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Consider the set of monic fourth-order real polynomials transformed so that the constant
term is one. In the three-dimensional space of the coefficients describing this set,
the domain of asymptotic stability is bounded by a surface with the Whitney umbrella
singularity. The maximum of the real parts of the roots of these polynomials is globally
minimized at the Swallowtail singular point of the discriminant surface of the set
corresponding to a negative real root of multiplicity four. Motivated by this example, we
review recent works on robust stability, abscissa optimization, heavily damped systems,
dissipation-induced instabilities, and eigenvalue dynamics in order to point out some
connections that appear to be not widely known.
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1. INTRODUCTION. ZIEGLER-BOTTEMA DESTABILIZATION
PHENOMENON

In 1956, motivated by the paradoxical effect of dissipation on the
threshold of oscillatory instability of mechanical structures under
non-conservative loadings [1], Bottema [2] studied the domain
of asymptotic stability1 of a fourth-order real polynomial

q(μ) = μ4 + b1μ
3 + b2μ

2 + b3μ + b4. (1)

He observed that the necessary and sufficient conditions

b1 > 0, b2 > 0, b3 > 0, b4 > 0, b2 >
b2

1b4 + b2
3

b1b3
(2)

for the polynomial to be Hurwitz, i.e., to have all its roots in
the left half of the complex plane, are not changed by the trans-
formation μ = cλ, where c = 4

√
b4 > 0. Indeed, after denoting

ai = bic
−i, i = 1, 2, 3, 4, (3)

the inequalities (2) are equivalent to the conditions

a1 > 0, a3 > 0, a2 > 2 + (a1 − a3)
2

a1a3
> 0 (4)

1An equilibrium of a dynamical system is said to be Lyapunov stable if all
the solutions starting in its vicinity remain in some neighborhood of the
equilibrium in the course of time. For asymptotic stability, the solutions are
required, additionally, to converge to the equilibrium as time tends to infin-
ity. The first (indirect) method of Lyapunov reduces the study of asymptotic
stability of an autonomous (time-independent) system to the problem of loca-
tion in the complex plane of eigenvalues of the operator of its linearization.
In a finite-dimensional case the eigenvalues are roots of a polynomial char-
acteristic equation. Localization of all the roots in the open left half of the
complex plane is a necessary and sufficient condition for asymptotic stability
of a linearization, which usually implies asymptotic stability of the original
non-linear system.

that are necessary and sufficient for the polynomial

p(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ + 1 (5)

to be Hurwitz. The domain (4) was plotted by Bottema in the
(a1, a3, a2)-space; see Figure 1.

Bottema realized that the boundary � of the asymptotic sta-
bility domain (4) is a ruled surface 2 generated by straight lines
a3 = ra1, a2 = r + 1/r, where r ∈ (0, ∞). The boundary � has a
self-intersection along the ray a2 ≥ 0 of the a2-axis. Two genera-
tors pass through each point of the ray; they coincide at a2 = 2
(r = 1), and for a2 → ∞ their directions tend to those of the
a1- and a3-axis (r = 0, r = ∞). Remarkably [2, 3], the point
(a1, a3, a2) = (0, 0, 2) is on �, but if one tends to the a2-axis
along the line a3 = ra1 the coordinate a2 has the limit r + 1/r > 2
except for r = 1, when a2 = 2. The point (0, 0, 2) marked by the
diamond symbol in Figure 1 is the Whitney umbrella singularity
[4]. The surface defined by the equation

a2 = 2 + (a1 − a3)
2

a1a3
(6)

is just another representation of a standard crosscap surface
fstd(u, v) = (u, uv, v2) : R

2 → R
3, which also bears the name of

the Whitney umbrella [5].
For given a1 = a1,0 and a2 = a2,0 > 2, exactly two points cor-

respond at the crosscap (6) with the third coordinate determined
from the equation

a3,0 = 1

2

(
a2,0 ±

√
a2

2,0 − 4

)
a1,0, (7)

2A surface is ruled if every one of its points lies on a line that belongs to the
surface; the ruled surface is literally swept out by these lines. Familiar examples
include a conical surface or a hyperboloid of one sheet.
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FIGURE 1 | A singular boundary � of the domain of asymptotic

stability (4) of the polynomial (5) with the Whitney umbrella

singularity at the point (a1, a3, a2) = (0, 0, 2), marked by the

diamond symbol. Inside the domain of asymptotic stability a part of
the discriminant surface of the polynomial is situated with the
Swallowtail singularity at the point (4, 4, 6) marked as an open circle.
Inside the spike bounded by the discriminant surface all the roots of
the polynomial (5) are real and negative. The green planar sector is the
tangent cone (10) to the domain of asymptotic stability at the Whitney
umbrella singularity.

where each sign is associated with one of the two sheets of the
crosscap that intersect along the interval a2 ≥ 2; see Figure 1.
Writing the equations for the tangent planes at these points

a1

(
a2,0 ±

√
a2

2,0 − 4

)
− 2a3 =

a1,0

(
a2,0 ±

√
a2

2,0 − 4
)2

a2
2,0 ± a2,0

√
a2

2,0 − 4 − 4
(a2 − a2,0)

(8)

we find that approaching the singular point (0, 0, 2) along the
a2-axis, i.e., assuming a1,0 = 0 in (8) and then letting a2,0 tend
to 2, results in the collapse of the two planes into one defined by
the equality

a1 = a3. (9)

The limit (9) of the tangent planes is the tangent cone to the cross-
cap at the Whitney umbrella singularity [5]. A part of the plane
(9) that lies inside the domain of asymptotic stability (4) consti-
tutes a set of all directions leading from the point (0, 0, 2) to the
stability region

{(a1, a3, a2) : a1 = a3, a1 > 0, a2 > 2} . (10)

The tangent cone (10) to the domain of asymptotic stability at
the Whitney umbrella singularity, which is shown in green in
Figure 1, is degenerate in the (a1, a3, a2)-space because it selects a

set of measure zero on a unit sphere with the center at the singular
point [6–8].

In 1971, Arnold [4] considered parametric families of real
matrices and studied which singularities on the boundary of the
asymptotic stability domain in the space of parameters are not
destroyed by small perturbation of the family, i.e., are structurally
stable or generic singularities. He composed a list of generic sin-
gularities in parameter spaces of low dimension which revealed,
in particular, that the Whitney umbrella persists on the stability
boundary of a real matrix of arbitrary dimension if the num-
ber of parameters is not less than three, i.e., the singularity is of
codimension 3.

The singular point (a1, a3, a2) = (0, 0, 2) corresponds to a
double complex conjugate pair of roots λ = ±i of the polyno-
mial (5).

At the line of self-intersection of the Whitney umbrella formed
by the ray a2 > 2 of the a2-axis there are two distinct com-
plex conjugate pairs of imaginary roots [2] indicating Lyapunov
(marginal) stability. However, the threshold of stability a2 = 2 is
extremely sensitive to the coefficients a1 and a3 as is seen from (6).

Indeed, fix â1 �= â2 and let a1 = εâ1 and a3 = εâ3 (where 0 <

ε � 1). Then, using (6), we find that the increment to the critical
value of the coefficient a2 is

�a2(ε) := a2 − 2 = (â1 − â3)
2

â1â3
∼ O(1). (11)

In other words, the stability threshold acquires a finite increment
�a2 > 0 even if the perturbation of the coefficients a1 and a3 is
infinitesimally small for almost all combinations of a1 and a3,
except in the case a1 = a3. The minimal threshold of marginal
stability a2 = 2 at a1 = 0 and a3 = 0 corresponding to the double
imaginary root is thus structurally unstable: generic combina-
tions of the parameters a1 and a3 at a2 = 2 lie in the domain of
instability [1–3, 9]. Therefore, looking for extremal values of a
parameter (a2 in our case) at the boundary of asymptotic stability
may lead to structurally unstable stability thresholds at the sin-
gular points of the stability boundary corresponding to multiple
roots.

The more basic fact that multiple roots of a polynomial
are sensitive to perturbation of the coefficients is a phe-
nomenon that was studied already by Isaac Newton, who
introduced the so-called Newton polygon to determine the
leading terms of the perturbed roots as fractional powers of
a perturbation parameter. It follows that, in matrix analy-
sis, eigenvalues are in general not locally Lipschitz at points
in matrix space with non-semi-simple eigenvalues3 [10–13],
and, in the context of dissipatively perturbed Hamiltonian
systems, [9, 14, 15]. Thus, it has been well-understood for
a long time that perturbation of multiple roots or multiple

3Those whose algebraic multiplicity exceeds their geometric multiplicity (the
number of linearly independent associated eigenvectors) and that are there-
fore associated with Jordan blocks of size 2 or higher in the Jordan canonical
form of the matrix.
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eigenvalues on or near the stability boundary is likely to lead to
instability4.

Because of the sensitivity of multiple roots and eigenvalues to
perturbation, in engineering and control-theoretical applications
a natural desire is to “cut the singularities off” by construct-
ing convex inner approximations to the domain of asymptotic
stability [17, 18]. Nevertheless, multiple roots per se are not unde-
sirable. Indeed, multiple roots also occur deep inside the domain
of asymptotic stability. Although it might seem paradoxical at first
sight, such configurations are actually obtained by minimizing the
so-called polynomial abscissa in an effort to make the asymptotic
stability of a linear system more robust, as we now explain.

2. ABSCISSA MINIMIZATION AND MULTIPLE ROOTS
The abscissa 5 of a polynomial p is the maximal real part of its
roots:

a(p) = max{Re λ : p(λ) = 0}. (12)

We restrict our attention to monic polynomials with real coeffi-
cients and fixed degree n: since these have n free coefficients, this
space is isomorphic to R

n. On this space, the abscissa is a continu-
ous but non-smooth, in fact non-Lipschitz, as well as non-convex,
function whose variational properties have been extensively stud-
ied using non-smooth variational analysis [21–24].

Now set n = 4, consider the set of polynomials p(λ) defined in
(5), and consider the restricted set of coefficients

{
(a1, a3, a2) : a1 = a3, a2 = 2 + a2

1

4

}
. (13)

For these coefficients, the abscissa a(p) is shown as a function of
a1 by the bold red curve in Figure 2. The roots are

λ1 = λ2 = −a1

4
− 1

4

√
a2

1 − 16, λ3 = λ4 = −a1

4
+ 1

4

√
a2

1 − 16.

(14)
When 0 ≤ a1 < 4 (a1 > 4), the roots λ1,2 and λ3,4 are complex
(real) with each pair being double, that is with multiplicity two. At
a1 = 4 there is a quadruple real eigenvalue −1. So, we refer to the
set (13) as a set of exceptional points6 (abbreviated as the EP-set).

When a1 > 0, the EP-set (13) (shown by the red curve in
Figure 3) lies within the tangent cone (10) to the domain of
asymptotic stability at the Whitney umbrella singularity (0, 0, 2).
The points in the EP-set all define polynomials with two double
roots (denoted EP2) except (a1, a3, a2) = (4, 4, 6), at which p has
a quadruple root and is denoted EP4; see Figure 3.

4In fact, even simple eigenvalues of non-Hermitian (more specifically, non-
normal) matrices are often highly sensitive to perturbation, and when this
is the case, eigenvalues may not be a useful tool for studying system behav-
ior, as they model only asymptotic behavior of linear systems, not transient
or non-linear behavior. See [16] for further discussion of non-normality
and how alternatives to eigenvalues, notably pseudospectra, may be used to
model physical systems; a particularly well-studied example is the transition
to turbulence in high Reynolds number fluid flows.
5The contour plot of the abscissa in the plane of two parameters is known also
as the decrement diagram [19, 20].
6In the sense of T. Kato [15, 25, 26].

FIGURE 2 | The real parts of the roots of the polynomial (5) with the

coefficients in the set (13) and (shown by the bold red curve) the

abscissa (12).

FIGURE 3 | The discriminant surface (gray) and the tangent cone

(green) to the domain of asymptotic stability. Inside the tangent cone
(10) the red curve marks the EP-set (13). The part of the EP-set above the
Swallowtail singularity at the point (4, 4, 6) forms a line of self-intersection
of the discriminant surface. The bold black curves are cuspidal edges of the
discriminant surface corresponding to triple negative real roots.

Let us consider how the roots move in the complex plane
when a1 and a3 coincide and are set to specific values and a2

increases from zero, as shown by black curves in Figure 4. When
a1 = a3 < 4, the roots that initially have positive real parts and
thus correspond to unstable solutions move along the unit cir-
cle to the left, cross the imaginary axis at a2 = 2 and merge
with another complex conjugate pair of roots at a2 = 2 + a2

1/4,
i.e., at the EP-set. Further increase in a2 leads to the splitting of
the double eigenvalues, with one conjugate pair of roots mov-
ing back toward the imaginary axis. By also considering the case
a1 = a3 > 4, it is clear that when a1 and a3 coincide, the choice
a2 = 2 + a2

1/4 minimizes the abscissa, with the polynomial p on
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the EP-set, see Figure 5. Furthermore, when a1 = a3 is increased
toward 4 from below, the coalescence points (EP2) move around
the unit circle to the left. This conjugate pair of coalescence
points merges into the quadruple real root λ = −1 (EP4) when
a1 = a3 = 4 and hence a2 = 6, as is visible in Figure 6. If a1 = a3

is increased above 4 the quadruple point EP4 splits again into
two exceptional points EP2, one of them inside the unit circle,
Figure 5.

Thus, all indications are that the abscissa is minimized by the
parameters corresponding to EP4, with a quadruple root at −1. In
fact, application of the following theorem shows that the abscissa
of (5) is globally minimized by the EP4 parameters.

FIGURE 4 | Trajectories of roots of the polynomial (5) when a2

increases from 0 to 15 and: a1 = a3 = 3.7 (black); a1 = 3.7, a3 = 3.6

(red); a1 = 3.6, a3 = 3.7 (green).

FIGURE 5 | Trajectories of roots of the polynomial (5) when a2

increases from 0 to 15 and: a1 = a3 = 5 (black); a1 = 5, a3 ≈ 4.621 (red);

a1 ≈ 4.621, a3 = 5 (green), indicating that although three roots

coalesce into a triple negative real root (EP3) with Reλ < −1, there is

another simple negative real root with Reλ > −1.

Theorem [27, Theorems 7 and 14]7. Let F denote either the real
field R or the complex field C. Let b0, b1, . . . , bn ∈ F be given (with
b1, . . . , bn not all zero) and consider the following family of monic
polynomials of degree n subject to a single affine constraint on the
coefficients:

P = {λn + a1λ
n − 1 + . . . + an − 1λ + an : b0

+
n∑

j = 1

bjaj = 0, ai ∈ F}.

Define the optimization problem

a∗ := inf
p ∈ P

a(p). (15)

Let

h(λ) = bnλ
n + bn − 1

(
n

n − 1

)
λn − 1 + . . . + b1

(
n

1

)
λ + b0.

First, suppose F = R. Then, the optimization problem (15) has the
infimal value

a∗ = − max
{
ζ ∈ R : h(i)(ζ) = 0 for some i ∈ {0, . . . , k − 1}

}
,

where h(i) is the i-th derivative of h and k = max{j : bj �= 0}.
Furthermore, the optimal value a∗ is attained by a minimizing poly-
nomial p∗ if and only if −a∗ is a root of h (as opposed to one of its
derivatives), and in this case we can take

p∗(λ) = (λ − γ)n ∈ P, γ = a∗.

FIGURE 6 | Trajectories of roots of the polynomial (5) when a2

increases from 0 to 15 and: a1 = a3 = 4 (black); a1 = 4, a3 = 3.9 (red);

a1 = 3.9, a3 = 4 (green). The global minimum of the abscissa is attained
when all the roots coalesce into the quadruple root λ = −1 (EP4).

7As explained in [27], most of this result when F = R was established by R.
Chen in a 1979 Ph.D. thesis.
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Second, suppose F = C. Then, the optimization problem (15)
always has an optimal solution of the form

p∗(λ) = (λ − γ)n ∈ P, Re γ = a∗,

with −γ given by a root of h (not its derivatives) with largest real
part.

In our case, F = R, n = 4 and the affine constraint on the
coefficients of p is simply a4 = 1. So, the polynomial h is given by

h(λ) = λ4 − 1.

Its real root with largest real part is 1, and its derivatives have
only the zero root. So, the infimum of the abscissa a over the
polynomials (5) is −1, and this is attained by

p∗(λ) = (λ + 1)4 = λ4 + 4λ3 + 6λ2 + 4λ + 1, (16)

that is, with the coefficients at the exceptional point EP4. There is
nothing special about n = 4 here; if we replace 4 by n we find that
the infimum is still −1 and is attained by p∗(λ) = (λ + 1)n.

3. SWALLOWTAIL SINGULARITY AS A GLOBAL MINIMIZER
OF THE ABSCISSA

Let us look at the dynamics of the roots of the polynomial (5)
in the complex plane, when a1 �= a3, i.e., when the variation of
a2 happens at a distance from the tangent cone (10). If a1 ≤ 4
and a3 ≤ 4 (as in Figures 4, 6) the complex roots do not coa-
lesce at EP2 or EP4 but instead some of them turn back toward
the imaginary axis before reaching the unit circle. Such parameter
configurations are therefore not optimal. However, when a1 > 4
or a3 > 4 other scenarios of the root movement are possible: for
example, formation of triple negative real roots as in Figure 5.
Note, however, that even when the triple negative real root occurs
at Re λ < −1, there is another negative real root inside the unit
circle. Therefore, in accordance with the above Theorem, configu-
rations with triple roots are not global minimizers of the abscissa
of the polynomial (5). Nevertheless, it is instructive to understand
the set in the (a1, a3, a2)-space where the roots of the polynomial
are real and negative, but not necessarily simple.

Consider the discriminant8 � of the polynomial (5) and equate
it to zero:

� := 16a4
2 − 4(a2

1 + a2
3)a3

2 + (a2
1a2

3 − 80a1a3 − 128)a2
2

+ 18(a1a3 + 8)(a2
1 + a2

3)a2 + 256 − 27a4
3

− 27a4
1 − 6a2

1a2
3 − 192a1a3 − 4a3

1a3
3 = 0. (17)

In the (a1, a3, a2)-space, the polynomial (5) has at least one mul-
tiple root at the points of the set given by (17). For example, in
the plane a1 = a3

� = (a2 + 2 + 2a3)(a2 + 2 − 2a3)(4a2 − 8 − a2
3)

2,

8The discriminant is a function of the coefficients of a polynomial which van-
ishes if and only if the polynomial has a repeated (real or complex) root. When
the discriminant of a real polynomial changes its sign, a complex conjugate
pair of roots either originates or disappears.

and the equation � = 0 yields the straight line a2 = 2(a3 − 1)

and parabola a2 = 2 + a2
3/4 that touch each other at a3 = 4 and

a2 = 6, which corresponds to the EP4 point in Figure 3. This cor-
responds to the quadruple negative real root −1 of the polynomial
(5), which is a global minimum of its abscissa.

Plotting the discriminant surface (17), we see in Figure 3 that
it has a self-intersection along the part of the EP-set (13) selected
by the inequality a2 ≥ 6 and two cuspidal edges defined in the
parametric form as

a1 =
a2

2 ± a2

√
a2

2 − 36 − 12(
a2 ±

√
a2

2 − 36

)3/2

√
6,

a3 =
a2

2 ± a2

√
a2

2 − 36 + 36

3

√
6a2 ± 6

√
a2

2 − 36

, a2 ≥ 6.

At the cuspidal edges the polynomial (5) has a triple negative real
root and a simple negative real root. For example, at the points(

28
9

√
3, 4

√
3, 10

)
and

(
4
√

3, 28
9

√
3, 10

)
we have, respectively,

λ1 = −
√

3

9
, λ2, 3, 4 = −√

3, and

λ1 = −3
√

3, λ2, 3, 4 = −
√

3

3
. (18)

At the point EP4 with the coordinates (4, 4, 6) in the (a1, a3, a2)-
space the discriminant surface has the Swallowtail singularity,
which is a generic singularity of bifurcation diagrams in three-
parameter families of real matrices [19, 28]; see Figure 3.

Therefore, the coefficients of the globally minimizing poly-
nomial (16) are exactly at the Swallowtail singularity of the
discriminant surface of the polynomial (5).

We notice, however, that the bifurcation diagram shown in
Figure 3 allows us to predict the root configurations that gener-
ically exist at the global optimum of the polynomial abscissa
when more than one affine constraint restricts the coefficients
of the polynomial. Indeed, let the number of affine constraints
be κ. Then, according to [28] and [19], the highest possible
codimension of a generic singularity in the restricted space of
parameters is n − κ. Therefore, introduction of an additional
constraint (κ = 2) generically removes the quadruple real root
λ = −1 of codimension 3 from the candidates to be global min-
imizers: n − κ = 2. Assuming for example a2 = const., we find
only double real or complex conjugate roots when 0 < a2 < 6
whereas when a2 > 6 we find only triple real roots. As Figure 7
shows, when a2 is restricted to 10, the global minimum is at the
algebraically smallest of the triple negative roots (18).

In the region inside the “spike” formed by the discriminant
surface all the roots are simple real and negative. Owing to this
property, this region, belonging to the domain of asymptotic sta-
bility (see Figure 1), plays an important role in linear stability
theory [29], as the next section demonstrates.
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FIGURE 7 | When a2 is restricted to 10, the abscissa of (5) reaches its

minimum at the triple negative real root −
√

3
3

when a1 = 4
√

3 and

a3 = 28
9

√
3. The red curve is a cross-section of the discriminant surface (17)

by the plane a2 = 10.

4. HEAVILY DAMPED SYSTEMS IN MECHANICS AND
PHYSICS

Consider a linear mechanical system described by the equa-
tion [29]

ẍ + Dẋ + Kx = 0, (19)

where x(t) ∈ IRm, t ≥ 0, and with the m × m matrices of viscous
damping D and stiffness K both real, symmetric and positive def-
inite. If the magnitude of the damping forces is big enough, one
can expect that all the eigenvalues λ of the corresponding matrix
polynomial L(λ) = λ2I + λD + K will not only have negative
real parts but be real and negative. The system (19) with semi-
simple real and negative eigenvalues is called heavily damped
[30]. The solutions of the heavily damped systems do not oscillate
and monotonically decrease, which is favorable for applications in
robotics and automatic control [31].

Note that in magnetohydrodynamics (MHD) there exists an
inverse problem of excitation of instabilities by changing parame-
ters of a heavily damped system. This is the famous MHD dynamo
problem where by controlling the flow of an electrically conduct-
ing non-ideal fluid one has to excite and maintain magnetic field.
At relatively slow and simple fluid motions the corresponding
linearized equations define a heavily damped system with all its
solutions decaying and non-oscillating, see [32–35]. Transition
from non-oscillating to oscillating solutions in the dynamo prob-
lem is crucial for explanation of the geomagnetic field polarity
reversals [36].

Assume that K is given and that we wish to choose the damping
matrix D so as to ensure that all solutions to (19) decay to zero as
rapidly as possible. This problem has been largely solved by Freitas
and Lancaster [37]; see also [29].

Let α(D, K) denote the spectral abscissa of the matrix
polynomial L(λ), that is the abscissa of its characteristic

polynomial:9

α(D, K) = a(det(L(λ)) = max{Re λ : det(L(λ)) = 0}.

The roots of the characteristic polynomial det(L(λ)) are the
eigenvalues of the matrix polynomial L(λ) and also the eigenval-
ues of the 2m × 2m companion matrix

(
0 I

−K −D

)
.

The optimal damping rate is determined by the solution of the
optimization problem

α∗ = inf
D

α(D, K).

Remarkably, Freitas and Lancaster [37] established that, for any
K > 0,

α∗ ≥ − 2m
√

det K

with equality holding if and only if L(λ) has just one eigenvalue
with algebraic multiplicity 2m.

In the case m = 2, this problem reduces to the one studied
in the section 2. Since the constant term of the characteristic
polynomial is det K, we introduce the quantities [15]

a1 = trD
4
√

det K
, a2 = trK + det D√

det K
, a3 = trKtrD − trKD

4
√

(det K)3

(20)
and following [37, Section 4], we reduce the characteristic poly-
nomial of L(λ) to the form (5), except that the roots have been
scaled by 4

√
det K. Conditions for asymptotic stability of the

polynomial (5) are therefore given by (4).
Solving the system of equations a1 = 4, a2 = 6, a3 = 4,

where the coefficients a1, a2, and a3 are defined by (20),
yields an explicit expression for the damping matrix D that
minimizes the spectral abscissa α(D, K) when m = 2 in terms
of the coefficients k11, k22, k12 and the eigenvalues ω2

1 and
ω2

2 (ω1,2 > 0) of the given matrix K. As shown by Freitas
and Lancaster [37], but expressed here in different notation,
given K > 0, we find that α(D, K) attains its global minimum
with L(λ) having just one eigenvalue λ = − 4

√
det K = −√

ω1ω2

with algebraic multiplicity 4 and geometric multiplicity 1, if
D = D+ or D = D−, where [15]

D± = 4k12
√

ω1ω2 ± (k11 − k22)(ω1 − ω2)

(ω1 + ω2)2

(
− 2k12

k11 − k22
1

1 2k12
k11 − k22

)

+
(

− 4
√

ω1ω2(ω1ω2 − k11)

k11 − k22
0

0
4
√

ω1ω2(ω1ω2 − k22)

k11 − k22

)
. (21)

Notice that D± may be either positive definite or indefinite and
that D+ = D− if and only if K = κI, where κ is a scalar [37].

9In [37], a slightly different notation is used, with their spectral abscissa and
ours having opposite sign.
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Now we can give the following interpretation of the stability
diagram of Figure 1. The dissipative system (19) is asymptoti-
cally stable inside the domain (4) with the coefficients a1, a2,
and a3 defined by (20). The boundary of the domain (4) has the
Whitney umbrella singular point at a1 = 0, a3 = 0, and a2 = 2.
The domain corresponding to heavily damped systems of the
form (19) is confined between three hypersurfaces of the discrim-
inant surface (17) and has a form of a trihedral spike with the
Swallowtail singularity at its cusp at a1 = 4, a2 = 6, and a3 = 4;
see Figure 3. The Whitney umbrella and the Swallowtail sin-
gular points are connected by the EP-set given by (13). At the
Swallowtail singularity of the boundary of the domain of heav-
ily damped systems, the abscissa of the characteristic polynomial
of the damped potential system (19) attains its global minimum.

Therefore, by minimizing the spectral abscissa one finds points
at the boundary of the domain of heavily damped systems.
Furthermore, the sharpest singularity at this boundary corre-
sponding to a quadruple real eigenvalue λ = − 4

√
det K < 0 with

the Jordan block of order four is the very point where all the
modes of the system (19) with m = 2 are decaying to zero as
rapidly as possible when t → +∞.

5. DISCUSSION
Typical singularities of the contour plots of the abscissa (or decre-
ment diagrams) in the plane of two parameters were listed already
by Arnold [19]. Let us have a closer look at the decrement
diagram of the polynomial (5) shown in Figure 8. The addi-
tional constraint (a2 = 10) removes the quadruple real root from
the generic singularities; hence, the minimizer of the abscissa is

the EP3 point corresponding to the triple root λ = −
√

3
3 (see

Figure 7, which shows the graph of the abscissa in three dimen-
sions). The lower (curved) contours in Figure 8 correspond to the
real parts of a complex-conjugate pair. The upper contours are

FIGURE 8 | The gray curves show the contour plot (decrement

diagram) of the abscissa a of the polynomial (5) when a2 is restricted

to 10. The green circle at the cusp of the red discriminant curve (17) marks
the location of the EP3 singularity, where the abscissa reaches its minimum
in this case.

straight lines and correspond to a simple negative real root. The
contours cross either at the points of the discriminant set (17)
corresponding to the double negative real roots (the lower part
of the red cuspidal curve in Figure 8) or at the points where both
complex conjugate roots and the real root have the same real part;
see [19].

What are the relationships among the decrement diagram, sta-
bility boundary, discriminant set, and abscissa minimization? For
a detailed answer it is simpler to consider a two-parameter cubic
analog of the polynomial family (5)

p(λ) := λ3 + a1λ
2 + a2λ + 1 (22)

and to look closely not only at the active roots, that is those whose
real parts coincide with the abscissa a(p), but also at the remaining
inactive roots, whose real part is algebraically smaller than a(p).

The polynomial (22) is Hurwitz if and only if

a1a2 > 1, a1 > 0, a2 > 0. (23)

The discriminant curve of the polynomial (22)

(a1a2 + 9)2 − 4(a3
1 + a3

2 + 27) = 0 (24)

bounds the domain of real roots in the (a1, a2) plane. It has a cusp
singularity at a1 = a2 = 3; see Figure 9. In accordance with the

FIGURE 9 | The green curves show the contour plot (decrement

diagram) of the abscissa a of the cubic polynomial (22) with contour

plots of the real parts of the inactive roots superimposed (red and gray

curves). The open circle marks the location of the EP3 singularity of the
bifurcation diagram, where the abscissa reaches its minimum. The
contours corresponding to simple real roots are straight lines that sweep
out the cuspidal area confined between the boundaries of the bifurcation
diagram. In the limit, these contours are tangent to the black cuspidal curve
and may be viewed as rays forming a caustic [19, 42, 44]. The curved green
contours correspond to real parts of a complex conjugate pair of
eigenvalues. The black hyperbola marks the stability boundary with the
stable region above it and to the right. Along the stability boundary, a few
(negative) gradient vectors of the real part of the complex conjugate pair of
active eigenvalues are marked at a1 = 0.25, a1 = 1, and a1 = 4.
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Theorem of section 2 the polynomial abscissa a(p) has its global
minimum at the singular EP3 point of the discriminant curve
corresponding to a triple root λ = −1.

Denote
x = (a1, a2), y = Re(∇xλ), (25)

where the gradient of a root is given by the expression

∇xλ = −∇xp

∂λp
. (26)

For example, taking into account that at the points of the stability
boundary (a1a2 = 1) the roots are

λ1, 2 = ±i

√
a1

a1
, λ3 = −a1,

we find that the gradient of the real part of the complex-conjugate
pair is

y(λ1, 2) = −1

2

(
1

1 + a3
1

,
a2

1

1 + a3
1

)
. (27)

Figure 9 is plotted in the (a1, a2) parameter space. The black
hyperbola shows the stability boundary, with the stable region
(23) above and to the right. The small black strokes drawn at
right angles to the hyperbola indicate some of the (negative)
gradients (27).

The green curves and line segments in Figure 9 show the con-
tours of the maximum of the real parts of the three roots of (22),
i.e., they comprise a contour plot of the polynomial abscissa (the
decrement diagram). More specifically, the green curves in the sta-
ble region correspond to a complex conjugate pair of active roots;
in this region, as well as in the unstable region, the contours of the
remaining inactive simple real root are shown by gray line seg-
ments. The green line segments appearing in the top part of the
figure correspond to a simple real active root; in this region the
contours of the real part of the complex conjugate pair of inactive
roots are marked by the red curves.

Inside the cuspidal area whose boundary is exactly the discrim-
inant curve given by (24), all three roots are real: the contours of
the active root are marked by green segments, while the contours
of the two inactive real roots are shown by red and gray line seg-
ments. In fact, the rays defined by the green, gray, and red line
segments shown in the figure sweep out the cuspidal area. The
boundary of the region of real roots can thus be viewed as a caus-
tic or an evolute of the rays defining the contours of the negative
real roots [19]. The open circle at the cusp is the EP3 singularity,
where the abscissa reaches its global minimum with all three roots
equal to −1.

10For example, movement of eigenvalues in parametric families of real sym-
metric and Hermitian matrices possesses physical interpretation as dynamics
of Pechukas-Yukawa gas [45] which is an integrable multidimensional system;
the latter fact in its turn is used for analysis and design of numerical algorithms
for eigenvalue computation [46–49]. Notice also that computation of multi-
ple roots and eigenvalues is nowadays an important applied problem related
to the so-called “physics of exceptional points” [25, 26] in systems described
by non-Hermitian Hamiltonians [50–52].

Despite the lack of smoothness and convexity of the abscissa
and spectral abscissa functionals, numerical methods have been
developed that are quite practical for finding local minimizers
for arbitrary polynomial and matrix parameterizations—even
when these minima correspond to multiple roots or multiple
eigenvalues—provided the number of variables and the optimal
multiplicities are not too large [38–41]. It may be interesting to
interpret these or related methods in terms of rays and wave
fronts propagating in the parameter space. Then, the powerful
formalism of the theory of caustics and wave front singulari-
ties [42–44] could give a geometrical and even physical10 insight
to the remarkable fact that globally minimizing the abscissa
or spectral abscissa typically leads to multiple roots or multi-
ple eigenvalues. Such an interpretation of polynomial root and
matrix eigenvalue optimization algorithms as dynamical systems
could be a line of research that is mutually fruitful for numerical
analysis, stability theory, and mathematical physics.
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