (1 − 2

N0
)V000 + 1

N0
(1 − 1

N0
)U00 . (A.8a)

In the same way, we find that
∑

t≥0 E0
[
X1(t)2 (1 − X1(t))

] = (1 − 1
N1

) (1 − 2
N1

)V111 + 1
N1

(1 − 1
N1

)U11,
∑

t≥0 E0
[
X0(t)2 (1 − X1(t))

] = (1 − 1
N0

)V001 + 1
N0

U01,
∑

t≥0 E0
[
X1(t)2 (1 − X0(t))

] = (1 − 1
N1

)V110 + 1
N1

U10,
∑

t≥0 E0
[
X0(t) X1(t) (1 − X0(t))

] = (1 − 1
N0

)V010,
∑

t≥0 E0
[
X0(t) X1(t) (1 − X1(t))

] = (1 − 1
N1

)V011,
∑

t≥0 E0
[
X1(t)2 (1 − X2(t))

] = (1 − 1
N1

)V112 + 1
N1

U12,
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∑
t≥0 E0

[
X1(t) X2(t) (1 − X1(t))

] = (1 − 1
N1

)V112,
∑

t≥0 E0
[
X0(t) X1(t) (1 − X2(t))

] = V012,
∑

t≥0 E0
[
X1(t) X2(t) (1 − X0(t))

] = V120,
∑

t≥0 E0
[
X1(t) X2(t) (1 − X3(t))

] = V123, (A.8b)
∑

t≥0 E0
[
X0(t) (1 − X0(t))

] = (1 − 1
N0

)U00, (A.8c)
∑

t≥0 E0
[
X1(t) (1 − X1(t))

] = (1 − 1
N1

)U11,
∑

t≥0 E0
[
X0(t) (1 − X1(t))

] = U01,
∑

t≥0 E0
[
X1(t) (1 − X0(t))

] = U10,
∑

t≥0 E0
[
X1(t) (1 − X2(t))

] = U12. (A.8d)

Appendix C Approximations under the Structured Coalescent Assump-
tions

Here, we give the formulae for coefficients γi and δi , i = 0, 1 as functions of the population
parameters n, M, P and � derived using Maple.

γ0 = γ01

3(Mn − M + 1 − 2P + nP)γ02
(A.9)

where

γ01 = 16P5 + 6M5Pn − 71M2nP + 29M2n2P − 39M2n2P2 + 11M2nP2

− 59M2n2P3 + 22Mn2P + M4P2 − 13M3P2 + 3M5n − 2M5P + 10M2P2

+ 11M2n2P4 + 2M2n2P5 − 52Mn2P3 + 4Mn2P4 + 22MnP4 + 4Mn3P2

+ 72MP2 + 56M3nP3 − 28MP3 − 12P3n2 − 34M3n2P2 + 116MnP3

− 11M3Pn + 6M3n2 − 10M4P3 + 11M3P − 36nP2 − 15M3n − 20MP

− 24P4M2 − 40M2P3 + M5n3 − 3M5n2 − 44MP4 + 16MP5 + 2M3n3

− 4M3P4 + 113M2nP3 + 20M4nP3 − 16P2 − 4n2P4 + 12nP − 8M2nP5

+ 36nP4 + 3M4n − 20MP5n + 8Mn2P2 + 6M2n3P + 10M2n3P2 + 12n2P2

+ 39M3nP2 + 13M3n3P + 6MP5n2 + 8M3n3P2 − 32M3n2P3 + 4M3n2P4

− 6M5n2P + 2M5n3P − M5 − 6M2 + 8M2n2 + 9M4n3P + 2M4n3P2

− 23M4n2P − 3M4n2P2 − 10M4n2P3 + 19M4nP + 7M3 − M2n

− 13M3n2P − 24M3P3 − 5M4P + 6Mn − 8MnP − 104MnP2 + 56P3 − 56P4

+ 36M2P + 8M2P5 + 4M2nP4 + 4n2P5 − 16nP5 + 3M4n3 − 6M4n2 + 4nP3,

and

γ02 = 4M + 6M2nP + 6M2n2P + 6M2n2P2 − 20M2nP2 + 8P + 16M2P2 − 20MP2

− 8M3nP3 + 32MP3 + 2M3n2P2 − 20MnP3 − 11M3Pn + 2M3n2 + 4M3P

+ 8nP2 − M3n − 12MP + 16M2P3 − 16M2nP3 − 24P2 − 2M4n + 4Mn2P2

− 2M3nP2 + M4 − 4M2 + 2M4n2P − 4M4nP − M3 + 6M2n + 7M3n2P

+ 8M3P3 + 2M4P + 16MnP − 4MnP2 + 16P3 − 16M2P + M4n2 − 8nP3.

γ1 = γ11

3(n − 1)(Mn − M + 1 − 2P + nP)γ12
(A.10)



Dynamic Games and Applications

where

γ11 = −16P5 − 8M − 8M5Pn + 93M2nP − 92M2n2P − 2M2n2P2 + 47M2nP2

+ 96M2n2P3 + 36Mn2P − 16P − M4P2 + 29M3P2 + 8M3n4P2 + 2M5n4P

− 4M5n + 2M5P − 26M2P2 − 26M3n3P3 + 4M3n3P4 + 9M3n4P

+ 29M2n2P4 − 10M2n2P5 + 62Mn2P3 + 14Mn2P4 − 38MnP4 + 18Mn3P2

− 100MP2 − 50M3nP3 − 4M3nP4 + 36MP3 − 33M2n3P3 − 28P3n2

+ 101M3n2P2 − M2n3P4 + 2M2n3P5 − 58MnP3 + 42M3Pn − 20Mn3P3

+ 2Mn3P4 − 35M3n2 + 10M4P3 − 17M3P − 68nP2 + M5n4 + 34M3n

+ 60MP + 32P4M2 + 24M2P3 − 4M5n3 + 6M5n2 + 12MP4 + 12M3n3 + 4M3P4

− 87M2nP3 − 10M4n3P3 + M4nP2 − 30M4nP3 + 72P2 + 20n2P4 + 12nP

+ 16M2nP5 − 76nP4 + 3M4n4 − 3M4n + 4MP5n − 110Mn2P2 + 33M2n3P

− 25M2n3P2 + 12n2P2 − 90M3nP2 − 10M3n3P − 2MP5n2 − 48M3n3P2

+ 64M3n2P3 − 4M3n2P4 + 12M5n2P − 8M5n3P + M5 + 18M2 + 15M2n2

− 32M4n3P − 5M4n3P2 + 42M4n2P + 3M4n2P2 + 30M4n2P3 − 24M4nP

− 11M3 + 6M2n4P2 − 33M2n − 24M3n2P + 12M3P3 + 5M4P + 6Mn

− 86MnP + 172MnP2 − 112P3 + 72P4 + 9M4n4P + 2M4n4P2 − 34M2P

− 8M2P5 − 60M2nP4 − 4n2P5 + 16nP5 − 9M4n3 + 9M4n2 + 116nP3

and

γ12 = 4M + 6M2nP + 6M2n2P + 6M2n2P2 − 20M2nP2 + 8P + 16M2P2 − 20MP2

− 8M3nP3 + 32MP3 + 2M3n2P2 − 20MnP3 − 11M3Pn + 2M3n2 + 4M3P

+ 8nP2 − M3n − 12MP + 16M2P3 − 16M2nP3 − 24P2 − 2M4n + 4Mn2P2

− 2M3nP2 + M4 − 4M2 + 2M4n2P − 4M4nP − M3 + 6M2n + 7M3n2P

+ 8M3P3 + 2M4P + 16MnP − 4MnP2 + 16P3 − 16M2P + M4n2 − 8nP3.

δ0 = −P + Mn + n − M

Mn − M + 1 − 2P + nP
; δ1 = 1 − P + Mn − M

Mn − M + 1 − 2P + nP
(A.11)

(1 − u0)δ1 + u0δ0 = 1.

�(M, n, P) = (1 − u0) γ1 + u0 γ0 = ρ1/ρ2 (A.12)
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with:

ρ1 = −8M + 4Mn3P2 + 41M2nP3 − 12MP4 + 8MP5 + M4n3 + 12n2P2

− 50MnP + 39M2nP2 − 16P + 56P2 + 12nP − 52nP2 + 44nP3 + 4nP4

+ 24Mn2P + 6Mn + 5M3P2 + 2MnP2 + 6Mn2P5 + 10M2

− 21M3n2P − 56P3 − 10M3n2P3 − 23M2n2P2 − 25M2n2P3

+ 8M2n2P4 − 10M3nP2 + 20M3nP3 + 8M2n3P + 4M2n3P2 − M4

− 5M3P + 3M4n − 10M3P3 − 26Mn2P3 + 2M4n3P − 14Mn2P2

− 2Mn2P4 − 5M2n2P − 12M2nP4 − 13M2nP − 12P3n2 + 8M3n3P

− 16MP3 − 2M4P + 10M2P − 7M3n2 + 62MP3n + 4MP4n

− 12MP5n − 6M4Pn2 + 6M4Pn + 9M2n2 + 5M3n − 19M2n + 36MP

− 12MP2 + 5M3n2P2 − 20M2P2 − 16M2P3 − M3 + 16P4 + 4n2P5

− 8nP5 + 3M3n3 − 3M4n2 + 4P4M2 + 18M3nP − 4n2P4 ,

ρ2 = 3(n − 1)(4M − 16M2nP3 + 16MnP − 20M2nP2 + 8P − 24P2

+ 8nP2 − 8nP3 − 4MnP2 − 4M2 + 7M3n2P + 16P3

+ 6M2n2P2 − 2M3nP2 − 8M3nP3 + M4 + 4M3P − 2M4n

+ 8M3P3 + 4Mn2P2 + 6M2n2P + 6M2nP + 32MP3 + 2M4P

− 16M2P + 2M3n2 − 20MP3n + 2M4Pn2 − 4M4Pn − M3n

+ 6M2n − 12MP − 20MP2 + 2M3n2P2 + 16M2P2 + 16M2P3

− M3 + M4n2 − 11M3nP) .

Appendix D Transition Probabilities

Matrix K is the probability transition matrix, under neutrality, for the ancestral process σ(t) that traces the
spatial locations of the ancestors of 3 individuals, labelled individuals 1, 2, 3, over one time step backwards
in time. Following Eq. (8),

K =

S1,2,3 S12,3 S13,2 S23,1 S123
⎛

⎜⎜⎝

⎞

⎟⎟⎠

F Q W J R1 S1,2,3
0 L 0 0 R S12,3
0 0 L 0 R S13,2
0 0 0 L R S23,1
0 0 0 0 R0 S123

For the calculation of the first-order expansion of the fixation probability (see Proposition 2), only subma-
trices F , Q, R, and L are needed (resp. of sizes 15 × 15, 5 × 15, 5 × 5, 5 × 2), so we do not compute the
other submatrices. We now give the detailed expressions for F , Q, R, and L . As the square 15× 15 matrix F
is cumbersome, it is decomposed into three 5 × 15 submatrices:

F = (F(1) F(2) , F(3)) . (A.13)
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The computation of these matrices does not present any specific difficulties apart from their size. Before
giving their expressions, we shall present how the first line related to transitions from the “000” state (in which
the lineages of individuals 1, 2, 3 are not coalesced and on the continent at the given time t) is computed,
leaving the reader to detail the other lines. For the “000” state, only the terms in the first row of sub-matrices
F and Q need to be detailed.

From the “000 state” going one generation back in time, the possible transitions are broken down as follows:

• 0 coalescence, corresponding to the matrix F , in which case there can either be:

– 0 migration: the 3 parents remain on the continent → 1 possibility: 000 → 000
– 1 migration (and only 1, this is no longer specified in the following): → 3 possibilities: 000 →

{001, 010, 100}
– 2 migrations

∗ to the same island → 3 possibilities: 000 → {011, 101, 110}
∗ to 2 distinct islands → 3 possibilities: 000 → {012, 102, 120}

– 3 migrations
∗ to the same island → 1 possibility: 000 → 111
∗ to 2 distinct islands → 3 possibilities: 000 → {112, 121, 211}
∗ to 3 distinct islands → 1 possibility: 000 → 123

• 1 coalescence (only one is possible: the one of the lineages of individuals 1 and 2) corresponding to matrix
Q, in which case there can either be:

– 0 migration → 1 possibility: 000 → 00
– 1 migration (the one of the lineage of individual 3) → 1 possibility: 000 → 01
– 2 migrations (the one of the lineages of individuals 1 and 2) → 1 possibility: 000 → 10
– 3 migrations:

∗ to the same island → 1 possibility: 000 → 11
∗ to 2 distinct islands → 1 possibility: 000 → 12

In conclusion, we obtain 20 possible transitions for the 000 state (i.e., transitions to states in S1,2,3 ∪ S12,3),
corresponding to the 20 terms of the first line of F and Q. In each case, the computation of the transition
probabilities is immediate.

The expressions for submatrices F(1), F(2), F(3), Q, L and R are now given below.
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