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We consider the continental island model for a finite haploid population with a total

number of n demes consisting in one continent and n − 1 islands. We assume viability

differences in the population captured by a linear game within each deme as a result of

pairwise interactions. Under the structured coalescent hypothesis, assuming weak selection

and conservative migration, we derive the first order approximation for the fixation proba-

bility of a single mutant, initially introduced in the continent, with respect to the intensity

of selection. When all the demes share the same game matrix, this result is applied to

the case of the iterated Prisoner’s Dilemma, when the resident strategy is always defect

(AllD) and the mutant cooperative strategy is tit-for-tat (TFT). In this case, we investigate

conditions under which selection favors the emergence of cooperation and we derive an ex-

tension of the ”one-third law” of evolution. We find that the population subdivision of the

continental island model weakens the one-third law that holds for a panmictic population.

When the model is symmetric, i.e. when the continent and the islands are the same size, we

compare this condition to the one obtained when the population structure is replaced by a

Wright’s finite island model with the same number of demes, the same deme sizes and the

same expected total number of migrants per generation after population regulation as in

the continental island model. We investigate under what conditions the continental island

structure facilitates the emergence of the cooperative tit-for-tat strategy in comparison with

its Wright’s island model counterpart. And when the deme sizes differ, we investigate how

the asymmetry in the deme sizes of the continental island model can better promote the

evolution of tit-for-tat compared to its equal deme sizes model counterpart.

KEY WORDS : Evolutionary game theory; Finite population, Structured coalescent; Fixa-

tion probability; One third law; Iterated Prisonner’s Dilemma

∗
E-mail : vladret@univ-montp2.fr; Postal address: V. Ladret, UM2, Case Courier 051, Place E. Batail-

lon, 34095 Montpellier CEDEX, France

1



1 Introduction

Evolutionary game theory has traditionally been considered in the context of infinitely large

populations to study selection of traits with frequency dependent fitness (Maynard Smith,

1982; Nowak and Sigmund, 2004; Nowak, 2006a). Frequency-dependent selection means that

the fitness values of the traits (strategies) depend on the relative abundance of the different

strategies in the population. The trait of cooperation is a classic example under frequency

dependent selection (Nowak, 2006b). When the populations are infinite, the evolution of

the frequencies of the traits in the population are modelled by differential equations like,

for example, the wide-spread replicator equations (Taylor and Jonker, 1978; Hofbauer and

Sigmund, 1998) and mathematical predictions of the evolution of the system are based on

the identification of equilibrium states and the analysis of their stability. Though, in nature,

real populations are always finite and the evolutionary processes are prone to stochastic

fluctuations, due, in particular, to the finiteness of the population.

When the population is finite, the evolution of a mutant trait may differ greatly from its

evolutionary outcome predicted by the replicator dynamics in an infinite population. For

instance, in a finite population, any mutant trait will either be eliminated or will take over

the whole population due to random drift and there is always a non-zero probability that a

mutant fixates in the population, even though it would always be wiped out by selection in

an infinitely large population. When analysing evolutionary dynamics in a finite population,

an interesting quantity is given by the fixation probability of a single mutant. It has been

used by Nowak et al. (2004) to define of an advantageous mutation in a finite population :

selection is said to favour the replacement of a resident strategy by a mutant strategy, if

the fixation probability of a single mutant is greater than it would be under neutral selection.

From this definition, ensues the one-third law of evolution (which specifies conditions for

weak selection to favour the emergence of a wild type strategy in a 2×2 coordination game,

in the limit of a large finite population). Considering a 2 × 2 evolutionary game with two

types A and B and payoff matrix

A B

A

B

(

a b

c d

)

,

where a is the payoff received by a type A individual when interacting with another type A, b

is the payoff a type A gets when interacting with a type B, c is the payoff received by a type

B individual when interacting with a type A, while two interacting type B individuals each

receive d, and assuming the game is a coordination game, i.e. a > c and d > b (which means

the two pure strategies A and B are strict Nash equilibria), Nowak et al. (2004) proved in the

context of a frequency dependent Moran process, that weak selection favours a single type A

mutant replacing a population of type B individuals in the limit of a large finite well-mixed

population, if the unstable internal equilibrium frequency of the wild type strategy in the

deterministic evolutionary dynamics in an infinite popupation, x∗ = (d− b)/(a− b− c+ d),
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is smaller than 1/3. In other words, for a coordination game, provided selection is weak

enough and the population size is large enough, the fixation probability of a single mutant

strategy is larger than under neutrality if the basin of attraction of the wild type strategy

in the traditional replicator dynamics is less than one-third.

The one-third law does not only apply to the frequency dependent Moran process. It has

also been obtained for the Wright-Fisher model (Imhof and Nowak, 2006; Lessard, 2005),

for pairwise comparison updating (Traulsen et al., 2006), for exchangeable models within

the domain of Kingman’s coalescence (Lessard, 2007; Lessard and Ladret 2007), for games

on graphs (Ohtsuki and Nowak, 2006; Ohtsuki et al., 2006, 2007); it has been extended to

the d-player two-strategies game (Kurokawa and Ihara, 2009; Gokhale and Traulsen, 2010)

in a Moran population; and the extension of the one-third law from the 2-player to the

d-player game has been shown to be the same or all exchangeable models in the domain of

application of the Kingman coalescent in the limit of a large neutral population (Lessard,

2011).

When applied to the Iterated Prisonner’s Dilemma (IPD) game (Trivers, 1971; Axelrod

and Hamilton, 1981), with the cooperative ’tit-for-tat” (TFT) strategy as a mutant strategy

and ’always defect’ (AllD) as a resident strategy, this result unables to investigate how the

evolution of cooperation can be facilitated by selection in a finite population. Indeed, when

the number of iterations of this game is large enough, it becomes a coordination game with

both TFT and AllD being evolutionarily stable in the traditional sense. It then follows from

the one-third law that in the limit of a large finite population size, weak selection favors

a single mutant TFT cooperator taking over a population of resident AllD defectors if the

proportion of TFT at the unstable equilibrium of the deterministic replicator’s dynamics is

smaller than one-third.

Population subdivion can weaken the one-third law, as it happens in the case of the

symmetric Wright’s finite island model (Ladret and Lessard, 2007) or the asymmetric two-

deme model with unequal deme sizes and different migration rates (Ladret and Lessard,

2008). In this paper, we extend the latter asymmetric two-deme model to a continental

island model with n demes, in which the population is suddivided into n subpopulations (or

demes) : a central deme (”the continent”) surrounded by n − 1 identical islands of equal

sizes, with migration only occurring between the continent and each island (with no direct

island-to-island migration). The size of the continent is possibly different from that of each

island and we allow for unequal migration rates from the continent to each island and from

each island to the continent. We study the probability of fixation of a single mutant initially

introduced into the continent under weak selection, conservative migration and the struc-

tured coalescent assumptions (Notohara, 1990; Herbots, 1994, 1997; Wilkinson-Herbots,

1998). The individuals in the population are haploid and we assume that two strategies are

genetically encoded at a single locus by two alternative alleles. At the beginning of every

generation, each individual produces an infinite equal number of offspring which then dis-

perse independently among the n demes according to the migration pattern of a continental
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island model (Wilkinson Herbotts, 1998) (and references therein). Following migration, the

offspring undergo viability differences, as a result of linear games within demes, described

by deme-specific matrices. We assume that the islands share the same deme-specific matrix

which may differ from the game matrix associated to the continent. Then, following selec-

tion, the deme sizes are restored by random sampling. We derive an approximation for the

first-order effect of selection on the probability of fixation of a single mutant. The method is

an extension of the coalescent approach used in Ladret and Lessard (2008), which is adapted

from a direct Markov chain method proposed by Rousset (2003) and ascertained in Lessard

and Ladret (2007). We then derive conditions under which a mutant strategy is selectively

advantageous. When the two strategies are best replies to themselves with respect to both

game matrices, we obtain an extension of the one-third law. When the game matrices are

identical, we find that this condition can be written in terms of the unstable equilibrium

frequency of the mutant type with respect to the deterministic evolutionary dynamics in an

infinite panmictic population, x∗, in the form x∗ < Λ, for some threshold Λ that depends on

the population structure. We find that this condition is less stringent than the one-third law.

We compare this condition in the asymmetric continental island model with its symmetric

(equal deme sizes) model counterpart. We find that it is less stringent in the asymmetric

model provided the proportion of the population living in the continent is smaller than 1/n

(which means that the continent is smaller than any island) if the number of demes is large

enough, with the additional requirement that this proportion is not too small for a lesser

number of demes. We also compare the symmetric n-deme continental island model to the

Wright’s island model (Ladret and Lessard, 2007) that has the same deme sizes, the same

number of demes, n, and the same expected total number of migrants per generation after

population regulation as the symmetric n-deme continental island model. When the total

number of demes n is fixed, we find that the condition under which a mutant strategy is

selectively advantageous in the continental island model is less stringent than in its Wright’s

island model counterpart provided a certain scaled migration rate M remains above an ex-

plicit threshold value that depend on the number of demes n (namely,
√
2n+4
n

). And when

the scaled migration rate M is fixed, we find that it is always the case if M ≥
√
10/3, while

it otherwise requires that the number of demes remains large enough (namely, larger than
1+

√
1+4M2

M2 ).

This paper is organized as follows. Section 2 describes the continental island linear game

model. In section 3, we give a first order approximation for the probability of fixation of a

single mutant with respect to the intensity of selection, under weak selection. In section 4,

this approximation is derived under the structured coalescent assumptions and conservative

migration. Section 5 investigates the deterministic evolutionary dynamics of the model in

the case when the population is infinite. Section 6 goes back to the finite population model.

Conditions under which a mutant strategy is favoured by selection to replace a resident

strategy are derived and links with evolutionarily stable strategies in the traditional sense

are given. In section 7, the question of the emergence of cooperation is considered in the

case when the games are coordination games. When the game matrices are identical, the

extended one-third law obtained for the continental island model is compared to the one

associated with a panmictic population. The results derived for the asymmetric continental
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island model are compared to their symmetric model counterparts. And comparisons are

made between the symmetric continental island model and the Wright’s finite island model.

Discussion and conclusions are provided in section 8.

2 The continental island linear-game model

Consider a haploid population divided into a central subpopulation (which will be referred to

as the continent) of size N0 surrounded by n− 1 islands of equal sizes, N1. Subpopulation 0

will stand for the continent, while the islands will be labeled subpopulations i = 1, . . . , n−1.

Suppose there are two types of individuals in the population, type A and type B, and

that, at time t = 0, a single mutant A is introduced into the continent. We assume that

the population evolves in discrete, non-overlapping generations represented by time steps

t = 0, 1, 2, . . .. At the beginning of every generation, each individual in the population

produces the same very large number of offspring (treated as if it were infinite), which then

disperse independently. An offspring from the continent can migrate to each island and an

offspring from each island can migrate to the continent. From each island, individuals can

only migrate to the continent. Migration between islands is not possible in one step of the

migration process, it implies passing through the continent. For i ∈ {1, . . . n − 1}, let m0i

denote the proportion of offspring in the central island (the continent) that come from island

i, in the previous generation, and assume those backward migration probabilities to be equal

(m0i = m01, ∀i ∈ {1, . . . , n − 1}). Thus, if m0 =
∑

i∈1,...,n−1m0i denotes the probability

that an individual from the continent emigrated from one of the islands (any of them) in the

previous generation, it follows that for all i ∈ {1, . . . , n− 1}, m0i = m01 = m0/(n− 1). For

i ∈ {1, . . . , n − 1}, let mi0 stand for the proportion of offspring in island i that come from

the continent and assume these migration probabilities from each island to the continent to

be the same, i.e. mi0 = m10, ∀i ∈ {1, . . . , n − 1}. For i ∈ {1, . . . , n − 1}, let mi denote the

probability that an individual from island i emigrated from another subpopulation in the

previous generation. Since there is no direct island to island migration, this subpopulation

has to be the continent and mi = m1 = m10, ∀i ∈ {1, . . . , n− 1}. Moreover, we suppose all

the backward migration probabilities to be constant over time. If for i ∈ {0, . . . n − 1}, xi
denotes the frequency of A in demes i at the beginning of a given generation, and x̃i the

frequency of A in the same deme after migration, then we have

x̃0 = (1−m0)x0 +
m0

n− 1

n−1
∑

ı=1

xi, (1)

x̃i = m1x0 + (1−m1)xi, ∀i ∈ {1, . . . , n− 1}. (2)

Migration is then followed by selection among offspring within the same deme. We consider

a linear game scenario in which we assume that the two types of individuals, A and B,

are associated with mixed strategies pA and pB , respectively, these being frequency vectors

whose components give the probabilities of using some pure strategies in a contest against

an opponent. More precisely, pairwise interactions take place among the individuals within

each deme and affect their viabilities (fitnesses) such that they are written, for the continent
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and types A and B, respectively, in the form :

fA,0 = 1 + spA ·W0p̄0, fB,0 = 1 + spB ·W0p̄0, (3)

and for island i and type A and B, respectively, in the form

fA,i = 1 + spA ·Wip̄i, fB,i = 1 + spB ·Wip̄i, (4)

where W0 and W1 = W2 = . . . = Wn−1 refer to some game matrices, parameter s > 0

measures the selection intensity, x · y denotes the scalar product of two vectors x and y,

and p̄i stands for the mean strategy in deme i before selection, that is,

p̄i = x̃ipA + (1− x̃i)pB = x̃i(pA − pB) + pB, (5)

for i = 0, . . . , n− 1. Following selection, the frequency of A among the individuals in deme

i becomes

x′i =
x̃ifA,i

x̃ifA,i + (1− x̃i)fB,i

. (6)

The next generation is obtained by drawing at random N0 individuals in the continent and

N1 individuals in each island, respectively, so that the number of A individuals in the con-

tinent follows a binomial distribution with parameters N0 and x′0, and the number of A

individuals in island i, a binomial distribution with parameters N1 and x′i. After this pop-

ulation regulation, the frequency of A in deme i has mean x′i, for i = {0, . . . , n − 1}. Note

that in the special case when the number of demes is reduced to n = 2, this model reduces

to the asymmetric two-deme model studied in Ladret and Lessard (2008). Throughout the

paper we focus on the weak selection scenario in which the selection intensity s is small,

that is, s = o(1).

3 Fixation coefficient

For i = 0, . . . , n− 1, let Xi(t) denote the frequency of A in deme i at time t and define

X(t) = (X0(t), . . . , Xn−1(t)).

Since a single mutant A is introduced into the continent at time t = 0, it follows that

X(0) = x0, where

x0 = (1/N0, 0, . . . , 0).

We are interested in u(s), the probability of fixation of a single mutant A introduced at time

t = 0 into the continent in a population of B individuals when selection intensity is s. More

specifically, we calculate the first order development of u(s) with respect to s, in the case of

weak selection, given by

u(s) = u(0) + su′(0) + o(s),
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where u′(0) is the derivative of u at s = 0. The term u′(0) will be referred to as the fixation

coefficient. The method we use to calculate this coefficient is an adaptation of a method

introduced by Rousset (2003) and ascertained in Lessard and Ladret (2007). In the case of

a panmictic population (Lessard, 2005, 2007) or a symmetric population structure (Rousset

and Billiard, 2000; Ladret and Lessard, 2007), it allows to calculate the fixation coefficient

in terms of expected coalescence times, under neutrality of samples of individuals. In the

case of a less symmetric population structure, like the one of the asymmetric two-deme

linear-game model, this method had to be adapted using an extension of the direct Markov

chain approach (Ladret and Lessard, 2008). Here, we adapt this latter approach to the

continental island linear-game model.

Let E0 (P0, respectively) denote the expectation (probability, respectively) in the case of

neutrality, that is when s = 0 and let E (P , respectively) denote the expectation (probability,

respectively), in the case of an unspecified selection intensity s. Let M be the matrix whose

entries are the backward migration probabilities, that is

M =





















m00 m01 . . . m0n−1

m10 m11 . . . m1n−1

. . .

mi0 mi1 . . . min−1

. . .

mn−10 mn−11 . . . mn−1n−1





















,

which, in this continental island model, reduces to

M =

























1− (n− 1)m01 m01 m01 . . . m01 m01 m01

m10 1−m10 0 . . . 0 0 0

m10 0 1−m10 0 . . . 0 0

m10 0 0 1−m10 0 . . . 0

. . .

m10 0 . . . 0 1−m10 0

m10 0 . . . 0 0 1−m10

























,

or, equivalently,

M =

























1−m0 m0/(n− 1) m0/(n− 1) . . . m0/(n− 1) m0/(n− 1) m0/(n− 1)

m1 1−m1 0 . . . 0 0 0

m1 0 1−m1 0 . . . 0 0

m1 0 0 1−m1 0 . . . 0

. . .

m1 0 . . . 0 1−m1 0

m1 0 . . . 0 0 1−m1

























.

Let u = (u0, . . . , un−1) with ui > 0, for all i = 0, . . . , n − 1, and
∑n−1

i=0 ui = 1 denote the
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stationary distribution of M so that

[u0, . . . , un−1]M = [u0, . . . , un−1]. (7)

Thus,

u0 =
m1

m1 +m0
and u1 = u2 = . . . = un−1 =

m0

(m0 +m1)(n− 1)
.

As in Ladret and lessard (2008), consider Z(t), the weighted frequency of A, defined as

Z(t) = u0X0(t) + . . .+ un−1Xn−1(t), (8)

for t ≥ 0.

For any given selection intensity s ≥ 0, the sequence Z(t), for t = 0, 1 . . . is a discrete-time

stochastic process on the state space {u0 k0

N0

+u1
k1

N1

+. . .+un−1
kn−1

N1

} = {u0 k0

N0

+u1
∑

n−1

i=1
ki

N1

},
where k0 = 0, . . . , N0 and ki = 0, . . . , N1 for i = 1, . . . , n − 1, with initial state Z(0) =

u0/N0 and absorbing states z = 0 and z = 1, while all other states are transtient. This

process converges in probability to a random variable Z(∞), which takes value 1 with

probability u(s), and 0 otherwise. In the neutral scenario (s = 0), this process is a bounded

martingale. By the stopping time theorem (see, e.g. Karlin and Taylor, 1975), we find that

the probability of fixation of A, which occurs when the absorbing state z = 1 is reached, is

equal to

u(0) = E0(Z(∞)) = Z(0) =
u0
N0

.

In the general case when selection intensity is s, we can write following Rousset (2003) that

E[Z(∞)− Z(0)] =
∑

t≥0

E[Z(t+ 1)− Z(t)],

which is equivalent to

u(s)− u(0) =
∑

t≥0

E[Z(t+ 1)− Z(t)].

After differentiating with respect to s and assuming the interchangeability of summation and

derivation (see lessard and Ladret, 2007, for a formal proof under mild regularity conditions)

we get

u′(0) =
∑

t≥0

d

ds
E[Z(t+ 1)− Z(t)]

∣

∣

∣

s=0

Conditioning on the values x = (x0, x1, . . . , xn−1) taken by X(t), we can write

E[Z(t+ 1)− Z(t)] =
∑

x

E
[

Z(t+ 1)− Z(t)
∣

∣

∣
X(t) = x

]

P
(

X(t) = x
)

, (9)

which implies that

d

ds
E[Z(t+ 1)− Z(t)] =

∑

x

d

ds
E
[

Z(t+ 1)− Z(t)
∣

∣

∣
X(t) = x

]

∣

∣

∣

s=0
P0

(

X(t) = x
)

+
∑

x

E0

[

Z(t+ 1)− Z(t)
∣

∣

∣
X(t) = x

] d

ds
P
(

X(t) = x
)
∣

∣

s=0
. (10)

8



Under neutrality, Z(t) does not change in mean from one generation to the next, that is,

E0

[

Z(t+ 1)− Z(t)
∣

∣

∣
X(t) = x

]

= 0. (11)

Therefore,

u′(0) =
∑

t≥0

∑

x

P0

(

X(t) = x
) d

ds
E
[

Z(t+ 1)− Z(t)|X(t) = x
]

∣

∣

∣

s=0
. (12)

Since

E
[

Z(t+ 1)− Z(t)|X(t) = x
]

=

n−1
∑

i=0

ui

(

E
[

Xi(t+ 1)|X(t) = x
]

− xi

)

(13)

it follows from (6), and (7) that

d

ds
E
[

Z(t+ 1)− Z(t)
∣

∣X(t) = x
]

∣

∣

∣

s=0
=

n−1
∑

i=0

uix̃i(1− x̃i)(pA − pB) ·Wipi (14)

and from (5) that

d

ds
E
[

Z(t+ 1)− Z(t)
∣

∣X(t) = x
]

∣

∣

∣

s=0
=

n−1
∑

i=0

uix̃
2
i (1− x̃i)(pA − pB) ·Wi(pA − pB)

+

n−1
∑

i=0

uix̃i(1− x̃i)(pA − pB) ·WipB . (15)

From (1), it follows that

x̃0(1− x̃0) = (1−m0)
2x0(1− x0) +m0

(1−m0)

n− 1

n−1
∑

i=1

x0(1− xi) +
m0(1−m0)

n− 1
(1− x0)

n−1
∑

i=1

xi

+

(

m0

n− 1

)2
∑

i,j∈{1,...n−1}
xi(1− xj);

and

x̃20(1− x̃0) = (1−m0)
3x20(1− x0) +m0

(1−m0)
2

n− 1

n−1
∑

i=1

x20(1− xi) + 2(1−m0)
2 m0

n− 1
x0(1− x0)

n−1
∑

i=1

xi

+2(1−m0)

(

m0

n− 1

)2

x0
∑

i,j∈{1,...n−1}
xi(1− xj) +

(

m0

n− 1

)2

(1−m0)(1− x0)
∑

i,j∈{1,...n−1}
xixj

+

(

m0

n− 1

)3
∑

i,j,k∈{1,...n−1}
xixj(1− xk).

We derive from (2) that, for all i ∈ {1, . . . , n− 1},

x̃i(1− x̃i) = m2
1x0(1− x0) +m1(1−m1)x0(1− xi) +m1(1−m1)xi(1− x0) + (1−m1)

2xi(1− xi);
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and

x̃2i (1− x̃i) = m3
1x

2
0(1− x0) +m2

1(1−m1)x
2
0(1− xi) + 2m2

1(1−m1)x0(1− x0)xi

+2m1(1−m1)
2x0xi(1− xi) +m1(1−m1)

2x2i (1− x0) + (1−m1)
3x2i (1− xi).

Thus, from (12) and (15), we find that

u′(0) = u0
∑

t≥0

λ0(m0,X(t))(pA − pB) ·W0(pA − pB) +
n−1
∑

i=1

ui
∑

t≥0

λi(m1,X(t))(pA − pB) ·W1(pA − pB)

+u0
∑

t≥0

δ0(m0,X(t))(pA − pB) ·W0pB +
n−1
∑

i=1

ui
∑

t≥0

δi(m1,X(t))(pA − pB) ·W1pB , (16)

where

λ0(m0,X(t)) =(1−m0)
3E0[X0(t)

2(1−X0(t))] +m0
(1−m0)

2

n− 1

n−1
∑

i=1

E0[X
2
0 (t)(1−Xi(t))]

+ 2
m0(1−m0)

2

n− 1

n−1
∑

i=1

E0[X0(t)(1−X0(t))Xi(t)]

+ 2(1−m0)

(

m0

n− 1

)2
∑

i 6=j∈{1,...n−1}
E0[X0(t)Xi(t)(1−Xj(t))]

+ 2(1−m0)

(

m0

n− 1

)2
∑

i∈{1,...n−1}
E0[X0(t)Xi(t)(1−Xi(t))]

+ (1−m0)

(

m0

n− 1

)2 n−1
∑

i=1

E0[X
2
i (t)(1−X0(t))]

+ (1−m0)

(

m0

n− 1

)2
∑

i 6=j∈{1,...n−1}
E0[Xi(t)Xj(t)(1−X0(t))]

+

(

m0

n− 1

)3 n−1
∑

i=1

E0[X
2
i (t)(1−Xi(t))] +

(

m0

n− 1

)3
∑

i,k∈{1,...n−1},k 6=i

E0[X
2
i (t)(1−Xk(t))]

+ 2

(

m0

n− 1

)3
∑

i,j∈{1,...n−1},j 6=i

E0[Xi(t)Xj(t)(1−Xi(t))]

+

(

m0

n− 1

)3
∑

i,j,k∈{1,...n−1},i 6=j,j 6=k,k 6=i

E0[Xi(t)Xj(t)(1−Xk(t))]
}

;

λi(m1,X(t)) =m3
1E0[X0(t)

2(1−X0(t))] +m2
1(1−m1)E0[X0(t)

2(1−Xi(t))]

+ 2m2
1(1−m1)E0[X0(t)(1−X0(t))Xi(t)] + 2m1(1−m1)

2E0[X0(t)Xi(t)(1−Xi(t))]

+m1(1−m1)
2E0[Xi(t)

2(1−X0(t))]

+ (1−m1)
3E0[X

2
i (t)(1−Xi(t))];
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δ0(m0,X(t)) =(1−m0)
2E0[X0(t)(1−X0(t))] +m0

(1−m0)

n− 1

n−1
∑

i=1

E0[X0(t)(1−Xi(t))]

+
m0(1−m0)

n− 1

n−1
∑

i=1

E0[Xi(t)(1−X0(t))] +

(

m0

n− 1

)2 n−1
∑

i=1

E0[Xi(t)(1−Xi(t))]

+

(

m0

n− 1

)2
∑

i,j∈{1,...n−1},i 6=j

E0[Xi(t)(1−Xj(t))]

and

δi(m1,X(t)) =m2
1E0[X0(t)(1−X0(t))] +m1(1−m1)E0[X0(t)(1−Xi(t))]

+m1(1−m1)E0[Xi(t)(1−X0(t))] + (1−m1)
2E0[Xi(t)(1−Xi(t))].

Since ui = (1−u0)/(n− 1), for all i ∈ {1, . . . , n− 1}, and due to the symmetry of the model

(which implies that E0[Xi(t)
2(1−Xi(t))] = E0[X1(t)

2(1−X1(t))]) for all i ∈ {1, . . . , n−1}),
we get

λ0(m0,X(t)) =(1−m0)
3E0[X0(t)

2(1−X0(t))] +m0(1−m0)
2E0[X

2
0 (t)(1−X1(t))]

+ 2m0(1−m0)
2E0[X0(t)(1−X0(t))X1(t)]

+ 2(1−m0)m
2
0

(

n− 2

n− 1

)

E0[X0(t)X1(t)(1−X2(t))]

+ 2(1−m0)

(

m2
0

n− 1

)

E0[X0(t)X1(t)(1−X1(t))]

+ (1−m0)

(

m2
0

n− 1

)

E0[X
2
1 (t)(1−X0(t))]

+ (1−m0)m
2
0

(

n− 2

n− 1

)

E0[X1(t)X2(t)(1−X0(t))]

+
m3

0

(n− 1)2
E0[X

2
1 (t)(1−X1(t))] +

m3
0(n− 2)

(n− 1)2
E0[X

2
1 (t)(1−X2(t))]

+ 2m3
0

(n− 2)

(n− 1)2
E0[X1(t)X2(t)(1−X1(t))]

+m3
0

(n− 2)(n− 3)

(n− 1)2
E0[X1(t)X2(t)(1−X3(t))], (17)

λi(m1,X(t)) =m3
1E0[X0(t)

2(1−X0(t))] +m2
1(1−m1)E0[X0(t)

2(1−X1(t))]

+ 2m2
1(1−m1)E0[X0(t)(1−X0(t))X1(t)] + 2m1(1−m1)

2E0[X0(t)X1(t)(1−X1(t))]

+m1(1−m1)
2E0[X1(t)

2(1−X0(t))] + (1−m1)
3E0[X

2
1 (t)(1−X1(t))]

(18)

and
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δ0(m0,X(t)) =(1−m0)
2E0[X0(t)(1−X0(t))] +m0(1−m0)E0[X0(t)(1−X1(t))]

+m0(1−m0)E0[X1(t)(1−X0(t))] +
m2

0

n− 1
E0[X1(t)(1−X1(t))]

+m2
0

(

n− 2

n− 1

)

E0[X1(t)(1−X2(t))], (19)

δi(m1,X(t)) =m2
1E0[X0(t)(1−X0(t))] +m1(1−m1)E0[X0(t)(1−X1(t))]

+m1(1−m1)E0[X1(t)(1−X0(t))] + (1−m1)
2E0[X1(t)(1−X1(t))]. (20)

From (9) and (15), it follows that the calculation of coefficient u′(0) requires the calculation

of
∑

t≥0

E0[Xi(t)Xj(t)(1−Xk(t))],

for i, j, k ∈ {0, 1, 2, 3} and
∑

t≥0

E0[Xi(t)Xj(t)(1−Xk(t))],

for i, j ∈ {0, 1, 2}. Therefore, we need to calculate of the following terms E0[X
2
0 (t)(1 −

X0(t))]; E0[X
2
0 (t)(1−X1(t))]; E0[X0(t)(1−X0(t))X1(t)]; E0[X0(t)X1(t)(1−X2(t))]; E0[X

2
1 (t)(1−

X1(t))]; E0[X
2
1 (t)(1−X0(t))]; E0[X1(t)X0(t)(1−X1(t))]; E0[X1(t)X2(t)(1−X0(t))]; E0[X1(t)(1−

X1(t))X2(t)]; E0[X
2
1 (t)(1−X2(t))]; E0[X1(t)X2(t)(1−X3(t))]; E0[X0(t)(1−X0(t))]; E0[X0(t)(1−

X1(t))]; E0[X1(t)(1−X0(t))]; E0[X0(t)X1(t)(1−X2(t))]; E0[X
2
1 (t)(1−X1(t))]; E0[X

2
1 (t)(1−

X0(t))]; E0[X1(t)(1−X1(t))]; and E0[X
2
1 (t)(1−X2(t))].

For each k ∈ {1, . . . N1} and i ∈ {0, . . . n−1}, let ξk,i denote the random variable that as-

signs the value 1 to the k-th individual in deme i if it is of type A and the value 0, otherwise :

ξk,i(t) =











1 if individual k in deme i at time t is of type A,

0 otherwise.

(21)

Then, the frequency of A in the continent at time t is

X0(t) =
1

N0

N0
∑

k=1

ξk,0(t). (22)
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It follows that

E0

[

X2
0 (t)(1−X0(t))

]

=
1

N3
0

E0

[

(

N0
∑

k=1

ξk,0(t)
)2(

N0
∑

l=1

(1− ξl,0(t))
)

]

=
1

N3
1

N1
∑

k=1

N1
∑

l=1

N1
∑

m=1

E0

[

ξk,0(t)ξl,0(t)(1− ξm,0(t))
]

= (1− 1

N0
)(1− 2

N0
)α0(t) +

1

N0
(1− 1

N0
)β0(t), (23)

where

α0(t) = P0

(

ξ1,0(t) = ξ2,0(t) = 1, ξ3,0(t) = 0
)

, (24)

and

β0(t) = P0

(

ξ1,0(t) = 1, ξ2,0(t) = 0
)

. (25)

Similarly, we get that

E0

[

X2
1 (t)(1−X1(t))

]

=
(

1− 1

N1

)(

1− 2

N1

)

P0

(

ξ1,1(t) = ξ2,1(t) = 1, ξ3,1(t) = 0
)

+
1

N1

(

1− 1

N1

)

P0

(

ξ1,1(t) = 1, ξ2,1(t) = 0
)

, (26)

E0

[

X2
0 (t)(1−X1(t))

]

=
(

1− 1

N0

)

P0

(

ξ1,0(t) = ξ2,0(t) = 1, ξ1,1(t) = 0
)

+
1

N0
P0

(

ξ1,0(t) = 1, ξ1,1(t) = 0
)

, (27)

E0

[

X1(t)
2(1−X0(t))

]

=
(

1− 1

N1

)

P0

(

ξ1,1(t) = ξ2,1(t) = 1, ξ1,0(t) = 0
)

+
1

N1
P0

(

ξ1,1(t) = 1, ξ1,0(t) = 0
)

, (28)

E0

[

X0(t)X1(t)(1−X0(t))
]

=
(

1− 1

N0

)

P0

(

ξ1,0(t) = 1, ξ2,0(t) = 0, ξ1,1(t) = 1
)

, (29)

E0

[

X0(t)X1(t)(1−X1(t))
]

=
(

1− 1

N1

)

P0

(

ξ1,0(t) = ξ1,1(t) = 1, ξ2,1(t) = 0
)

, (30)

E0

[

X2
1 (t)(1−X2(t))

]

=
(

1− 1

N1

)

P0

(

ξ1,1(t) = ξ2,1(t) = 1, ξ1,2(t) = 0
)

+
1

N1
P0

(

ξ1,1(t) = 1, ξ1,2(t) = 0
)

, (31)

E0

[

X2(t)X1(t)(1−X1(t))
]

=
(

1− 1

N1

)

P0

(

ξ1,1(t) = 1, ξ2,1(t) = 0, ξ1,2(t) = 1
)

, (32)

13



E0

[

X0(t)X1(t)(1−X2(t))
]

= P0

(

ξ1,0(t) = ξ1,1(t) = 1, ξ1,2(t) = 0
)

, (33)

E0

[

X1(t)X2(t)(1−X0(t))
]

= P0

(

ξ1,1(t) = ξ1,2(t) = 1, ξ1,0(t) = 0
)

, (34)

E0

[

X1(t)X2(t)(1−X3(t))
]

= P0

(

ξ1,1(t) = ξ1,2(t) = 1, ξ1,3(t) = 0
)

, (35)

and

E0

[

X0(t)(1−X0(t))
]

=
(

1− 1

N0

)

P0

(

ξ1,0(t) = 1, ξ2,0(t) = 0
)

, (36)

E0

[

X1(t)(1−X1(t))
]

=
(

1− 1

N1

)

P0

(

ξ1,1(t) = 1, ξ2,1(t) = 0
)

. (37)

E0

[

X0(t)(1−X1(t))
]

= P0

(

ξ1,0(t) = 1, ξ1,1(t) = 0
)

. (38)

E0

[

X1(t)(1−X0(t))
]

= P0

(

ξ1,1(t) = 1, ξ1,0(t) = 0
)

. (39)

E0

[

X1(t)(1−X2(t))
]

= P0

(

ξ1,1(t) = 1, ξ1,2(t) = 0
)

. (40)

Let us first focus on

α0(t) = P0

(

ξ1,0(t) = ξ2,0(t) = 1, ξ3,0(t) = 0
)

, (41)

which is the probability that individuals 1, 2 and 3 from deme 0 at time t are of respective

types A, A and B. Recalling that a single mutant A was introduced in the continent at time

0, this event will occur if the lineages of individuals 1 and 2 coalesce before time 0 and their

common ancestor at time 0 is of type A and lives on the continent, while no coalescence

event occurs before time 0 between the lineages of individual 3 on the one hand and those

of individuals 1 and 2 on the other.

The ancestral process that describes the locations of the ancestors of 3 individuals (la-

beled 1, 2 and 3), assigning them the labels of the demes they live in and accounting for

the number of distinct ancestors they have (describing whether they have three distinct

ancestors, two distinct ancestors, in which case whether one is common to individuals 1 and

2, 2 and 3 or 1 and 3, or just a single common ancestor) is Markov. Its state space S can be

partioned into 5 ordered subsets, which, since all the islands are equivalent, can be reduced
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to the following :

S1,2,3 = (000, 001, 010, 100, 011, 101, 110, 111, 012, 102, 120, 123, 112, 121, 211),

S12,3 = (00, 01, 10, 11, 12),

S13,2 = (00, 01, 10, 11, 12),

S23,1 = (00, 01, 10, 11, 12),

S123 = (0, 1).

The element 101 in S1,2,3, for instance, means that the ancestors of individuals 1, 2, 3 are

all different and in demes 1, 0, 1, respectively, the element 01 in S12,3 that individuals 1,

2 have a common ancestor in the continent different from the ancestor of individual 3, and

this ancestor is in island 1, and finally the element 0 in S123 that individuals 1, 2, 3 have a

common ancestor, and this ancestor is in the continent.

For τ ≥ 0, let σ(τ) denote the state in S the ancestors of three individuals are in,

τ generations back. The transition matrix of this Markov chain takes a block form with

respect to the above ordered subsets in the corresponding order. Without loss of generality,

let

K =

















F Q W J R1

0 P 0 0 R

0 0 P 0 R

0 0 0 P R

0 0 0 0 R0

















(42)

be this transition matrix under neutrality. The submatrices F , Q and P are given in Ap-

pendix A.1. Note that the states in S123 are absorbing for this chain, while all other states

are transient. The Perron-Frobënius theory for non-negative matrices ascertains in particu-

lar that the eigenvalues of F and P are all less than 1 in modulus.

Individuals 1, 2 and 3 in deme 0 at time t are of types A, A and B, respectively, if a single

coalescence occurs from time t to 0, this event being a coalescence between the lineages of

individuals 1 and 2, and the two distinct ancestors at time 0 of these three individuals are of

respective types A (for the shared ancestor of individuals 1 and 2) and B (for the ancestor

of individual 3). This implies that σ(t) must either be in state 00 or 01 while the type of

the ancestor common to individuals 1 and 2 is A. Thus, α0(t) is equal to the probability

that the process σ(), lies in state 00 or 01 at time t given that it started in state 000 at time

0, times 1/N0, which is the frequency of A in the continent at time 0, which translates as

follows

α0(t) =
t
∑

τ=1

(

F τ−1QP t−τu
)

000
,

where u is the column vector u = (1/N0, 1/N0, 0, 0, 0), and index 000 refers to the vector’s

component that corresponds to the chain starting in state 000. As a consequence, since

matrices I − F and I − P are invertible, where I refers to an identity matrix of appropriate
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order, if we sum α0(t) over t ≥ 0, we find that

∑

t≥0

α0(t) =
(

(I − F )−1Q(I − P )−1u
)

000
.

Similarly,

β0(t) := P0

(

ξ1,0(t) = 1, ξ2,0(t) = 0
)

= (P tu)00, (43)

leading to
∑

t≥0

β0(t) =
(

(I − P )−1u
)

00
.

By (23), it implies that

∑

t≥0

E0

[

X0(t)
2(1−X0(t))

]

= (1− 1

N0
)(1− 2

N0
)
(

(I − F )−1Q(I − P )−1u
)

000

+
1

N0
(1− 1

N0
)
(

(I − P )−1u
)

00
. (44)

In the same way, we get the following expressions

∑

t≥0

E0

[

X1(t)
2(1−X1(t))

]

= (1− 1

N1
)(1− 2

N1
)
(

(I − F )−1Q(I − P )−1u
)

111

+
1

N1
(1− 1

N1
)
(

(I − P )−1u
)

11
, (45)

∑

t≥0

E0

[

X0(t)
2(1−X1(t))

]

= (1− 1

N0
)
(

(I − F )−1Q(I − P )−1u
)

001

+
1

N0

(

(I − P )−1u
)

01
, (46)

∑

t≥0

E0

[

X1(t)
2(1−X0(t))

]

= (1− 1

N1
)
(

(I − F )−1Q(I − P )−1u
)

110

+
1

N1

(

(I − P )−1u
)

10
, (47)

∑

t≥0

E0

[

X0(t)X1(t)(1−X0(t))
]

= (1− 1

N0
)
(

(I − F )−1Q(I − P )−1u
)

010
, (48)

∑

t≥0

E0

[

X0(t)X1(t)(1−X1(t))
]

= (1− 1

N1
)
(

(I − F )−1Q(I − P )−1u
)

011
, (49)
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∑

t≥0

E0

[

X1(t)
2(1−X2(t))

]

= (1− 1

N1
)
(

(I − F )−1Q(I − P )−1u
)

112

+
1

N1

(

(I − P )−1u
)

12
, (50)

∑

t≥0

E0

[

X1(t)X2(t)(1−X1(t))
]

= (1− 1

N1
)
(

(I − F )−1Q(I − P )−1u
)

112
, (51)

∑

t≥0

E0

[

X0(t)X1(t)(1−X2(t))
]

=
(

(I − F )−1Q(I − P )−1u
)

012
, (52)

∑

t≥0

E0

[

X1(t)X2(t)(1−X0(t))
]

=
(

(I − F )−1Q(I − P )−1u
)

120
, (53)

∑

t≥0

E0

[

X1(t)X2(t)(1−X3(t))
]

=
(

(I − F )−1Q(I − P )−1u
)

123
, (54)

E0

[

X0(t)(1−X0(t))
]

=
(

1− 1

N0

)(

(I − P )−1u
)

00
, (55)

E0

[

X1(t)(1−X1(t))
]

=
(

1− 1

N1

)(

(I − P )−1u
)

11
, (56)

E0

[

X0(t)(1−X1(t))
]

=
(

(I − P )−1u
)

01
, (57)

E0

[

X1(t)(1−X0(t))
]

=
(

(I − P )−1u
)

10
, (58)

E0

[

X1(t)(1−X2(t))
]

=
(

(I − P )−1u
)

12
. (59)
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4 Fixation coefficient under the structured-coalescent

assumptions

In this section, we focus on the structured coalescent scenario (Notohara, 1990; Herbots,

1994, 1997; Wilkinson-Herbots, 1998), in which the total population size, cN , is assumed

to be large, with demes sizes N1 = . . . = Nn−1 = c1N and N0 = c0N of order N and

c = c0 + (n − 1)c1, and backward migration rates of order inversely proportional to N ,

m01 = M0/(2N(n − 1)), m0 = M0/2N and m1 = . . . = mn−1 = M1/2N , so that c0, c1, c,

M0 and M1 are all of order 1.

Using these notations, the stationary distribution (u0, . . . , un−1) of migration matrixM (see

(7)), can be written as follows

u0 =
M1

M0 +M1
and ui =

M0

(M0 +M1)(n− 1)
=

(1− u0)

n− 1
, for i = 1, . . . , n− 1.

In the remainder of this article we restrict to the case of conservative migration, which takes

place when the relative size of each deme is maintained after migration. Thus, in this model,

conservative migration requires that

c0M0 = c1(n− 1)M1.

Let P = c0/c denote the proportion of the total population that lives in the continent and

let M be the ”migration rate” defined as

M := c1M1 =
c0M0

(n− 1)
.

Consequently, under the conservative migration assumptions, we have

M0 =
(n− 1)M

cP
, M1 =

M(n− 1)

c(1− P )
, c0 = cP c1 =

c(1− P )

n− 1
, and u0 = P.

Let C0 denote the constant term of u′(0) as N goes to infinity so that

u′(0) = C0 +O(
1

N
).

By (16) and equations (17) to (20), we find that C0 can be written as

C0 = (pA − pB) ·
(

u0γ0W0 + (1− u0)γ1W1

)

(pA − pB)

+(pA − pB) ·
{

u0δ0W0 + (1− u0)δ1W1

}

pB , (60)
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where

γi = lim
N→+∞

∑

t≥0

E0

[

X2
i (t)(1−Xi(t))

]

and δi = lim
N→+∞

∑

t≥0

E0

[

Xi(t)(1−Xi(t))
]

,

for i = 0, 1, since all the other terms in (16) are multiplied by migration rates of order 1/N

and are thus, of order 1/N of smaller.

From (44) and (45), we obtain, for i = 0, 1

γi = lim
N→+∞

(1− 1

Ni

)(1− 2

Ni

)
(

(I − F )−1Q(I − P )−1u
)

iii
+

1

Ni

(1− 1

Ni

)
(

(I − P )−1u
)

ii
,

and from (36) and (37),

δi = lim
N→+∞

(

1− 1

Ni

)(

(I − P )−1u
)

ii
, for i = 0, 1.

The calculation of these limits as functions of the population parameters M,n and P can

be done using a software like Maple and we find that

δ0 =
−P +Mn+ n−M

Mn−M + 1− 2P + nP

δ1 =
1− P +Mn−M

Mn−M + 1− 2P + nP
,

while the expressions for γ0 and γ1 are given in Appendix A.2.

Note that, as expected, in the special case when n = 2, using the proper parameter rescal-

ings, these results match the first order approximation for the fixation probability of a single

mutant in an asymmetric two-deme linear game model (Ladret and Lessard, 2008).

On the other hand, note that when n = 2, assuming identical game matrices (W0 = W1 =

W ) and identical deme sizes (P = 1/2), (60) leads to

C0 = (pA − pB) ·WpB +
(1

3
+

1

12(M + 1)

)

(pA − pB) ·W (pA − pB),

in accordance with the first order approximation of the fixation probability of a single mu-

tant in a (symmetric) finite island linear game model with 2 demes (Ladret and Lessard,

2007, 2008).
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5 Game dynamics in an infinite continental island model

population

The case where the backward migration matrix is constant and the selection intensity, s, is

of order 1/N as N goes to infinity, corresponds to a strong-migration limit. In this case,

it follows from Nagylaki (1980) that, up to a rescaling of time with respect to the effective

population size, which depends on the pattern of migration, the frequency of mutant type A

in each deme converges in probability to the frequency of A in the whole population averaged

with respect to the stationary distribution of the migration matrix, denoted by Z (see equ.

6), and this averaged frequency converges in distribution to the usual diffusion process in a

panmictic population.

In this section, we are concerned with the case where the sizes of the continent and of

the islands are infinite. Moreover, we suppose that the relative size of the continent is equal

to 0 < P < 1 and that the migration rates, m0 and m1, are kept constant as the selection

intensity s goes to 0, while time is measured in units of 1/s generations. Note that in the

special case when n = 2, this model corresponds to the infinite two-deme population model

considered in Ladret and Lessard (2008). Here, we generalize their approach to study the

infinite n-deme continental island model. Let x(τ) = (x0(τ), x1(τ), . . . , xn−1(τ)) denote the

frequency vector of the mutant type A in deme 0 and deme i, i = 1, . . . , n−1 at time τ = ts.

Then, it follows from (6) that

x(τ + s) = Mx(τ) + sΦ(Mx(τ)) + o(s), (61)

where

Φ(x) =











Φ0(x)

Φ1(x)

· · ·
Φn−1(x)











, (62)

in which

Φi(x) = xi(1− xi){xi(pA − pB) ·WipA + (1− xi)(pA − pB) ·WipA}, (63)

for x = (x0, x1, . . . , xn−1), with 0 ≤ xi ≤ 1. In the s→ 0 limit, we find, assuming continuity,

that

x(τ) = Mx(τ). (64)

Therefore, we obtain

x(τ) = z(τ)











1

1

. . .

1











, (65)

where

z(τ) =

n
∑

i=0

uixi(τ)
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is the averaged frequency of A with respect to the stationary distribution (u0, u1, . . . , un−1)

for the backward migration matrix M. Now, dotting both sides of Equation (61) with

(u0, u1, . . . , un−1) yields

z(τ + s) = z(τ) + sz(τ)(1− z(τ))

×
{

(1− z(τ))(pA − pB) · (
n−1
∑

i=0

uiWi)pB + z(τ)(pA − pB) · (
n−1
∑

i=0

uiWi)pA

}

+o(s). (66)

Consequently, if we divide (66) by s and let s go to 0, we derive the following differential

equation

dz(τ)

dτ
= z(τ)(1− z(τ))

{

(pA−pB) · (
n−1
∑

i=0

uiWi)pB + z(τ)(pA−pB) · (
n−1
∑

i=0

uiWi)(pA−pB)
}

.

(67)

This is the modified replicator equation for two types in the case of an infinite n-deme

continental island population. Note that in the special case when n = 2, (67) reduces to

the modified replicator equation established in Ladret and Lessard (2008) in the case of an

infinite two-deme population. Note that (67) corresponds to the classical replicator equation

(see, e.g., Hofbauer and Sigmund, 1998, and references therein) for a linear game with game

matrix
∑n−1

i=0 uiWi in a panmictic population with z(τ) interpreted as the frequency of A in

the population.

An evolutionarily stable strategy (ESS) as originally conceived by Maynard Smith and

Price (Maynard-Smith and Price, 1973; Maynard-Smith, 1982) is a strategy p which, when

almost fixed in the population cannot be invaded by any alternative mutant strategy, p′ 6= p,

when in a low enough frequency. In fact, p is an evolutionarily stable strategy (ESS) if

the replicator equation that describes the population dynamics leads to the elimination of

the mutant strategy. Therefore, we deduce from Equation (67) that strategy pB is evolu-

tionarily stable for the current continental island linear game model, with game matrices

(W0,W1, . . . ,Wn−1) and stationary distribution (u0, u1, . . . , un−1) with respect to the back-

ward migration matrix, if and only if

(i) (pA − pB) · (
n−1
∑

i=0

uiWi)pB ≤ 0, (68)

or, in case of equality in (i),

(ii) (pA − pB) · (
n−1
∑

i=0

uiWi)(pA − pB) < 0, (69)

for every pA 6= pB . Thus, owing to (68), we find that pB is an ESS for the game matrix

W =
∑n−1

i=0 uiWi (Maynard Smith and Price, 1973; Maynard Smith, 1974). Note that pB

is also convergence stable (Christiansen, 1991, and references therein) which means that

strategies successively closer to it can invade a population using any nearby strategy.
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6 Conditions against replacement in a finite continental

island model population

Let us now go back to the finite population model under weak selection. As defined in

Nowak et al. (2004), selection favours (opposes, respectively) A replacing B if the fixation

probability of a single mutant A is greater (lower, respectively) than its value in the absence

of selection, that is, u(s) > u0/N0 (u(s) < u0/N0, respectively) for s > 0. It follows from

Equation (60), that provided selection is weak enough and pA is different but close enough

to pB , selection opposes A replacing B if and only if either

(i) (pA − pB) · (u0δ0W0 + (1− u0)δ1W1)pB ≤ 0, (70)

or, in the case of equality in (i),

(ii) (pA − pB) · (u0γ0W0 + (1− u0)γ1W1)(pA − pB) < 0. (71)

This condition generalizes the one obtained in the case of a continental island model

with n = 2 demes (Ladret and Lessard, 2008) to the case of an n-demes continental island

model.

Note that if condition (70-71) holds for every pA 6= pB , close enough to pB , it will be

met for every pA 6= pB . However, if (70-71) holds for every pA 6= pB , it is not sufficient to

ensure that the probability of fixation of A remains lower than u0/N0, for all pA 6= pB . This

will occur if pB has all positive components, since in this case, an equality holds in (i) for all

pA 6= pB . On the other hand, if pB has some null components, then a strict inequality in

(i) can hold for some pA 6= pB which has at least one positive component corresponding to

a null component of pB . Therefore, in case the expression on the left-hand side of inequality

(71) is positive, pA has to be close enough to pB to make sure that

(pA−pB) ·(u0δ0W0+(1−u0)δ1W1)pB+(pA−pB) ·(u0γ0W0+(1−u0)γ1W1)(pA−pB) < 0.

(72)

In other words, as long as selection is weak enough, a resident strategy pB is selectively

favored against replacement by any alternative mutant strategy pA, if pB satisfies condition

(70-71) and makes use of all pure strategies; or by any alternative mutant strategy pA using

the same subset of pure strategies as pB and any mutant strategy pA close enough to pB

using some new pure strategies, if pB meets condition (70-71) and uses a strict subset of

pure strategies.

Note that, in general, u0γ0W0 + (1 − u0)γ1W1 differs from u0δ0W0 + (1 − u0)δ1W1.

Thus, as already mentioned in Ladret and Lessard (2008) in the particular case of a two-
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deme continental island model, if condition (70-71) is met for every pA 6= pB , this does

not mean that pB is an ESS for some game matrix. In particular, this does not im-

ply that pB is an ESS for the infinite-n-deme continental island linear-game model with

game matrices (W0,W1, . . . ,W1) and stationary distribution of the backward migration ma-

trix (u0, . . . , un−1), or equivalently, for the panmictic linear game model with game matrix

u0W1+
∑n−1

i=1 uiW1 = u0W0+(1−u0)W1 in a panmictic population. (See Ladret and Lessard

(2008), for an example of a two-deme continental island model in a finite population with

a resident strategy, pB , whose replacement by any other strategy pA 6= pB is opposed by

weak selection, even though pB is not an ESS for the game matrix u0W0 + (1 − u0)W1).

Conversely, a resident strategy pB that is an ESS for u0W0 + (1 − u0)W1, does not nec-

essarily meet the two-fold condition (70-71) and thus, is not necessarily selectively favored

against replacement by any close enough mutant in the case of a finite population following

an n-deme continental island model, as illustrated in another example in Ladret and Lessard

(2008) in the special case when n = 2.

As a consequence, as already specified in the case of a two-deme continental island model

with distinct game matrices (Ladret and Lessard, 2008), and unlike what happens in the

case of a panmictic population (Lessard, 2005; Lessard and Ladret, 2007) or in the case of a

finite island model with identical game matrices, deme sizes and migration rates (Ladret and

Lessard, 2007), conditions for strategies to be favored against replacement by weak selection

in an n-deme continental island linear-game model for a finite population, even large, do not

generally translate, unless some specific conditions are satisfied as identical game matrices

(W0 =W1 =W ), into classical ESS conditions based on a single game matrix.

Note that, even though in the context of the infinite n-deme continental island model,

a strategy pB that is an ESS for u0W0 + (1 − u0)W1 is convergence stable (Christiansen,

1991), in the finite population scenario with distinct game matrices (W0 6= W1), it may

occur that selection even opposes the fixation of mutants that would bring the population

closer to a strategy satisfying (70-71) in a population using a close enough strategy. This

is illustrated in an example in Ladret and Lessard (2008) in the framework of a two-deme

continental island linear games model. On the other hand, if a strategy pB is an ESS for

the game matrix u0W0 + (1 − u0)W1, then weak selection will favor a mutant strategy pA

closer to it replacing a resident nearby strategy pC , while it may favor pA replacing pB .

This is also illustrated in another example in Ladret and Lessard (2008), in the context of

a two-deme continental island linear games model.

7 Extension of the one-third law

In this section, we focus on the case when both strategies are best replies to themselves (i.e.,

when they are strict Nash equilibria) with respect to the game matrices, and we investigate

conditions under which the replacement of a resident strategy by a mutant strategy is se-

lectively favored. In particular, we see how the one-third law (Nowak et al., 2004) and its
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two-deme continental island linear game model extension (Ladret and Lessard, 2008) can

be generalized to a continental island linear game model with a total number of n demes.

7.1 Coordination games

Suppose that pA and pB are pure strategies of the form pA = (1, 0) and pB = (0, 1)

respectively, with respect to the 2× 2 game matrices

W0 =

(

a0 b0

c0 d0

)

and W1 =

(

a1 b1

c1 d1

)

, (73)

with a0 > c0, a1 > c1, d0 > b0, and d1 > b1, which means that pA and pB are best replies

to themselves for both W0 and W1. We know from the deterministic replicator equation in

an infinite population, (67), that there exists a unique unstable equilibrium at a frequency

of A averaged with respect to the stationary distribution (u0, . . . , un−1) of the backward

migration matrix, which is equal to

z∗ =
u0(d0 − b0) + u1(d1 − b1)

u0(a0 − c0 − b0 + d0) + u1(a1 − c1 − b1 + d1)
. (74)

When the population is finite, selection, provided it is weak enough, will favor A replacing

B if inequality (72) is reversed, which is equivalent to

z̃ =
u0δ0(d0 − b0) + (1− u0)δ1(d1 − b1)

u0γ0(a0 − c0 − b0 + d0) + (1− u0)γ1(a1 − c1 − b1 + d1)
< 1. (75)

This inequality extends the one-third law to the case of a continental-island linear-game

model with n demes. In the special case n = 2, (75) reduces to the extended one-third law

for an asymmetric two-deme linear game model (Ladret and Lessard, 2008).

Note that, as already mentioned in the special case of a continental island model with

n = 2 demes (Ladret and Lessard, 2008), condition (75) does not translate in terms of the

unstable frequency of A in an infinite population, z∗, in the form z∗ < C, in contrast to

what happens in a panmictic population (we refer to Nowak et al., 2004, for the case of a

Moran model; Lessard, 2005, and Imhof and Nowak, 2006, for a Wright-Fisher population

model; Lessard, 2007, for a more general model of reproduction in which a fraction of the

population is replaced at dicrete time steps; Traulsen at al., 2006, for pairwise comparison

updating; Lessard and Ladret, 2007, for an extended Cannings exchangeable model), or in

the case of a symmetric island model with identical game matrices (Ladret and Lessard,

2007).

Consequently, in general, when considering an n-deme continental island model with

different game matrices, W0 6= W1, and two strategies pA and pB that are best replies

to themselves with respect to both W0 and W1, the conditions under which a single type
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A mutant is selectively advantageous in a finite population can not be directly related to

conditions regarding the unstable equilibrium frequency of A (or, equivalently, in terms of

the basin of attraction of B) in an infinite population.

7.2 Coordination games with identical game matrices

Let us focus on the case when the game matrices are identical, that is,

W0 =W1 =W =

(

a b

c d

)

, (76)

with strategies pA = (1, 0) and pB = (0, 1) that are best replies to themselves with respect

to W (a > c and d > b). In this context, z∗ is equal to x∗ = (d − b)/(a − c − b + d), the

equilibrium frequency of A in an infinite panmictic population with game matrix W , and

z∗ is proportional to z̃ so that (75) becomes

z∗ = x∗ =
(d− b)

(a− b− c+ d)
<
u0γ0 + (1− u0)γ1
u0δ0 + (1− u0)δ1

= Λ. (77)

Note that this inequality generalizes the one obtained in the case of a two-deme continental

island model (Ladret and Lessard, 2008) to include a total number of n demes. This in-

equality means that if condition (77) is met, then selection favors a single mutant A taking

over the whole population.

7.2.1 Symmetric structure with identical deme sizes

The particular case of a symmetric population structure with identical deme sizes (P = 1/n,

N0 = N1 = . . . = Nn−1) will be referred to as the symmetric continental island model. Note

that in this case, for any island i ∈ {1, . . . , n− 1}, the backward migration probabilities m0i

and mi0 are identical and satisfy m0i = mi0 = nM
2cN . In this context, Equation (77) can be

written as

x∗ =
(d− b)

(a− b− c+ d)
< Λ =

1

3
+

(n− 1)

3n2

f(M,n)

g(M,n)
(78)

where

f(M,n) = n2(n+ 2)(n− 1)M3 + n(5n2 + 4n+ 4)M2 + (10n2 + 8n+ 8)M + 8n, (79)

g(M,n) = n2(n+2)M4+2(n3+5n2+4n+4)M3+4(n+2)(3n+2)M2+8(4+3n)M+16. (80)

Note that when n = 2, (78) reduces to x∗ < 1
3 +

1
12(M+1) , as given in Ladret and Lessard

(2007 and 2008); whereas when evaluated at n = 1, (78) corresponds to the one-third law,

x∗ < 1/3, which holds in a panmictic population and which can be obtained from Lessard
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(2005) and Imhof and Nowak (2006). On the other hand, note from their definition that

functions f and g are nonnegative. Consequently, it follows from (78) that Λ ≥ 1
3 . This

shows that the modified one-third law for the symmetric n-deme continental island model

is always less stringent than the one-third law.

7.2.2 Comparison of the symmetric continental island model with it’s Island

Model counterpart

In this section, we compare the symmetric continental island linear game model with identi-

cal game matrices W0 =W1 =W to the Wright’s island linear game model given in Ladret

and Lessard (2007). The two models share the same game matrix, W , and the same geo-

graphic structure (n demes of equal sizes equal to cN
n
). They only differ in the migration

scenario, which, in the latter model, occurs according to a Wright’s island scenario. More

precisely, in the Wright’s island linear game model, let mIsl denote the probability that

an individual from any given deme emigrated from a different deme in the previous gen-

eration and let mij,Isl stand for the probability that an individual from deme i emigrated

from deme j 6= i, in the previous generation. Then, for any i, j ∈ {1, . . . , n}, with i 6= j,

mij,Isl = mIsl/(n− 1). Moreover, we suppose that the Wright’s island model and the sym-

metric continental island model have the same average expected number of migrants per

generation after population regulation. Since in the continental island model this number is

(n− 1)M , where M refers to the migration rate in the continental island model, it implies

that mIsl = (n−1)M
Nc

. Using this notation, we know that in the context of a Wright’s Is-

land linear game model with game matrix W , the condition for selection to favor a mutant

strategy A replacing a resident strategy B, takes the form

x∗ < ΛWIsland =
1

3
+

1

6(M + 1)

(

1− 1

n

)

, (81)

as shown in Ladret and Lessard (2007). In the context of the symmetric continental island

model with game matrix W , we have seen that this condition takes the form

x∗ < Λ,

where Λ is given in (78). This enables us to compare the two models by comparing their

respective threshold frequency values, Λ and ΛWIsland. From (78) and (81), we derive that

Λ = 1
3 + 1

6(M+1)

(

1− 1
n

)

+
(n− 1)(n− 2)M(2M + 2 +Mn)φ(M,n)

6n2(M + 1)ψ(M,n)

= ΛWIsland +
(n− 1)(n− 2)M(2M + 2 +Mn)φ(M,n)

6n2(M + 1)ψ(M,n)
, (82)

where

ψ(M,n) =2M3n3 +M4n3 + 10M3n2 + 12M2n2 + 2M4n2 + 24Mn+ 32M2n+ 8M3n

+ 16 + 16M2 + 32M + 8M3, (83)
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and

φ(M,n) = (M2n2 − 2n− 4). (84)

Since,

φ(M,n) =M2
(

n− 1 +
√
1 + 4M2

M2

)(

n+

√
1 + 4M2 − 1

M2

)

, (85)

we can write

Λ− ΛWIsland = (n− 1)(n− 2)
(

n− 1 +
√
1 + 4M2

M2

)

γ(M,n), (86)

where γ(M,n) is given by

γ(M,n) =
M3(2M + 2 +Mn)

(

n+
√
1+4M2−1

M2

)

6n2(M + 1)ψ(M,n)
.

Note that γ(M,n) only takes positive values. Thus, Λ − ΛWIsland is proportional to, and

has the same sign as (n− 1)(n− 2)
(

n− 1+
√
1+4M2

M2

)

.

As a consequence, when n = 1 or n = 2, it follows from Equation (86), that Λ = ΛWIsland.

This is not surprising, since in both cases, the continental island model and the Wright’s

island model are the exact same model : when n = 1, they correspond to a linear game in

a panmictic population and Λ = 1
3 (Lessard, 2005; Imhoff and Nowak, 2006; Lessard and

Ladret, 2007); while when n = 2, the continental island model with two demes and the

Wright’s island model with two demes are identical and Λ = 1
3 +

1
12(M+1) , as given in Ladret

and Lessard (2007, 2008).

Now, let us focus on the case when n ≥ 3. In this case, for any migration rateM > 0 and

any integer n, Λ − ΛWIsland has the same sign as (and is proportional to) n − 1+
√
1+4M2

M2 .

Thus, we have







Λ > ΛWIsland ⇔ n > n0(M) :=
1 +

√
1 + 4M2

M2

Λ = ΛWIsland ⇔ n = n0(M),

or, equivalently






Λ > ΛWIsland ⇔M > M0(n) :=

√
2n+ 4

n
,

Λ = ΛWIsland ⇔M =M0(n).

Note, from their definition, that n0(M) and M0(n) are strictly decreasing functions of

M and n, respectively (Fig. 1). Moreover, n0(M) < 3 if and only if M >
√
10/3. As a

consequence, when the migration rate M is fixed and is greater than
√
10/3, we find that

Λ is always larger than ΛWIsland (whatever the number of demes, n ≥ 3, is). On the other

hand, whenM ≤
√
10
3 , then n0(M) ≥ 3. Thus, for a fixedM , only whenM ≤

√
10
3 , is n0(M)

a critical value for n (with Λ > ΛWIsland if and only if n > n0(M)). Moreover, the only

case when there exists a number of demes n, other than 1 or 2, for which Λ = ΛWIsland, is
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when both M ≤
√
10
3 and n0(M) is an integer (in which case this number is n = n0(M)).

On the other hand, for any fixed number of demes n ≥ 3, M0(n) always plays the role of

a threshold value for M (such that Λ > ΛWIsland if and only if M > M0(n)). Moreover,

when n ≥ 3 is fixed, there always exists a migration rate at which Λ = ΛWIsland, namely

M =M0(n).

n0(M)

M=0.01 10000 + 200
√
2501 ≃ 20001.9998

M=0.1 100 + 20
√
26 ≃ 201.98

M=0.5 4 + 4
√
2 ≃ 9.657

M=1
√
5 + 1 ≃ 3.236

M=10 1/100 + (1/100)
√
401 ≃ 0.21025

M=100 ≃ 0.02

Table 1: Values taken by n0(M) for different values of M ∈ [0.01, 100].

M0(n)

n=3 (1/3)
√
10 ≃ 1.054092553

n=10 (1/5)
√
6 ≃ 0.4898979486

n= 50 (1/25)
√
26 ≃ 0.2039607806

n=100 (1/50)
√
51 ≃ 0.1428285686

n=500 (1/250)
√
251 ≃ 0.06337191808

Table 2: Values taken by M0(n) for different values of n ∈ [3, 500].

This result is illustrated in Fig. 2 which represents numerical evaluations of the threshold

frequency Λ in the case of the continental island model with equal deme sizes (P = 1/n) as

a function of the migration rate, M , and the number of demes, n, versus the threshold value

for its Wright’s island model counterpart, ΛWIsland. Fig. 3 plots a projection of Fig. 2 for

four fixed values of M : M = 0.1, M = 0.5, M =
√
10/3 and M = 10. For those values

of M (as for any M > 0), Λ = ΛWIsland when n = 1 or n = 2. When M =
√
10
3 ≃ 1.054,

the critical value for the total number of demes is n0(
√
10
3 ) = 3, and Λ > ΛWIsland if and

only if n > 3; while Λ = ΛWIsland when n = 1, n = 2 or n = 3. When M = 10, there is no

critical value for n sinceM >
√
10
3 . In this case, Λ > ΛWIsland for all n ≥ 3; WhenM = 0.1,

the critical value for n is n0(0.1) ≃ 201.98 (Table 1) which means that Λ > ΛWIsland if

and only if n ≥ 202. Moreover, since n0(0.1) is not an integer, Λ = ΛWIsland only occurs

when n = 1 or n = 2. Similarly, when M = 0.5, since n0(0.5) ≃ 9.657 (Table 1), we find

that Λ > ΛWIsland if and only if n ≥ 10, and Λ = ΛWIsland if and only if n = 1 or n = 2

(since n0(0.5) is not an integer). Fig. 4 represents a projection of Fig. 2 for three fixed

values of n : n = 3, n = 10 and n = 50. In those cases, the corresponding critical value

for M (which exists for any n ≥ 3) is M0(3) =
√
10/3 ≃ 1.054, M0(10) =

√
6/5 ≃ 0.49

and M0(50) =
√
26/25 ≃ 0.204, respectivly (Table 2) . We see that given those number of

demes (as it is the case for any n ≥ 3), Λ > ΛWIsland if and only if M is greater than the

corresponding critical value, M0(n) (with an equality if and only if M =M0(n)).
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As reminded earlier, in the context of the IPD with TFT versus AllD, the frequency x∗

decreases to zero with the number of rounds (see, e.g., Nowak et al., 2004). As a conse-

quence, a symmetric continental island model with n ≥ 3 demes and a fixed migration rate

M greater than
√
10
3 will require less rounds of the game than its Wright’s Island model

counterpart to ensure that cooperation fixates in the population with a selective advantage;

whereas, in the case of a fixed migration rate M ≤
√
10
3 , this will be the case provided the

number of demes is large enough (namely, n > n0(M) ≥ 3). On the other hand, if the num-

ber of demes n ≥ 3 is fixed, a symmetric continental island model will require less rounds of

the game than its Wright’s Island model counterpart provided M is not too small (namely,

M > M0(n)), to ensure that selection favors cooperation taking over the whole population.

7.2.3 Numerical comparisons

In this section, still in the framework of identical game matrices (W = W0 = W1), we

compare the asymmetric continental island model with unequal deme sizes to its symmetric

model counterpart with equal deme sizes. Both models share the same migration rate, M ,

the same number of demes, n, and the same game matrix, W . They only differ in P , the

proportion of the total population that lives in the continent (P = 1/n, in the case of equal

deme sizes; while P 6= 1/n, in the case of unequal deme sizes). In this context, condition

(75) for selection to favor a mutant strategy A replacing a resident strategy B, takes the

form x∗ < Λ, as defined in (77), for the general model, and in (78), in the case of equal

deme sizes. Thus, here again, the two models are compared by comparing their respective

threshold value, Λ. On the other hand, comparisons are also made with the one-third law,

x∗ < 1/3, which holds when the population is panmictic.

Fig. 6 shows numerical evaluations of the threshold frequency Λ as a function of P ,

the proportion of individuals that live on the continent and n, the number of demes, for

three different values of the migration rate M (M = 0.1, M = 1 and M = 10) and n

ranging from 2 to 50, versus the reference value of 1/3 obtained in the case of a panmic-

tic population and the value taken by Λ in the case of a symmetric population structure

corresponding to P = 1/n. On the other hand, Figs. 9 to 11 plot projections of Fig. 6

that represent Λ as a function of P , for fixed values of n ranging between 2 and 8, when

M = 1, M = 10 and M = 0.1, respectively. Whereas, Figs. 12 to 14 plot projections of Fig.

6 for fixed values of n (n = 3, n = 4 and n = 10, respectively), forM ranging from 0.01 to 10.

In the remainder of this section, we shall denote by Λ(M,n, P ), the threshold frequency

value Λ corresponding to an asymmetric continental island model with n demes, in which the

proportion of individuals in the population living on the continent is P , and the migration

rate is M ; while Λ(M,n, 1/n) will refer to the threshold frequency value of its symmetric

model counterpart.
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7.2.4 Comparisons with the symmetric model

The case when the continental island model consists in only two demes, one continent and

one island (n = 2), which is treated in Ladret and Lessard (2008), is illustrated again here

in Fig. 9 (a), Fig. 10 (a) and Fig. 11 (a), in the case when M = 1, M = 10 and M = 0.1,

respectively. In this context, as shown in Ladret and Lessard (2008), numerical evaluations

performed forM ranging from 0.1 to 10 (Fig. 6 and 8) suggest that for anyM in that range,

the following equation

Λ(M, 2, P )− Λ(M, 2, 1/2) = 0 (87)

has exactly two roots P ∈ [0, 1] : P = 1/2 and P = P ∗(M, 2), for some 0 ≤ P ∗(M, 2) < 1/2.

Moreover, if we consider a model in which the proportion of individuals living on the conti-

nent, P , lies in ]P ∗(M, 2), 1/2[, then its threshold frequency Λ = Λ(M, 2, P ) is larger than

the one of its symmetric model counterpart, i.e. Λ(M, 2, P ) > Λ(M, 2, 1/2). Whereas, if P

is either strictly smaller than P ∗(M, 2) or strictly larger than 1/2, then the reverse is true,

i.e. Λ(M, 2, P ) < Λ(M, 2, 1/2). On the other hand, for any fixed value of M in that range,

Λ is maximized at some P = P ∗∗(M, 2) ∈]P ∗(M, 2), 1/2[ and Λ increases with P from 1/3

until it reaches its maximum (which is smaller than 1/2) at P = P ∗∗(M, 2), and then Λ

decreases with P , back to 1/3 (see Ladret and Lessard, 2008).

In the more general case of a continental island model with a total number of demes

equal to n, numerical evaluations performed for M ranging from 0.01 to 10 and n ranging

from 2 to 50 (Figs. 6 to 11), suggest that for any fixed value of M in that range, as long

as n remains small enough, i.e. less than or equal to some integer n∗(M) ≥ 2, the following

equation

Λ(M,n, P )− Λ(M,n, 1/n) = 0 (88)

has exactly two roots P ∈ [0, 1] : P = 1/n and P = P ∗(M,n), for some 0 ≤ P ∗(M,n) < 1/n.

In this case (i.e., n ≤ n∗(M)), we find that the threshold frequency Λ is larger than its sym-

metric model counterpart, i.e. Λ(M,n, P ) > Λ(M,n, 1/n), if and only if the proportion of

individuals living on the continent, P , lies in ]P ∗(M,n), 1/n[. Moreover, Λ is maximized at

some P = P ∗∗(M,n) ∈]P ∗(M,n), 1/n[ and Λ increases from Λ(M,n, 0) = 1/3+ (n−2)
3(M+2)(n−1)

to its maximum (which is smaller than 1/2) until P reaches P ∗∗(M,n), and then Λ decreases

with P , back to 1/3. Note that numerical evaluations performed for M ranging from 0.1 to

10 suggest that n∗(M) is a decreasing function of M and that 2 ≤ n∗(M) ≤ 4, for M in

that range (Figs. 6, 7, and Figs. 9 to 11 and Table 3).

On the other hand, if the number of demes n is larger than n∗(M), then Equation (88)

has a single root in [0, 1], namely, P = 1/n. In this case, Λ is greater than its symmetric

model counterpart, i.e. Λ(M,n, P ) > Λ(M,n, 1/n), if and only if the size of the continent

is smaller than the size of each island, i.e. P < 1/n. Furthermore, when n > n∗(M),

numerical evaluations suggest that when both the number of demes, n, and the migration

rate, M , are fixed, depending on wether the total number of demes is small enough or not,

there are two types of variation modes for Λ(M,n, P ), as a function of P . More precisely,

there exists an integer n∗∗(M) ≥ n∗(M), such that if n ∈ [n∗(M);n∗∗(M)], then Λ(M,n, .)

30



increases with P from Λ(M,n, 0) = 1/3 + (n−2)
3(M+2)(n−1) until its reaches its maximum lo-

cated at P = P ∗∗(M,n) ∈]0; 1/n[, and then it decreases back to 1/3; whereas, when the

number of demes n is greater than n∗∗(M), Λ(M,n, .) is a decreasing function of P that

decreases from Λ(M,n, 0) = 1/3 + (n−2)
3(M+2)(n−1) to 1/3 (and the maximum for Λ is located

at P ∗∗(M,n) = 0). Numerical evaluations suggest that n∗∗(M) is a decreasing function of

M that does not exceed 7 when M ranges between 0.1 and 10 (Fig. 7 and Table 3).

Let us focus on the case M = 1 (Fig. 6a, 6b, 9, and Figs. 12c, 13c and 14c). In this

context, we find that n∗(1) = 2, which means that the only value of n for which Equation

(88) has two roots, 1/n and P ∗(1, n) < 1/n, is n = 2. In this case (M = 1, n = 2), as

noted in Ladret and Lessard (2008), this extra root is P = P ∗(1, 2) ≃ 0.224 and we have

Λ(1, 2, P ) > Λ(1, 2, 1/2) = 3/8, which means a larger threshold value for x∗ than in the

symmetric model, if and only if 0.224 < P < 0.5. Moreover in this case, numerical evalu-

ations show that the maximum value for Λ is reached when P = P ∗∗ = P ∗∗(1, 2) ≃ 0.349

and is equal to Λ(1, 2, P ∗∗) ≃ 0.379. On the other hand, as soon as n ≥ 3, we find that

P = 1/n is the only root of Equation (87) and Λ(1, n, P ) > Λ(1, n, 1/n) if and only if

P < 1/n: for n = 3, the value of Λ at P = 1/3, which corresponds to the case of equal

deme sizes, is Λ(1, 3, 1/3) = 5887/15147 ≃ 0.388 and the maximum for Λ is reached at

P ∗∗(1, 3) ≃ 0.137 and is equal to Λ(1, 3, P ∗∗) ≃ 0.395. Moreover, Λ increases with P from

7/18 ≃ 0.3889, which is the limit of Λ(1, 3, P ) as P goes to 0 and whose value is slighty

larger than Λ(1, 3, 1/3) ≃ 0.38866, to 0.395 until P reaches P ∗∗(1, 3) and then decreases

back to 1/3. When the model has n = 4 demes, the value of Λ at P = 1/4 (symmet-

ric model) is Λ(1, 4, 1/4) = 2153/5424 ≃ 0.39694 and the maximum for Λ is reached at

P ∗∗(1, 4) ≃ 0.0182 and is equal to Λ(1, 4, P ∗∗) ≃ 0.40753. Moreover, Λ increases with

P from Λ(1, 4, 0) = 11/27 ≃ 0.4074 (which is greater than Λ(1, 4, 1/4)) until it reaches

Λ(1, 4, P ∗∗) when P hits P ∗∗(1, 4) and then it decreases with P back to 1/3; On the other

hand, as soon as n ≥ 5, numerical evaluations suggest that Λ(1, n, P ) is a decreasing func-

tion of P whose maximum is reached at the limit when P goes to zero (P ∗∗(1, n) ≃ 0). As

a consequence, when M = 1, numerical evaluations indicate that n∗∗(1) = 4.

Similarly, in the case M = 0.1, we find that n∗(0.1) = 4 and n∗∗(0.1) = 7; while in

the case M = 10, numerical evaluations suggest that n∗(10) = 2 and n∗∗(10) = 3. When

M = 0.01, we have n∗(0.01) = 7 and n∗∗(0.01) = 17; while, when M = 100, we have

n∗(100) = 2 and n∗∗(100) = 3 (Table 3).

n∗(M) n∗∗(M)
M=0.01 7 17
M=0.1 4 7
M=1 2 4
M=10 2 3
M=100 2 3

Table 3: Values taken by n∗(M) and n∗∗(M), for different values of M ∈ [0.01, 100].
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More generally, numerical evaluations made for M ranging from 0.1 to 10 (Fig. 6, 7

and Fig. 9 to 14), suggest that as long as n remains small enough, i.e. 2 ≤ n ≤ n∗(M)

(with n∗(M) ≤ 4 for M ∈ [0.1; 10]), condition for the replacement of the resident strict

Nash equilibria pB by the other mutant strict Nash equilibria pA is less stringent in an

asymmetric model (P 6= 1/n), in which the size of the islands exceeds the size of the con-

tinent, provided it is not too much larger (P ∗(M,n) < P < 1/n); On the other hand, for

larger values of n, i.e. n > n∗(M), this condition is met as soon as the size of the islands

exceeds the size of the continent (P < 1/n). Numerical evaluations show that similar re-

sults hold whenM ranges from 0.01 to 100 (with n∗(M) ≤ 7 forM ∈ [0.01; 100]) (not show).

Furthermore, numerical evaluations (Fig. 6 and Figs. 9 to 11) suggest that for any

fixed migration rate, M , and for any number of demes, n, provided it remains small

enough (namely, provided n ≤ n∗∗(M)), there exists an ”optimal” relative continent size,

P = P ∗∗(M,n) ∈]0, 1/n[, at which the condition for the replacement of the resident strict

Nash equilibria pB by the other mutant strict Nash equilibria pA is the least stringent. In

other words, given a migration rate M and a total number of demes n ≤ n∗∗(M), the model

in which the proportion of individuals living on the continent is equal to P = P ∗∗(M,n),

is the one for which the threshold value for x∗ is maximized, i.e. Λ(M,n, P ∗∗(M,n)) =

maxP∈[0,1] Λ(M,n, P ). On the other hand, if the fixed number of demes, n, is larger than

n∗∗(M), then the maximum for Λ(M,n, P ) is reached at the limit when P goes to zero,

i.e P ∗∗(M,n) = 0, since in this case, numerical evaluations suggest that Λ(M,n, P ) is a

decreasing function of the relative continent size, P .

Fig. 15 (a) shows numerical evaluations of the maximum threshold frequency Λ∗∗(M,n) =

maxP∈[0,1] Λ(M,n, P ) = Λ(M,n, P ∗∗(M,n)) as a function of the number of demes n and the

proportion of individuals living on the continent at which it is reached, P ∗∗(M,n), for three

different values of the migration rate (M = 0.1, M = 1 and M = 10), versus Λ(M,n, 1/n),

the value taken by Λ in its symmetric model counterpart that corresponds to P = 1/n. On

the other hand, Fig. 15 (b) plots projections of Fig. 15 (a) that represent Λ∗∗(M,n) as a

function of n, for M = 0.1, M = 1 and M = 10; while 15 (c) plots projections of Fig. 15 (a)

that represent P ∗∗(M,n) as a function of n, for the same three values of M . We see that for

a fixed number of demes, n, the maximum value taken by Λ when the migration parameter is

M , Λ∗∗(M,n), and the value taken by Λ in its symmetric model counterpart, Λ(M,n, 1/n),

are both decreasing functions of M (Fig. 15 and Fig. 7). Moreover, we find that as n goes

to infinity, Λ∗∗(M,n) and Λ(M,n, 1/n) share the same limit, which is 1
3 + 1

3(M+2) . More

generally, numerical evaluations (Fig. 5) show that for any fixed number of demes, n, and

any fixed P provided it remains small enough (at least for P smaller than or equal to 1/n),

Λ is a decreasing function of M . Note, however, that this behavior does not hold for larger

values of P ∈ [0, 1] (Fig. 5).

Let us go back to IPD with TFT versus AllD. Since in this framework, x∗ decreases

to zero with the number of rounds (see, e.g., Nowak et al., 2004), we find that for a fixed

migration rate, M , depending on the value of the number of demes, n, there are two types
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of conditions, regarding P , under which an asymmetric continental island population model

will require less rounds of the game than its symmetric counterpart to ensure that coop-

eration will take over the population with a selective advantage : if the number of demes

remains small enough (i.e. n ≤ n∗(M)), this will happen if P is not too small and remains

below 1/n, as it is already known in the case of a two-deme (n = 2) continental island model

(see Ladret and Lessard, 2008); whereas for larger values of n (i.e. n > n∗(M)), it will only

require P to be smaller than 1/n (i.e., it will only require the continent’s size to be smaller

than that of the islands).

7.2.5 Comparisons with the one-third law

For a fixed number of demes n ≥ 2, numerical evaluations performed for M ranging from

0.1 to 10 (Figs. 5 to 15) indicate that 1/3 < Λ(M,n, P ) ≤ 1/2 for every P ∈]0, 1[. Similar

results hold when M ranges between 0.01 to 100 (not shown). In particular, this implies

that condition (77) is less stringent than the one-third law.

Going back to the case of TFT versus AllD, a continental island linear-game model with

identical game matrices will require less rounds of the game than a panmictic model to

ensure that cooperation invades the whole population with a selective advantage.

(a) 0.5 ≤ M ≤ 5 (b) 2 ≤ n ≤ 50

Figure 1: (a) Critical value n0(M) = (1+
√
1 + 4M2)/M2 as a function ofM , withM ranging from

0.5 to 5. The point on the graph whose M -value is M =
√
10/3 (vertical dots) satisfies n0(M) = 3

(horizontal dots); (b) Critical value M0(n) =
√

2
n
+ 4

n2 as a function of n, with n ranging from 2

to 50.
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(a) M ≤
√
10
3

(b) M ≥
√
10
3

Figure 2: Threshold Λ in the case of equal deme sizes, i.e. P = 1/n, (solid purple surface) as a

function ofM and n versus it’s Wright’s island model counterpart (cyan lines), i.e. 1
3
+ 1

6(M+1)
(1− 1

n
):

(a) M ranges from 0.1 to
√
10/3 and n from 2 to 200. The black curve is for the case when

n = n0(M) = (1 +
√
1 + 4M2)/M2; (b) M ranges from

√
10/3 to 10 and n from 2 to 200.

8 Discussion

The probability that a single individual using strategy A takes over a population consisting of

individuals using another strategy, B, in the context of a Wright-Fisher panmictic population

of large size, N , under weak frequency dependent selection based on a linear game with game

matrix W and selection intensity s << 1/N << 1, can be approximated using a diffusion

approximation (Lessard, 2005) by

u(s) =
1

N
+ s{(pA − pB) ·WpB +

1

3
(pA − pB) ·W (pA − pB)}+O(s/N).

When the population size N is fixed and the selection intensity s is small enough, a

more precise approximation, derived from a Markov Chain method introduced by Rousset

(2003) that allows to write the first order effect of selection on the probability of fixation as

a function of the expected coalescence time, under neutrality of samples of two and three

individuals, is given by (Lessard and Ladret, 2007)

u(s) =
1

N
+ s(1− 1

N
){(pA − pB) ·WpB +

N

3N − 2
(pA − pB) ·W (pA − pB)}+ o(s),

We also refer to Imhof and Nowak (2006) for an alternative approach, in the context of the

Wright-Fisher model. Note that the fixation probability in the Moran model can be calcu-

lated explicitly and approximated for s small enough (Nowak et al., 2004; Lessard, 2005).

See also Lambert (2006) for a general branching process approach and Lessard (2007) for

34



(a) M = 0.1 (b) M = 0.5

(c) M =
√

10
3

(d) M = 10

Figure 3: Effect of the number of demes, n, on coefficient Λ (solid blue surface) in the case of equal

deme sizes for different values of M : (a) M = 0.1 with n ranging from 1 to 500. The vertical black

dotted line corresponds to n0(0.1) ≃ 201.98 ; (b) M = 0.5 with n ranging from 1 to 20. The vertical

black dotted line is at n = n0(0.5) ≃ 9.66 ; (c) M =
√
10/3 with n ranging from 1 to 20. The black

dotted line corresponds to n0(
√
10/3) = 3; (d) M = 10 with n ranging from 1 to 500. The value

ΛWIsland = 1/3 + 1/(6(M + 1))(1− 1
n
) (magenta dots) is the value of threshold Λ in the case of a

symmetric Wright’s island Model and Λ = 1/3 (horizontal red line) for the panmictic scenario.
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(a) n = 3 (b) n = 10

(c) n = 50

Figure 4: Effect of the scaled migration rate, M , on threshold Λ in the case of equal deme sizes,

i.e. P = 1/n, (solid purple curve) versus Λ = 1
3
+ 1

6(M+1)
(1 − 1

n
) in the Wright’s island scenario

(cyan curve) for various values of the number of demes, n; the vertical black dashed line corresponds

to M = M0(n) =
√

2
n
+ 4

n2 and the horizontal red doted line is 1/3, the value of Λ in the panmictic

scenario: (a) n = 3 and M ranges from 0.1 to 10; (b) n = 10 and M ranges from 0.1 to 10; (c)

n = 50 and M ranges from 0.1 to 2.
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(a) n ≥ 2 (b) n ≥ 3

Figure 5: Threshold Λ as a function of n and P for three different values of M : M = 0.1 (green

solid surface); M = 1 (magenta lines); M = 10 (grey solid surface) versus 1/3 (red dots), the value

taken by Λ in the case of a panmictic population. (a) P ranges from 0 to 1 and n from 2 to 100;

(b) P ranges from 0 to 1 and n from 3 to 100.

more general discrete-time reproduction schemes.

In the case of a finite island model with n ≥ 3 demes of equal size, N , and the same

game matrix within each deme, W , the generalization of the previous Markov chain method

leads to the following approximation for the fixation probability (Ladret and Lessard, 2007)

u(s) =
1

nN
+ s

{

(
1

3
+
γ

δ
)(pA − pB) ·W (pA − pB) + (1− 1

nN
)(pA − pB) ·WpB

}

+ o(s),

(89)

where γ/δ is a coefficient that depends on the population structure parameters, N , m, and n

and whose value ranges from 0 to 1/6. Moreover, in the case where the structured coalescent

(SC) assumptions are met, which requires the deme size, N , to be large and the backward

migration probability, m, to be in the form m = M(n − 1)/Nn, where M is of order 1

so that m is of order 1/N , and under the additional assumption that s << 1/(Nn), this

approximation reduces to (Ladret and Lessard, 2007)

u(s) =
1

nN
+s

{

(1

3
+

1

6(M + 1)
(1− 1

n
)
)

(pA − pB) ·W (pA − pB) + (pA − pB) ·WpB

}

+o(s).

(90)

When the model consists in an asymmetric two-deme linear-game model, in which the

population is subdivided into two demes of respective size N1 and N2, with respective game

matrix W1 and W2, under the structured coalescent scenario (Notohara, 1990; Herbots,

1994, 1997; Wilkinson-Herbots, 1998) which holds when the backward migration rates m1
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(a) M = 1 , n ≥ 2 (b) M = 1 , n ≥ 3

(c) M = 10 , n ≥ 2 (d) M = 10 , n ≥ 3

(e) M = 0.1 , n ≥ 2 (f) M = 0.1 , n ≥ 3

Figure 6: Threshold Λ (brown patched surface) as a function of n and P versus its value in the

case of equal deme sizes (solid purple surface) for different values of M : (a) M = 1 and n ranges

from 2 to 10; (b) M = 1 and n ranges from 3 to 50; (c) M = 10 and n ranges from 2 to 10; (d)

M = 10 and n ranges from 3 to 50; (e) M = 0.1 and n ranges from 2 to 10; (f) M = 0.1 and n

ranges from 3 to 50. The cyan curve represents the intersection of the two surfaces when P = 1/n

(i.e. when the deme sizes are equal).
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(a) n = 3 , M = 0.01 . . . 1 (b) n = 3 , M = 1 . . . 10

(c) n = 4 , M = 0.01 . . . 1 (d) n = 4 , M = 1 . . . 10

(e) n = 10 , M = 0.01 . . . 1 (f) n = 10 , M = 1 . . . 10

Figure 7: Threshold Λ (brown patched surface) versus its value in the case of equal deme sizes

(solid purple surface) for different values of n : (a) n = 3 and M ranges from 0.01 to 1; (b) n = 3

and M ranges from 1 to 10; (c) n = 4 and M ranges from 0.01 to 1; (d) n = 4 and M ranges from

1 to 10; (e) n = 10 and M ranges from 0.01 to 1; (f)n = 3 and M ranges from 1 to 10. The cyan

curve represents the intersection of the two surfaces when P = 1/n (i.e. when the deme sizes are

equal).
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(a) n = 2 , M = 0.1 . . . 1 (b) n = 2 , M = 1 . . . 10

Figure 8: Threshold Λ (brown patched surface) versus its value in the case of equal deme sizes

(solid purple surface) in the case when n = 2 : (a) M ranges from 0.1 to 1; (b) M ranges from 1 to

10.

and m2 are of the form m1 = M1/(4N) and m2 = M2/(4N), where N stands for half

the total population size, 2N = N1 + N2, and N is assumed to be large, with N1, N2 of

order N and M1, M2 of order 1, the fixation probability of a single mutation A initially

introduced in deme 1 can be approximated (Ladret and Lessard, 2008), when selection is

weak (s << 1/N), by

u(s) =
u1
N1

+ s {(pA − pB) · (µ1W1 + µ2W2)(pA − pB) + (pA − pB) · (ν1W1 + ν2W2)pB}+ o(s), (91)

where u1 denotes the first coordinate of (u1, u2) of the stationary distribution of the back-

ward migration matrix M, and coefficients µi, νi are functions which depend on the migra-

tion rates, M1,M2, and the proportion of individuals from deme 1 to the whole population,

e1 := N1/(2N). This result is derived from an adaptation of the direct Markov chain method

and the proof consists in writing the derivative of u(s) evaluated at s = 0 as a function of

the terms
∑

t≥0E0(X
2
i (t)(1 − Xi(t))) and

∑

t≥0E0(Xi(t)(1 − Xi(t))
2), for i = 1, 2, where

Xi(t) is the proportion of individuals using strategy A in deme i at time t and E0 stands for

the expectation under neutrality (s = 0), which are then calculated using a method based

on the coalescent (Kingman, 1982) for a structured population (Notohara, 1990).

In this paper, we have generalized the previous asymmetric two-deme linear game model

to an n-deme continental island linear game model, for which we have calculated the first

order approximation of the fixation probability of a single mutant A initially introduced into

the continent, with respect to the intensity of selection, in the context of weak selection and

conservative migration. In this model, the population is subdivided into a continent of size

N0 = c0N , with game matrixW0, surrounded by n−1 islands of identical size N1 = c1N and

identical game matrix W1, with symmetric migration occurring between the continent and

each island (with no direct island-to-island migration in one step of the migration process).

The total population size denoted by cN , where c = c0 + (n − 1)c1, is assumed to be
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(a) M = 1 , n = 2 (b) M = 1 , n = 3

(c) M = 1 , n = 4 (d) M = 1 , n = 5

Figure 9: Threshold Λ (brown curve) versus its value in the case of equal deme sizes (purple

curve) in the case when M = 1 : (a) n = 2; (b) n = 3; (c) n = 4; (d) n = 5.
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(a) M = 10 , n = 2 (b) M = 10 , n = 3

(c) M = 10 , n = 4 (d) M = 10 , n = 5

Figure 10: Threshold Λ (brown curve) versus its value in the case of equal deme sizes (purple

curve) in the case when M = 10 : (a) n = 2; (b) n = 3; (c) n = 4; (d) n = 5.
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(a) M = 0.1 , n = 2 (b) M = 0.1 , n = 3

(c) M = 0.1 , n = 4 (d) M = 0.1 , n = 5

(e) M = 0.1 , n = 6 (f) M = 0.1 , n = 7

(g) M = 0.1 , n = 8

Figure 11: Threshold Λ (brown curve) versus its value in the case of equal deme sizes (purple

curve) in the case when M = 0.1 : (a) n = 2; (b) n = 3; (c) n = 4; (d) n = 5; (e) n = 6; (f) n = 7;

(g) n = 8.

43



(a) n = 3 , M = 0.01 (b) n = 3 , M = 0.1

(c) n = 3 , M = 1 (d) n = 3 , M = 10

Figure 12: Threshold Λ (magenta curve) versus its value in the case of equal deme sizes (purple

curve) in the case when n = 3 : (a) M = 0.01; (b) M = 0.1; (c) M = 1; (d) M = 10.
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(a) n = 4 , M = 0.01 (b) n = 4 , M = 0.1

(c) n = 4 , M = 1 (d) n = 4 , M = 10

Figure 13: Threshold Λ (magenta curve) versus its value in the case of equal deme sizes (purple

curve) in the case when n = 4 : (a) M = 0.01; (b) M = 0.1; (c) M = 1; (d) M = 10.
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(a) n = 10 , M = 0.01 (b) n = 10 , M = 0.1

(c) n = 10 , M = 1 (d) n = 10 , M = 10

Figure 14: Threshold Λ (magenta curve) versus its value in the case of equal deme sizes (purple

curve) in the case when n = 10 : (a) M = 0.01; (b) M = 0.1; (c) M = 1; (d) M = 10.
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(a) (b)

(c)

Figure 15: (a) Maximum value taken by threshold Λ (diamonds) versus the value taken by Λ in

the case of equal deme sizes (diagonal crosses) as functions of the number of demes, n, for 3 different

values of the migration rate, M : M = 0.1 and n ranges from 2 to 20 (blue); M = 1 and n ranges

from 2 to 20 (red); M = 10 and n ranges from 2 to 20 (green). For any fixed n, the maximum value

of Λ is reached at some P = P ∗∗(M,n), where P denotes the proportion of individuals living on

the continent. In the case of equal deme sizes, P is always equal to 1/n. (b) Maximum value taken

by threshold Λ (diamonds) versus its value in the case of equal deme sizes (crosses) as a function

of the number of demes, n, for 3 different values of the migration rate, M : M = 0.1 and n ranges

from 2 to 30 (blue); M = 1 and n ranges from 2 to 30 (red); M = 10 and n ranges from 2 to 30

(green); (c) Value taken by P in which the maximum value for Λ is reached (i.e. P ∗∗(M,n)) as a

function of the number of demes, n, for 3 different values of the migration rate, M : M = 0.1 and

n ranges from 2 to 10 (blue); M = 1 and n ranges from 2 to 10 (red); M = 10 and n ranges from 2

to 10 (green). The black crosses correspond to the value taken by P in the case of equal deme sizes

(P = 1/n).
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large, and the backward migration rates are of the form m0i = M0/(2N(n − 1)), for the

probability that an individual from the continent emigrated from island i in the previous

generation, and mi0 = M1/(2N), for the backward probability that an individual from

island i emigrated from the continent, and M0 and M1 are of order 1, which holds under

the structured coalescent assumptions (Notohara, 1990; Herbots, 1994, 1997; Wilkinson-

Herbots, 1998). Moreover, assuming conservative migration, the parameter M0 is related

to M1 by c1M1 = c0M0/(n − 1) = M , where the ”migration rate” M is of order 1. In the

context of weak selection (s << 1/(cN) << 1), we have shown that the fixation probability

can be approximated by

u(s) =
u0
N0

+ s
{

(pA − pB) ·
(

u0γ0W0 + (1− u0)γ1W1

)

(pA − pB)
}

+
}

(pA − pB) ·
{

u0δ0W0 + (1− u0)δ1W1

}

pB

}

+ o(s), (92)

where u0 denotes the first coordinate of (u0, u1, . . . , u1), the stationary distribution of the

backward migration matrix M, and coefficients δi, γi, i = 0, 1, are explicit functions that

depend on the migration rate M , the proportion of the total population living on the conti-

nent, P = c0/c, and the total number of demes, n. Note that in the special case when n = 2,

up to the proper parameter rescaling, this model matches exactly the asymmetric two-deme

linear game model (Ladret and Lessard, 2008) and in this case, approximation (92) unsur-

prisingly reduces to (91). The proof in the general case n ≥ 3, is directly adapted from the

Markov chain method used in the asymmetric two-deme model (Ladret and Lessard, 2008).

It relies on the calculation of the first order effect of selection on the probability of fixation

as a function of the expressions
∑

t≥0E0(X
2
i (t)(1−Xi(t))) and

∑

t≥0E0(Xi(t)(1−Xi(t)),

with i ∈ {0, . . . , n− 1}, where Xi(t) denotes the proportion of type A individuals in deme i

at time t and E0 stands for the expectation under neutrality (s = 0). These terms are then

calculated using a coalescent (Kingman, 1982) based approach adapted to the population

structure of the continental island model.

Assuming an infinitely large population subdivided into a continent and n − 1 islands

with a constant backward migration matrix, M, and weak selection, we have obtained a

modified replicator equation which describes how the relative abundance (frequency) of a

mutant type in the entire population, averaged with respect to the stationary distribution

of the backward migration matrix M , changes over time. This differential equation is an

extension of the modified replicator equation for an infinite asymmetric two-deme popula-

tion (Ladret and Lessard, 2008). Note that it should provide a good approximation of the

dynamics in the case 1/N << s << 1. Moreover, in this case of an infinite n-deme conti-

nental island linear game model, we have derived that evolutionary stable strategies (ESS)

correspond to ESS in the usual context of a linear game for an infinite panmictic population

with game matrix u0W0 + (n− 1)u1W1.

Going back to the finite population continental island model with n ≥ 3 demes under

weak selection, we have investigated conditions under which a resident strategy is selectively
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favoured against replacement by a mutant strategy as defined in Nowak et al. (2004). In

the particular case of identical game matrices W0 = W1, this condition corresponds to the

traditional ESS condition in an infinite population, provided the mutant strategy remains

close enough to the resident strategy if the mutant strategy uses some new pure strategies.

This also holds when the model is reduced to a single deme (Lessard, 2005; Lessard and

Ladret, 2007), when the population structure follows a symmetric finite island model with

n ≥ 2 demes (Ladret and Lessard, 2007), or when the continental island model is reduced

to only n = 2 demes, which corresponds to the case of the asymmetric two-deme model

(Ladret and Lessard, 2008). Note however, that in the case of non identical game matrices

(W0 6= W1), the ESS condition is neither a necessary nor a sufficient condition for a strat-

egy to be selectively advantageous against replacement in the continental island model, as

already shown in the special case n = 2 via various counterexamples in Ladret and Lessard

(2008).

In the case of two pure strategies pA = (1, 0) and pB = (0, 1) that are best replies to

themselves with respect to both the 2× 2 game matrices W0 and W1,

W0 =

(

a0 b0

c0 d0

)

and W1 =

(

a1 b1

c1 d1

)

,

which means that a0 > c0, d0 > b0, a1 > c1 and d1 > b1, we have specified a condition for

the resident strategy to be selectively favoured against replacement by the mutant strat-

egy. Moreover, when the two game matrices are identical (W0 = W1), we have shown that

this condition translates into a criterion of the form z∗ < Λ where z∗ denotes the unstable

equilibrium frequency of the mutant, averaged with respect to the stationary distribution

(u0, . . . , un) of the backward migration matrix, and where the coefficient Λ is an explicit

function of the population parameters M , n and P . This inequality extends the one-third

law to the n-deme continental island model and when n = 2, it reduces to the modified

one-third law for an asymmetric two-deme model. We have found that this condition is less

stringent than the one-third law.

Still in the context of identical game matrices, we have compared the modified one-

third law for an asymmetric continental island model with unequal deme sizes (P 6= 1/n)

with its equivalent for its symmetric (in the sense of equal deme sizes) model counterpart

(P = 1/n). The two models share the same population parameters except for the proportion

of individuals living on the continent, which is equal to P 6= 1/n in the latter model and

P = 1/N in the former. We have found that when the migration rate, M , is fixed, there

exists a threshold value, n∗(M) ≥ 2, for the number of demes, n, such that, if n ≤ n∗(M),

then the condition for the asymmetric model is less stringent than the one for its symmetric

model counterpart, provided the relative size of the continent, P , is not too small and

remains less than 1/n, as it is already the case for n = 2 (Ladret and Lessard, 2008); while,

if the number of demes exceeds n∗(M), it only requires the relative size of the continent to be

less than 1/n. Moreover, we have found that numerical evaluations suggest that n∗(M) does

not exceed 4 when M ranges from 0.1 to 10, and does not exceed 7 when 0.01 ≤ M ≤ 100.
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On the other hand, we have compared the n-deme symmetric continental island model with

its symmetric finite island model counterpart. In these two models, there are n demes of

equal size cN
n

with identical game matrix W within each deme and both models have the

same expected total number of migrants per generation after population regulation, only the

migration scenario differs. When the number of demes, n, is larger than 3 (otherwise both

models are equivalent) and the migration rate, M , is fixed, we have found that as long as

M remains larger than
√
10/3, the extended one-third law for the continental island model

is always less stringent than the extended one-third law for its island model counterpart.

On the other hand, for smaller values of M (i.e. M ≤
√
10/3), we have found that this

remains true, provided the number of demes is large enough (more precisely, provided it

remains larger than n0(M) = 1+
√
1+4M2

M2 ). Equivalently, when the number of demes, n, is

fixed, we have shown that the extended one-third law for the continental island model is

less stringent than its Wright’s island counterpart, provided the migration rate, M , remains

large enough (namely, larger than M0(n) =
√
2n+4
n

). Applying these results to the IPD with

the strategies TFT versus AllD, we have found that the condition for the cooperative TFT

strategy to fixate in the population with a selective advantage is less stringent in a continent

island model than in a panmictic model, in the sense that it requires less repetitions of the

game. Moreover, the population structure of the symmetric continental island model can

facilitate the evolution of cooperation compared to it’s finite island model counterpart. On

the other hand, the asymmetry in the population structure of a continental island model

with unequal deme sizes can outperform its symmetric model counterpart when promoting

the emergence of cooperation.

Appendix A.1: Transition probabilities

A.1.1 Matrix F

F000,000 = (1−m0)
3(1− 1

N0

)(1− 2
N0

) = 1− 3
N0

− 3m0 +O( 1
N2 )

F000,001 = (1−m0)
2m0(1− 1

N0

)

F000,010 = (1−m0)
2m0(1− 1

N0

)

F000,100 = (1−m0)
2m0(1− 1

N0

)

F000,011 = (1−m0)m0
m0

n−1 (1− 1
N1

)

F000,101 = (1−m0)m0
m0

n−1 (1− 1
N1

)

F000,110 = (1−m0)m0
m0

n−1 (1− 1
N1

)

F000,111 = m0

(

m0

n−1

)2
(1− 1

N1

)(1− 2
N1

)

F000,012 = (1−m0)m
2
0(1− 1

n−1 )

50



F000,102 = (1−m0)m
2
0(1− 1

n−1 )

F000,120 = (1−m0)m
2
0(1− 1

n−1 )

F000,123 = m3
0(1− 1

n−1 )(1− 2
n−1 )

F000,112 = m2
0

m0

n−1 (1− 1
n−1 )(1− 1

N1

)

F000,121 = m2
0

m0

n−1 (1− 1
n−1 )(1− 1

N1

)

F000,211 = m2
0

m0

n−1 (1− 1
n−1 )(1− 1

N1

)

F001,000 = (1−m0)
2m1(1− 1

N0

)(1− 2
N0

)

F001,001 = (1−m0)
2(1−m1)(1− 1

N0

)

F001,010 = m0m1(1−m0)(1− 1
N0

)

F001,100 = m0m1(1−m0)(1− 1
N0

)

F001,011 = (1−m0)
m0

n−1 (1−m1)(1− 1
N1

)

F001,101 = (1−m0)
m0

n−1 (1−m1)(1− 1
N1

)

F001,110 = m1m0
m0

n−1 (1− 1
N1

)

F001,111 =
(

m0

n−1

)2
(1−m1)(1− 1

N1

)(1− 2
N1

)

F001,012 = (1−m0)(1−m1)m0(1− 1
n−1 )

F001,102 (cf F001,201)

F001,201 = (1−m0)(1−m1)m0(1− 1
n−1 )

F001,120 = m1m0m0(1− 1
n−1 )

F001,123 = (1−m1)m0(1− 1
n−1 )m0(1− 2

n−1 )

F001,112 = F001,221 = (1−m1)m0(1− 1
n−1 )

m0

n−1 (1− 1
N1

)

F001,121 = (1−m1)
m0

n−1m0(1− 1
n−1 )(1− 1

N1

)

F001,211 = (1−m1)
m0

n−1m0(1− 1
n−1 )(1− 1

N1

)
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F010,000 = m1(1−m0)
2(1− 1

N0

)(1− 2
N0

)

F010,001 = m0m1(1−m0)(1− 1
N0

)

F010,010 = (1−m0)
2(1−m1)(1− 1

N0

)

F010,100 = m0m1(1−m0)(1− 1
N0

)

F010,011 = m0

n−1 (1−m0)(1−m1)(1− 1
N1

)

F010,101 = m0m1
m0

n−1 (1− 1
N1

)

F010,110 = m0

n−1 (1−m0)(1−m1)(1− 1
N1

)

F010,111 = (1−m1)(1− 1
N1

)(1− 2
N1

)
(

m0

n−1

)2

F010,012 = (1−m0)(1−m1)m0(1− 1
n−1 )

F010,102 = m1m0m0(1− 1
n−1 )

F010,120 = 0

F010,210 = (1−m0)(1−m1)m0(1− 1
n−1 )

F010,123 = (1−m1)m0(1− 1
n−1 )m0(1− 2

n−1 )

F010,112 = m0

n−1 (1−m1)m0(1− 1
N1

)(1− 1
n−1 )

F010,121 = (1−m1)m0(1− 1
n−1 )

m0

n−1 (1− 1
N1

)

F010,211 = (1−m1)
m0

n−1 (1− 1
N1

)m0(1− 1
n−1 )

F100,000 = m1(1−m0)
2(1− 1

N0

)(1− 2
N0

)

F100,001 = m0m1(1−m0)(1− 1
N0

)

F100,010 = m0m1(1−m0)(1− 1
N0

)

F100,100 = (1−m0)
2(1−m1)(1− 1

N0

)

F100,011 = m0m1(1− 1
N1

) m0

n−1

F100,101 = (1−m0)(1−m1)(1− 1
N1

) m0

n−1

F100,110 = m0

n−1 (1−m0)(1−m1)(1− 1
N1

)
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F100,111 =
(

m0

n−1

)2
(1−m1)(1− 1

N1

)(1− 2
N1

)

F100,012 = m2
0m1(1− 1

n−1 )

F100,102 = (1−m1)(1−m0)m0(1− 1
n−1 )

F100,120 = (1−m1)(1−m0)m0(1− 1
n−1 )

F100,123 = (1−m1)m0(1− 1
n−1 )m0(1− 2

n−1 )

F100,112 = (1−m1)
m0

n−1m0(1− 1
n−1 )(1− 1

N1

)

F100,121 = (1−m1)
m0

n−1m0(1− 1
n−1 )(1− 1

N1

)

F100,211 = (1−m1)m0(1− 1
n−1 )

m0

n−1 (1− 1
N1

)

F011,000 = m2
1(1−m0)(1− 1

N0

)(1− 2
N0

)

F011,001 = (1−m0)(1−m1)m1(1− 1
N0

)

F011,010 = (1−m0)(1−m1)m1(1− 1
N0

)

F011,100 = m0m
2
1(1− 1

N0

)

F011,011 = (1−m0)(1−m1)
2(1− 1

N1

)

F011,101 = m0

n−1 (1−m1)m1(1− 1
N1

)

F011,110 = (1−m1)
m0

n−1m1(1− 1
N1

)

F011,111 = m0

n−1 (1−m1)
2(1− 1

N1

)(1− 2
N1

)

F011,012 = 0

F011,102 = (1−m1)m1m0(1− 1
n−1 )

F011,120 = (1−m1)m1m0(1− 1
n−1 )

F011,123 = 0

F011,112 = 0

F011,121 = 0
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F011,211 = (1−m1)
2m0(1− 1

n−1 )(1− 1
N1

)

F101,000 = (1−m0)m
2
1(1− 1

N0

)(1− 2
N0

)

F101,001 = (1−m1)m1(1−m0)(1− 1
N0

)

F101,010 = m2
1m0(1− 1

N0

)

F101,100 = (1−m0)(1−m1)m1(1− 1
N0

)

F101,011 = (1−m1)m1
m0

n−1 (1− 1
N1

)

F101,101 = (1−m1)
2(1−m0)(1− 1

N1

)

F101,110 = (1−m1)
m0

n−1m1(1− 1
N1

)

F101,111 = (1−m1)
2 m0

n−1 (1− 1
N1

)(1− 2
N1

)

F101,012 = m1(1−m1)m0(1− 1
n−1 )

F101,102 = 0

F101,120 = (1−m1)m1m0(1− 1
n−1 )

F101,123 = 0

F101,112 = 0

F101,121 = (1−m1)
2m0(1− 1

n−1 )(1− 1
N1

)

F101,211 = 0

F110,000 = F101,000 = F011,000 = (1−m0)m
2
1(1− 1

N0

)(1− 2
N0

)

F110,001 = m2
1m0(1− 1

N0

)

F110,010 = (1−m1)(1−m0)m1(1− 1
N0

)

F110,100 = (1−m1)(1−m0)m1(1− 1
N0

)

F110,011 = (1−m1)m1
m0

n−1 (1− 1
N1

)

F110,101 = (1−m1)m1
m0

n−1 (1− 1
N1

)

F110,110 = (1−m1)
2(1−m0)(1− 1

N1

)
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F110,111 = (1−m1)
2 m0

n−1 (1− 1
N1

)(1− 2
N1

)

F110,012 = (1−m1)m1m0(1− 1
n−1 )

F110,102 = (1−m1)m1m0(1− 1
n−1 )

F110,120 = 0

F110,123 = 0

F110,112 = (1−m1)
2m0(1− 1

n−1 )(1− 1
N1

)

F110,121 = 0

F110,211 = 0

F111,000 = m3
1(1− 1

N0

)(1− 2
N0

)

F111,001 = m2
1(1−m1)(1− 1

N0

)

F111,010 = m2
1(1−m1)(1− 1

N0

)

F111,100 = m2
1(1−m1)(1− 1

N0

)

F111,011 = m1(1−m1)
2(1− 1

N1

)

F111,101 = m1(1−m1)
2(1− 1

N1

)

F111,110 = m1(1−m1)
2(1− 1

N1

)

F111,111 = (1−m1)
3(1− 1

N1

)(1− 2
N1

)

F111,012 = 0

F111,102 = 0

F111,120 = 0

F111,123 = 0

F111,112 = 0

F111,121 = 0
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F111,211 = 0

F012,000 = (1−m0)m
2
1(1− 1

N0

)(1− 2
N0

)

F012,001 = F012,002 = (1−m0)m1(1−m1)(1− 1
N0

)

F012,010 = (1−m0)m1(1−m1)(1− 1
N0

)

F012,100 = m2
1m0(1− 1

N0

)

F012,011 = 0

F012,101 = m0

n−1 (1−m1)m1(1− 1
N1

)

F012,110 = m0

n−1 (1−m1)m1(1− 1
N1

)

F012,111 = 0

F012,012 = (1−m0)(1−m1)
2

F012,102 = m1m0(1− 1
n−1 )(1−m1)

F012,120 = m1(1−m1)m0(1− 1
n−1 )

F012,123 = (1−m1)
2m0(1− 2

n−1 )

F012,112 = m0

n−1 (1−m1)
2(1− 1

N1

)

F012,121 = (1−m1)
2 m0

n−1 (1− 1
N1

)

F012,211 = 0

F102,000 = m2
1(1−m0)(1− 1

N0

)(1− 2
N0

)

F102,001 = (1−m1)(1−m0)m1(1− 1
N0

)

F102,010 = m2
1m0(1− 1

N0

)

F102,100 = (1−m1)(1−m0)m1(1− 1
N0

)

F102,011 = m1(1−m1)
m0

n−1 (1− 1
N1

)

F102,101 = 0

F102,110 = (1−m1)
m0

n−1m1(1− 1
N1

)
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F102,111 = 0

F102,012 = m1(1−m1)m0(1− 1
n−1 )

F102,102 = (1−m1)
2(1−m0)

F102,120 = (1−m1)m0(1− 1
n−1 )m1

F102,123 = (1−m1)
2m0(1− 2

n−1 )

F102,112 = (1−m1)
2 m0

n−1 (1− 1
N1

)

F102,121 = 0

F102,211 = (1−m1)
2 m0

n−1 (1− 1
N1

)

F120,000 = m2
1(1−m0)(1− 1

N0

)(1− 2
N0

)

F120,001 = m2
1m0(1− 1

N0

)

F120,010 = m1(1−m0)(1−m1)(1− 1
N0

)

F120,100 = m1(1−m0)(1−m1)(1− 1
N0

)

F120,011 = m1(1−m1)
m0

n−1 (1− 1
N1

)

F120,101 = (1−m1)
m0

n−1m1(1− 1
N1

)

F120,110 = 0

F120,111 = 0

F120,012 = m1(1−m1)m0(1− 1
n−1 )

F120,102 = (1−m1)m1m0(1− 1
n−1 )

F120,120 = (1−m1)
2(1−m0)

F120,123 = (1−m1)
2m0(1− 2

n−1 )

F120,112 = 0

F120,121 = (1−m1)
2 m0

n−1 (1− 1
N1

)
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F120,211 = (1−m1)
2 m0

n−1 (1− 1
N1

)

F123,000 = m3
1(1− 1

N0

)(1− 2
N0

)

F123,001 = (1−m1)m
2
1(1− 1

N0

)

F123,010 = m2
1(1−m1)(1− 1

N0

)

F123,100 = m2
1(1−m1)(1− 1

N0

)

F123,011 = 0

F123,101 = 0

F123,110 = 0

F123,111 = 0

F123,012 = m1(1−m1)
2

F123,102 = F123,103 = m1(1−m1)
2

F123,120 = m1(1−m1)
2

F123,123 = (1−m1)
3

F123,112 = 0

F123,121 = 0

F123,211 = 0

F112,000 = m3
1(1− 1

N0

)(1− 2
N0

)

F112,001 = m2
1(1−m1)(1− 1

N0

)

F112,010 = m2
1(1−m1)(1− 1

N0

)

F112,100 = m2
1(1−m1)(1− 1

N0

)

F112,011 = 0

F112,101 = 0

F112,110 = (1−m1)
2m1(1− 1

N1

)
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F112,111 = 0

F112,012 = m1(1−m1)
2

F112,102 = (1−m1)
2m1

F112,120 = 0

F112,123 = 0

F112,112 = (1−m1)
3(1− 1

N1

)

F112,121 = 0

F112,211 = 0

F121,000 = m3
1(1− 1

N0

)(1− 2
N0

)

F121,001 = m2
1(1−m1)(1− 1

N0

)

F121,010 = m2
1(1−m1)(1− 1

N0

)

F121,100 = (1−m1)m
2
1(1− 1

N0

)

F121,011 = 0

F121,101 = (1−m1)
2m1(1− 1

N1

)

F121,110 = 0

F121,111 = 0

F121,012 = m1(1−m1)
2

F121,102 = 0

F121,120 = (1−m1)
2m1

F121,123 = 0

F121,112 = 0

F121,121 = (1−m1)
3(1− 1

N1

)
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F121,211 = 0

F211,000 = m3
1(1− 1

N0

)(1− 2
N0

)

F211,001 = m2
1(1−m1)(1− 1

N0

)

F211,010 = m2
1(1−m1)(1− 1

N0

)

F211,100 = (1−m1)m
2
1(1− 1

N0

)

F211,011 = m1(1−m1)
2(1− 1

N1

)

F211,101 = 0

F211,110 = 0

F211,111 = 0

F211,012 = 0

F211,102 = (1−m1)
2m1

F211,120 = (1−m1)
2m1

F211,123 = 0

F211,112 = 0

F211,121 = 0

F211,211 = (1−m1)
3(1− 1

N1

)

A.1.2 Matrix Q

Q000,00 = (1−m0)
3(1− 1

N0

) 1
N0

Q000,01 = (1−m0)
2m0

1
N0

Q000,10 = (1−m0)m0
m0

n−1
1
N1

Q000,11 = m0

(

m0

n−1

)2 1
N1

(1− 1
N1

)
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Q000,12 = m0
m0

n−1m0(1− 1
n−1 )

1
N1

Q001,00 = (1−m0)
2 1
N0

m1(1− 1
N0

)

Q001,01 = (1−m0)
2(1−m1)

1
N0

Q001,10 = m0
m0

n−1
1
N1

m1

Q001,11 = ( m0

n−1 )
2(1−m1)

1
N1

Q001,12 = m0(1− 1
n−1 )

m0

n−1 (1−m1)
1
N1

Q010,00 = (1−m0)
2 1
N0

m1(1− 1
N0

)

Q010,01 = (1−m0)m1m0
1
N0

Q010,10 = (1−m0)(1−m1)
m0

n−1
1
N1

Q010,11 = (1−m1)
(

m0

n−1

)2 1
N1

(1− 1
N1

)

Q010,12 = (1−m1)
m0

n−1m0(1− 1
n−1 )

1
N1

Q100,00 = m1(1−m0)
2 1
N0

(1− 1
N0

)

Q100,01 = m1(1−m0)m0
1
N0

Q100,10 = (1−m1)
m0

n−1 (1−m0)
1
N1

Q100,11 = (1−m1)
(

m0

n−1

)2 1
N1

(1− 1
N1

)

Q100,12 = (1−m1)
m0

n−1m0(1− 1
n−1 )

1
N1

Q011,00 = (1−m0)m
2
1(1− 1

N0

) 1
N0

Q011,01 = (1−m0)(1−m1)m1
1
N0

Q011,10 = (1−m1)
m0

n−1m1
1
N1

Q011,11 = (1−m1)
2 m0

n−1
1
N1

(1− 1
N1

)

Q011,12 = 0

Q101,00 = (1−m0)m
2
1

1
N0

(1− 1
N0

)

Q101,01 = (1−m1)(1−m0)m1
1
N0
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Q101,10 = (1−m1)
m0

n−1m1
1
N1

Q101,11 = (1−m1)
2 m0

n−1
1
N1

(1− 1
N1

)

Q101,12 = 0

Q110,00 = (1−m0)m
2
1

1
N0

(1− 1
N0

)

Q110,01 = m2
1m0

1
N0

Q110,10 = (1−m1)
2(1−m0)

1
N1

Q110,11 = (1−m1)
2 m0

n−1
1
N1

(1− 1
N1

)

Q110,12 = (1−m1)
2m0(1− 1

n−1 )
1
N1

Q111,00 = m3
1

1
N0

(1− 1
N0

)

Q111,01 = m2
1(1−m1)

1
N0

Q111,10 = (1−m1)
2m1

1
N1

Q111,11 = (1−m1)
3 1
N1

(1− 1
N1

)

Q111,12 = 0

Q012,00 = (1−m0)m
2
1

1
N0

(1− 1
N0

)

Q012,01 = (1−m0)m1(1−m1)
1
N0

Q012,10 = (1−m1)
m0

n−1m1
1
N1

Q012,11 = 0

Q012,12 = (1−m1)
2 m0

n−1
1
N1

Q102,00 = (1−m0)m
2
1

1
N0

(1− 1
N0

)

Q102,01 = (1−m0)(1−m1)m1
1
N0

Q102,10 = m1(1−m1)
m0

n−1
1
N1

Q102,11 = 0
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Q102,12 = (1−m1)
2 m0

n−1
1
N1

Q120,00 = (1−m0)m
2
1

1
N0

(1− 1
N0

)

Q120,01 = m2
1m0

1
N0

Q120,10 = 0

Q120,11 = 0

Q120,12 = 0

Q123,00 = m3
1

1
N0

(1− 1
N0

)

Q123,01 = m2
1(1−m1)

1
N0

Q123,10 = 0

Q123,11 = 0

Q123,12 = 0

Q112,00 = m3
1

1
N0

(1− 1
N0

)

Q112,01 = m2
1(1−m1)

1
N0

Q112,10 = (1−m1)
2m1

1
N1

Q112,11 = 0

Q112,12 = (1−m1)
3 1
N1

Q121,00 = m3
1

1
N0

(1− 1
N0

)

Q121,01 = (1−m1)m
2
1

1
N0

Q121,10 = 0

Q121,11 = 0

Q121,12 = 0

Q211,00 = m3
1

1
N0

(1− 1
N0

)

Q211,01 = m2
1(1−m1)

1
N0
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Q211,10 = 0

Q211,11 = 0

Q211,12 = 0

A.1.2 Matrix P

P00,00 = (1−m0)
2(1− 1

N0

)

P00,01 = (1−m0)m0

P00,10 = (1−m0)m0

P00,11 = m0
m0

n−1 (1− 1
N1

)

P00,12 = m0m0(1− 1
n−1 )

P01,00 = (1−m0)m1(1− 1
N0

)

P01,01 = (1−m0)(1−m1)

P01,10 = m0m1

P01,11 = (1−m1)
m0

n−1 (1− 1
N1

)

P01,12 = (1−m1)m0(1− 1
n−1 )

P10,00 = (1−m0)m1(1− 1
N0

)

P10,01 = m1m0

P10,10 = (1−m1)(1−m0)

P10,11 = (1−m1)
m0

n−1 (1− 1
N1

)

P10,12 = (1−m1)m0(1− 1
n−1 )

P11,00 = m2
1(1− 1

N0

)

P11,01 = m1(1−m1)
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P11,10 = (1−m1)m1

P11,11 = (1−m1)
2(1− 1

N1

)

P11,12 = 0

P12,00 = m2
1(1− 1

N0

)

P12,01 = (1−m1)m1

P12,10 = (1−m1)m1

P12,11 = 0

P12,12 = (1−m1)
2

A.1.2 Matrix R

R00,0 = (1−m0)
1
N0

R00,1 = m0
m0

n−1
1
N1

R01,0 = (1−m0)m1
1
N0

R01,1 = m0

n−1 (1−m1)
1
N1

R10,0 = m1(1−m0)
1
N0

R10,1 = (1−m1)
m0

n−1
1
N1

R11,0 = m2
1

1
N0

R11,1 = (1−m1)
2 1
N1

R12,0 = m2
1

1
N0

R12,1 = 0
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Appendix A.2: approximations under the structured co-

alescent assumptions

γ0 = 1/3[16P 5 +6M5Pn− 71M2nP +29M2n2P − 39M2n2P 2 +11M2nP 2 − 59M2n2P 3 +

22Mn2P + M4P 2 − 13M3P 2 + 3M5n − 2M5P + 10M2P 2 + 11M2n2P 4 + 2M2n2P 5 −
52Mn2P 3 + 4Mn2P 4 + 22MnP 4 + 4Mn3P 2 + 72MP 2 + 56M3nP 3 − 28MP 3 − 12P 3n2 −
34M3n2P 2 + 116MnP 3 − 11M3Pn + 6M3n2 − 10M4P 3 + 11M3P − 36nP 2 − 15M3n −
20MP − 24P 4M2 − 40M2P 3 +M5n3 − 3M5n2 − 44MP 4 + 16MP 5 + 2M3n3 − 4M3P 4 +

113M2nP 3 +20M4nP 3 − 16P 2 − 4n2P 4 +12nP − 8M2nP 5 +36nP 4 +3M4n− 20MP 5n+

8Mn2P 2+6M2n3P+10M2n3P 2+12n2P 2+39M3nP 2+13M3n3P+6MP 5n2+8M3n3P 2−
32M3n2P 3+4M3n2P 4−6M5n2P+2M5n3P−M5−6M2+8M2n2+9M4n3P+2M4n3P 2−
23M4n2P − 3M4n2P 2 − 10M4n2P 3 + 19M4nP + 7M3 −M2n − 13M3n2P − 24M3P 3 −
5M4P +6Mn−8MnP −104MnP 2+56P 3−56P 4+36M2P +8M2P 5+4M2nP 4+4n2P 5−
16nP 5 + 3M4n3 − 6M4n2 + 4nP 3][Mn−M + 1− 2P + nP ]−1[4M + 6M2nP + 6M2n2P +

6M2n2P 2−20M2nP 2+8P+16M2P 2−20MP 2−8M3nP 3+32MP 3+2M3n2P 2−20MnP 3−
11M3Pn+2M3n2+4M3P +8nP 2−M3n−12MP +16M2P 3−16M2nP 3−24P 2−2M4n+

4Mn2P 2−2M3nP 2+M4−4M2+2M4n2P −4M4nP −M3+6M2n+7M3n2P +8M3P 3+

2M4P + 16MnP − 4MnP 2 + 16P 3 − 16M2P +M4n2 − 8nP 3]−1 ;

γ1 = 1/(3(n−1))[−16P 5−8M−8M5Pn+93M2nP−92M2n2P−2M2n2P 2+47M2nP 2+

96M2n2P 3+36Mn2P −16P −M4P 2+29M3P 2+8M3n4P 2+2M5n4P −4M5n+2M5P −
26M2P 2 − 26M3n3P 3 + 4M3n3P 4 + 9M3n4P + 29M2n2P 4 − 10M2n2P 5 + 62Mn2P 3 +

14Mn2P 4−38MnP 4+18Mn3P 2−100MP 2−50M3nP 3−4M3nP 4+36MP 3−33M2n3P 3−
28P 3n2+101M3n2P 2−M2n3P 4+2M2n3P 5−58MnP 3+42M3Pn−20Mn3P 3+2Mn3P 4−
35M3n2 + 10M4P 3 − 17M3P − 68nP 2 +M5n4 + 34M3n+ 60MP + 32P 4M2 + 24M2P 3 −
4M5n3 + 6M5n2 + 12MP 4 + 12M3n3 + 4M3P 4 − 87M2nP 3 − 10M4n3P 3 + M4nP 2 −
30M4nP 3 + 72P 2 + 20n2P 4 + 12nP + 16M2nP 5 − 76nP 4 + 3M4n4 − 3M4n + 4MP 5n −
110Mn2P 2 + 33M2n3P − 25M2n3P 2 + 12n2P 2 − 90M3nP 2 − 10M3n3P − 2MP 5n2 −
48M3n3P 2 + 64M3n2P 3 − 4M3n2P 4 + 12M5n2P − 8M5n3P +M5 + 18M2 + 15M2n2 −
32M4n3P−5M4n3P 2+42M4n2P+3M4n2P 2+30M4n2P 3−24M4nP−11M3+6M2n4P 2−
33M2n− 24M3n2P + 12M3P 3 + 5M4P + 6Mn− 86MnP + 172MnP 2 − 112P 3 + 72P 4 +

9M4n4P +2M4n4P 2−34M2P −8M2P 5−60M2nP 4−4n2P 5+16nP 5−9M4n3+9M4n2+

116nP 3][4M + 6M2nP + 6M2n2P + 6M2n2P 2 − 20M2nP 2 + 8P + 16M2P 2 − 20MP 2 −
8M3nP 3 +32MP 3 +2M3n2P 2 − 20MnP 3 − 11M3Pn+2M3n2 +4M3P +8nP 2 −M3n−
12MP+16M2P 3−16M2nP 3−24P 2−2M4n+4Mn2P 2−2M3nP 2+M4−4M2+2M4n2P−
4M4nP −M3+6M2n+7M3n2P +8M3P 3+2M4P +16MnP −4MnP 2+16P 3−16M2P +

M4n2 − 8nP 3]−1[Mn−M + 1− 2P + nP ]−1 ;

δ0 =
−P +Mn+ n−M

Mn−M + 1− 2P + nP
; δ1 =

1− P +Mn−M

Mn−M + 1− 2P + nP
;

(1−u0)γ1+u0γ0 = (−8M+4Mn3P 2+41M2nP 3−12MP 4+8MP 5+M4n3+12n2P 2−
50MnP + 39M2nP 2 − 16P + 56P 2 + 12nP − 52nP 2 + 44nP 3 + 4nP 4 + 24Mn2P + 6Mn+

5M3P 2 + 2MnP 2 + 6Mn2P 5 + 10M2 − 21M3n2P − 56P 3 − 10M3n2P 3 − 23M2n2P 2 −
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25M2n2P 3 + 8M2n2P 4 − 10M3nP 2 + 20M3nP 3 + 8M2n3P + 4M2n3P 2 −M4 − 5M3P +

3M4n− 10M3P 3 − 26Mn2P 3 +2M4n3P − 14Mn2P 2 − 2Mn2P 4 − 5M2n2P − 12M2nP 4 −
13M2nP −12P 3n2+8M3n3P −16MP 3−2M4P +10M2P −7M3n2+62MP 3n+4MP 4n−
12MP 5n−6M4Pn2+6M4Pn+9M2n2+5M3n−19M2n+36MP −12MP 2+5M3n2P 2−
20M2P 2−16M2P 3−M3+16P 4+4n2P 5−8nP 5+3M3n3−3M4n2+4P 4M2+18M3nP −
4n2P 4)

[

3(n − 1)(4M − 16M2nP 3 + 16MnP − 20M2nP 2 + 8P − 24P 2 + 8nP 2 − 8nP 3 −
4MnP 2 − 4M2 + 7M3n2P + 16P 3 + 6M2n2P 2 − 2M3nP 2 − 8M3nP 3 + M4 + 4M3P −
2M4n+ 8M3P 3 + 4Mn2P 2 + 6M2n2P + 6M2nP + 32MP 3 + 2M4P − 16M2P + 2M3n2 −
20MP 3n+2M4Pn2− 4M4Pn−M3n+6M2n− 12MP − 20MP 2+2M3n2P 2+16M2P 2+

16M2P 3 −M3 +M4n2 − 11M3nP
]−1

and

(1− u0)δ1 + u0δ0 = 1.
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