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Université Paris-Est – IGN/SR, MATIS, 73 avenue de Paris, 94160 Saint-Mandé, France

Abstract

Automatic 3D point cloud registration is a main issue in computer vision and

remote sensing. One of the most commonly adopted solution is the well-known

Iterative Closest Point (ICP) algorithm. This standard approach performs a

fine registration of two overlapping point clouds by iteratively estimating the

transformation parameters, assuming good a priori alignment is provided. A

large body of literature has proposed many variations in order to improve each

step of the process (namely selecting, matching, rejecting, weighting and min-

imizing). The aim of this paper is to demonstrate how the knowledge of the

shape that best fits the local geometry of each 3D point neighborhood can im-

prove the speed and the accuracy of each of these steps. We first present the

geometrical features that are the basis of this work. These low-level attributes

indeed describe the neighborhood shape around each 3D point. They allow to

retrieve the optimal size for analyzing the neighborhoods at various scales as

well as the privileged local dimension (linear, planar, or volumetric). Several

variations of each step of the ICP process are then proposed and analyzed by

introducing these features. Such variants are compared on real datasets, as

well with the original algorithm in order to retrieve the most efficient algorithm

for the whole process. The method is therefore successfully applied to various

3D lidar point clouds from airborne, terrestrial, and mobile mapping systems.

Improvements are noticed for two of the five ICP steps, while concluding our

features may not be relevant for very dissimilar object samplings.
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neighborhood, change detection

1. Introduction

1.1. Why registering 3D topographic point clouds ?

Lidar systems provide 3D point clouds with increasing accuracy and relia-

bility. When the same area of interest is acquired twice, or more, over time or

space, depending of the application, the registration problem arises. For air-

borne and mobile platforms, the use of an hybrid IMU (Inertial Measurement

Unit)/GPS georeferencing system introduce 3D shifts between 3D point clouds.

For airborne surveys, this mainly comes from drifts of the inertial measurement

unit. One has to solve the so-called strip registration issue: planimetric and

altimetric discrepancies exist between two overlapping strips at a level supe-

rior to the sensor noise (up to 2 m in altimetry). When dealing with mobile

mapping systems in urban corridors, the problem is increased by GPS signal

gaps, resulting in significant shifts in platform trajectory estimation, as well

as by the presence of moving objects such as cars and pedestrians. For static

terrestrial devices, registration is required when several points of view of the

same object are acquired, facing the issue of putting them in correspondence

with few overlapping areas and varying point densities (Lichti and Skaloud,

2010). Consequently, alignment of several point clouds remains a prerequisite

for subsequent analysis and processing steps.

1.2. Existing solutions

In the literature, a plethora of papers have addressed the problem of 3D

data registration, alternatively in terms of point cloud alignment or range im-

age matching. Both rigid and non-rigid methods exists.

One can coarsely divide the 3D point cloud registration algorithms in three

main families. Firstly, the alignment using feature-based methods is achieved

through the correspondence of feature primitives or keypoints, that, in addi-

tion, may have interesting properties with respects to the issue of interest (e.g.,
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invariant to rigid-motion). Such methods therefore heavily rely on the primi-

tive extraction step, but the subsequent matching step allows to avoid several

standard issues such as noise, outlier detection and large data volume man-

agement. Features can be keypoints (SIFT, spin images) (Huber and Hebert,

2003b; Stamos and Leordeanu, 2003; Barnea and Filin, 2008; Weinmann et al.,

2011), corners (Thirion, 1996), segment or curves (Stein and Medioni, 1992),

local planes (Dold and Brenner, 2006), specific patterns (spheres, cylinders) or

higher-level shape descriptors (Frome et al., 2004). The exhaustive search of

corresponding feature pairs can be leveraged using pruning or selection tech-

niques (such as RANSAC) or efficient hierarchical optimization techniques.

Secondly, in surface-based approaches, 3D datasets are represented by a surface

model. Usually, the model used for registration is the mesh model. Then, the

registration is performed directly on mesh models rather than on the 3D point

cloud. The introduction of surfaces allows to take into account holes, potential

deformation between them and the introduction of well-established techniques

such as thin-plate splines (Szeliski and Lavallée, 1996; Allen et al., 2003; Chui

et al., 2004; Mitra et al., 2004).

Finally, one can find non-focused point-based methods, requiring neither feature

extraction nor pre-modeling step. They may work on the full set of points or

on specific subsets. Their aim is (1) to find correspondences between the two

point sets and (2) to estimate the transformation. These methods can classified

according to:

• The performance of these two steps, simultaneously or sequentially;

• The type of the underlying optimization method used, which can global

or local, some authors even trying to mix both levels of information (Bre-

itenreicher and Schnörr, 2011; Papazov and Burschka, 2011).

Simultaneous methods are known to be very robust since the errors are dis-

tributed among all the points of the sets to limit distortion with preserving the

geometry (Huber and Hebert, 2003a; Myronenko and Song, 2010). Although,

their major deficiencies are the actual computation time, and the potential loss
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of small details owing to error accumulation. Sequential methods may produce

imprecise results since errors can be more easily propagated, unless one can

guarantee initial correct alignment (Chen and Medioni, 1992).

Global, deterministic or stochastic, optimizations using for instance branch-and-

bound methods, simulated annealing, genetic algorithms, or evolutionary meth-

ods also exhibit significant computing times (especially deterministic ones, but

with guaranteed convergence), and are generally regarded as providing coarse

registration (Silva et al., 2005). They therefore can be coupled with local meth-

ods, even if some authors manage to reach global minima without any initial-

ization (Li and Hartley, 2007). The landmark contribution in local family is the

Iterative Closest Point (ICP) algorithm. We have selected it for our study since

this is one of the most widespread method to compute registration of two point

clouds. Other methods based on the Least-squares procedure (Gruen and Akca,

2005; Grant et al., 2012), the Random Sample Consensus algorithm (Chen et al.,

1999), kernel correlation (Tsin and Kanade, 2004) or the Normal Distribution

Transform (Ripperda and Brenner, 2005) exist, and can have more interesting

convergence properties than the ICP. It iteratively minimize the mean square

error between points in point set and the closest points in the other one. The

simplicity of this method, introduced by Chen and Medioni (1992) and Besl

and McKay (1992), is the reason for its extensive use for a large variety of

datasets and contexts. Nevertheless, due to sensibility of the iterative method

to noise and poor iteration, many variants have been developed to improve the

five consecutive steps (selecting, matching, rejecting and weighting compose the

correspondence finding part whereas the transformation estimate consists in

minimizing a given function), with varying degrees of success and more or less

focused on specific issues (mainly convergence speed versus accuracy) (Lu and

Milos, 1997; Rusinkiewicz and Levoy, 2001; Gelfand et al., 2003; Segal et al.,

2009; Bae, 2010). The ICP is only valid for pair-wise registration, and other

methods are required for the simultaneous registration of multiple point clouds

(Craciun et al., 2010). According to Rodrigues et al. (2002), no optimal solu-

tions exists. For the time being, the ICP method is still the state-of-the-art
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algorithm (Salvi et al., 2007).

1.3. Feature introduction in ICP

Since ICP is an iterative descent algorithm, it requires a good initial esti-

mation so as to converge to the global minimum. Besides, the ICP matching

step is the most time-consuming part of the registration phase, thus improving

the rate of convergence is crucial to make registration faster. To reduce the

matching time, effective features of interest should be found. Such attributes

may also be relevant to cope with erroneous associations between nearest points.

This can frequently happen in case of surfaces or objects acquired with different

point densities or different points of view in the two datasets (Salvi et al., 2007).

Consequently, two main solutions have been proposed in literature: working at

object level (Douillard et al., 2012) or computing, for each point, local features

providing neighborhood information. Thus, several interesting local descrip-

tors, based on the geometrical point cloud analysis, have been elaborated, and

successfully used on ICP variants. For instance, Bae and Lichti (2008) have

recently focused on the analysis of the geometrical curvature and the position

uncertainty of laser scanner measurement. The introduction of features of inter-

est seems indeed very effective, since it allows to focus the registration process

on the most reliable regions. The ”reliability” may be evaluated according to

planar criteria or with scale-space analysis (Sharp et al., 2002; Ho et al., 2009).

For more complex environments with specific patterns other primitives may be

introduced, for example shapes like planar patches, spheres, cylinders and tori

in industrial areas (Rabbani et al., 2007).

Recently, several authors have focused on multi-scale local 3D point analysis for

several purposes: dimension filtering for suitable operator definition (Unnikr-

ishnan and Hebert, 2008; Digne and Morel, 2012), line extraction (Pauly et al.,

2003), normal vector estimation (Unnikrishnan et al., 2010) and propagation

(Digne et al., 2011) or 3D model compactness analysis (Novatnack and Nishino,

2007). In (Demantké et al., 2011) and (Brodu and Lague, 2012), the multi-scale
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analysis of 3D lidar points, based solely on the geometrical information allows

to retrieve for each point the optimal neighborhood size and the prominent

behaviour of the vicinity (linear, planar, or volumetric).

1.4. Motivation

The aim of this paper is to propose a general and automatic method for

3D point cloud alignment, applicable on the three kinds of topographic lidar

datasets mentioned in Section 4. We focus on pair-wise registration of datasets

that do not exhibit large changes (especially in rotation), the coarse 3D regis-

tration issue being beyond the scope of this article. Furthermore, finding the

correspondence between a lidar dataset and an existing 3D model (Bosché, 2012)

or a photogrammetric point cloud (Armenakis et al., 2012) are not investigated

here. We assume the existence of a good a priori alignment before the two point

sets of interest. If not, when scan orientations are unknown (e.g., terrestrial

surveys), methods specific to the areas of interest are required (Makadia et al.,

2006; Barnea and Filin, 2008; Theiler and Schindler, 2012).

Specifically, our goal is to assess how the introduction of the multi-scale features

of Demantké et al. (2011), simply computed on 3D points, may improve a stan-

dard fine-registration algorithm, namely the Iterative Closest Point method.

This paper extends the work we presented in (Gressin et al., 2012) by detailing

and improving the geometrical features selection, and by presenting new results.

The geometrical features of interest are first introduced (Section 2). Then, the

five steps of the ICP algorithm are described in Section 3. For each step, the

introduction of the proposed features is discussed. After a short presentation

of the datasets in Section 4, the different variants of the ICP algorithm are

evaluated and compared in Section 5. This allows to propose an optimized

combination of ICP variants. Finally, conclusions are drawn in Section 6.

2. Finding features of interest

Our goal is to introduce the geometrical features that have been proposed in

(Demantké et al., 2011) in the ICP procedure. The method aims to find, for each
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3D point, the optimal neighborhood size. The primary goal was to find the most

suitable local point set facing the interdependence problem: geometrical features

depend on the choice of the neighborhood, whereas a good neighborhood choice

should rely on the local geometry, and thus on geometrical features.

This is a two-step approach. In a first time, dimensionality features (1D, 2D,

3D) are proposed for a given neighborhood size of spherical shape. Then, these

features are computed for growing sizes, and the neighborhood radius is adjusted

in order to minimize an entropy function. This provides the most salient scale

of analysis and the associated dimension. The proposed method exhibits several

advantages that are likely to be relevant for our purpose:

• The simple knowledge of the three geographical coordinates is sufficient

(no intensity information) : the features of interest are based on the co-

variance matrix populated with the second order moment of the {x,y,z}

triplets.

• The method has been successfully applied to the three main kinds of lidar

point clouds (airborne, terrestrial static, mobile mapping system);

• It does not rely on properties of specific objects or on structured datasets;

• In addition to the optimal search radius, the local point set behaviour

(linear, planar, or scatter) is retrieved.

2.1. Dimensionality features

For each point P , points closer than distance r (radius) belong to a spherical

neighborhood Vr centered on P . A Principal Component Analysis is performed

on such point set to obtain three eigenvalues (λ1, λ2, λ3), such as λ1 ≥ λ2 ≥

λ3 ≥ 0, and three eigenvectors (−→v1 ,
−→v2 ,

−→v3). One can note that −→v3 provides a

robust value of the normal of the 3D point, noted hereafter −→n . The standard

deviation along an eigenvector i is denoted by:

∀ i ∈ [1, 3], σi =
√

λi. (1)
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The shape of the point distribution within Vr is then represented by an oriented

ellipsoid. Three geometrical features are introduced in order to describe the

linear (a1D), planar (a2D) or scatter (a3D) behaviors within Vr:

a1D =
σ1 − σ2

σ1
, a2D =

σ2 − σ3

σ1
, a3D =

σ3

σ1
. (2)

These three features are normalized so that a1D + a2D + a3D = 1. This allows

to consider them as the probabilities of each point to be labeled as linear (1D),

planar (2D) or volumetric (3D). These low-level primitives are considered to be

sufficient to describe the main behaviours within a point cloud (see Figure 1).

Since the method is designed to be independent to any information about the

acquisition process (objects, point density, scan pattern, etc.), additional geo-

metrical description would introduce noise in the process, and, thus, make the

process less general. For the specific case of airborne laser scanning, the reader

should refer to (Jutzi and Gross, 2009), where a more complete analysis is per-

formed on which kinds of geometrical behaviours can be detected and labeled.

The dimensionality label l∗ (1D, 2D, or 3D) of Vr is defined by:

l∗(Vr) = argmax
l∈[1,3]

[alD]. (3)

If σ1 ≫ σ2, σ3, then a1D is greater than the two other features, and the dimen-

sionality label l∗(Vr) results to 1. This corresponds to edges between planar

surfaces, catenary curves, poles, traffic lights, thin tree trunks etc. Conversely,

in case of planar surface or slightly curved areas, σ1, σ2 ≫ σ3, and a2D will

prevail. Finally, σ1 ≃ σ2 ≃ σ3 implies l∗(Vr) = 3, corresponding to spatially

scattered objects such as vegetation.

2.2. Optimal neighborhood radius

The dimensionality features are computed for increasing radii values between

a lower bound rmin to an upper bound rmax, using a square factor. Demantké

et al. (2011) describe how these bounds can be automatically retrieved, and how

the [rmin, rmax] space can be efficiently sampled.
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(a) a1D (b) a2D

(c) a3D

Figure 1: Illustration of the three low-level descriptors over building facades acquired with a
Mobile Mapping System.

For each radius r, and for each lidar point P , a measure of unpredictabil-

ity is given by the Shannon entropy of the discrete probability distribution

(a1D, a2D, a3D):

Ef (V
r
p ) = −a1D ln(a1D)− a2D ln(a2D)− a3D ln(a3D). (4)

Then, the optimal neighborhood radius is obtained as the minimum of the

entropy function Ef (cf. Figure 2):

r∗P = argmin
r∈[rmin, rmax]

Ef (V
r
P ). (5)

The optimal neighborhood V∗, associated to r∗ is finally used to compute a

dimensionality label l∗(Vr∗

P ), noted l∗ in the following sections.

2.3. Features of interest

Various features have been computed in the previous section, and several

others can be derived from them. One main feature of interest is the omni-

variance O =
∏

i∈[1,3]

σi (Gross and Thoennessen, 2006), thus proportional to the

ellipsoid volume. It allows to characterize the shape of the neighborhood, and,

in particular, to enhance whether one or two eigenvalues are prominent.
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Each 3D point of the cloud can then be described by the following feature set:

{λ1, λ2, λ3,
−→v1 ,

−→v2 ,
−→v3 , a1D, a2D, a3D, l

∗, r∗, E∗
f , O}, (6)

with E∗
f = Ef (V

r∗

p ) and −→v3 = −→n .

One can note that −→n and O have been computed from the optimal neighbor-

hood, and thus also benefit from the described method. −→n provides a robust

approximation of the local surface normal. O allows a global description of the

shape of the neighborhood. As we consider −→n being sufficient for representing

the surface orientation, −→v1 and −→v2 are discarded for the subsequent relevance

analysis. As the most suitable features for registration are not known before-

hand, the other attributes are conserved so as to be integrated in the different

ICP steps. Their specific contribution will be discussed at each of the analysed

steps.

Figure 2 gives an illustration of several features for a building facade acquired

with a Mobile Mapping System. One can see than the optimal radius, and thus

the omnivariance increase for lower point densities, and that most of the facade

is correctly described as a planar surface.

3. Optimizing the Iterative Closest Point algorithm

3.1. ICP steps

The purpose of ICP algorithm is to perform the registration of two coarsely

aligned point clouds (a mobile point cloud registered on a fixed reference point

cloud). It iteratively minimizes the distances of all points in the reference scan

to the nearest point or plane in the mobile one. It is based on a squared-error

and converges to a local minimum. More details can be found for instance in

(Bae, 2010). The algorithm is composed of five steps detailed in the next sec-

tion. First, a reduced number of points is selected to find suitable candidates for

registration. Then, matching points are found between the two points clouds,

and each corresponding pair is weighted. Some of these corresponding pairs may
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Figure 2: Several dimensionality features introduced in the ICP procedure.

be rejected. rejecting. Furthermore, an error metric is traditionally designed

with respect to the context and the area of interest, and finally minimized,

providing transformation parameters (translation and rotation). For each step,

various variants and extensions exist so as to increase convergence, robustness,

and computational efficiency (Bergevin et al., 1996; Rusinkiewicz and Levoy,

2001).

Selection aims to sample the two initial point clouds (mobile and reference

point clouds) in order to reduce computation time caused by large data sets.

Efforts on efficient selection will be performed here.

Matching deals with the search for (robust) corresponding point pairs.

The simplest and the most widely adapted one is to find the closest point in the

reference point cloud. Since this solution may be corrupted by noise or is sen-

sitive to surface discretization, other methods use surfaces/meshes to compute
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point-to-surface matching. Then, a compatibility metric can be designed to re-

fine the matching, for example using color (Godin et al., 1994), normals (Pulli,

1999), high-order derivatives or other features mentioned in Section 1.3. Since,

no underlying surface can be considered in our datasets, we have adopted the

point-to-point strategy without any modification. We consider that the features

derived in Section 2 allow an analysis on a larger, but still local, spatial support.

Furthermore, we do not directly do the matching in a higher-dimensional space:

the standard Euclidean distance is considered.

Weighting / Rejecting consists in adding some contextual knowledge for

each corresponding pair of interest. Firstly, each of them can be weighted with

respect to the neighborhood or the whole point cloud. The relevance of our

feature set will be assessed. Secondly, the worst pairs may be rejected using,

most of the times, statistics on the whole point cloud. Improvements will also

be proposed here.

Minimizing. Given a set of matching points C = {(Pmob
i , P ref

i )}i of two sets

(mobile and reference), weighted with wi, the purpose of the last step of the ICP

algorithm is to find the transformation T minimizing the sum of the squared

distances between each couple of points. The two most frequently adapted

distances in the literature are the point-to-point distance, and the point-to-

plane distance using the normal of each point. Since the local normal vector

−→ni is assumed to be (more) reliable thanks to the adopted multi-scale analysis,

the second option is adopted. The optimal transformation T ∗ is computed as

follows:

T ∗ = argmin
T

card(C)
∑

i=1

wi((T ∗ Pmob
i − P ref

i ) �−→ni)
2. (7)

T ∗ corresponds in practice to a rotation matrix and a translation vector

(Besl and McKay, 1992).

In the following sections, the variations of ICP steps with the inclusion of our

geometrical features are described.
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3.2. Selection step

A naive strategy is to randomly subsample the point cloud so that the general

distribution of the points is preserved (Turk and Levoy, 1994). As a multi-scale

analysis, different samples can also be performed at each iteration (Masuda

et al., 1996). Another possibility is to select points with high intensity gradient

if color or intensity is available (Godin et al., 1994). Rusinkiewicz and Levoy

(2001) prefer selecting points so as to preserve a distribution of normals as large

as possible.

As alternatives, two solutions based on E∗
f and l∗ features are proposed. Such

attributes allow to focus the selection step on the most reliable areas for accurate

registration. An area is considered as ”unreliable” if it corresponds to (1) the

boundary between several objects or surfaces, or to (2) a geometrically complex

object. In such cases, since the acquisition processes of the two point clouds

may be distinct, the local geometries are likely to be dissimilar.

• High-entropy selection: As described in Section 2.2, the larger E∗
f , the

more prominent a single dimension. This means that the local geometry is

simple enough to take a strong decision, thus pointing out salient regions

of the 3D point cloud (Figure 2).

• Dimensionality-based selection: Three variants are tested, correspond-

ing to the three possible values of l∗.

– l∗ = 1 corresponds to linear behaviour i.e., borders between surfaces

or thin objects (Demantké et al., 2011). They are strong cues for

registration if their sampling in both datasets is sufficient.

– l∗ = 2 will keep planar surfaces that are likely to be the most stable

areas of interest for matching.

– Scattered objects correspond to l∗ = 3. Since few objects are labeled

as volumetric in practice, few points will be selected.
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3.3. Weighting step

After searching corresponding pairs, each of them is weighted. Several

weighting functions of two points (P1, P2) exist in the literature (Godin et al.,

1994). Basically, a constant weighting function wC(P1, P2) = w0 (w0 being arbi-

trarily set) is chosen. Another strategy consists in adding a weighting function

d: wD(P1, P2) = 1− d(P1,P2)
dmax

, where dmax is the maximum value of this function

for the set of pairs.

The Euclidian norm d(.) = d2(.) = ‖.‖ is often used. Since specific geometrical

features have been introduced, an omnivariance compatibility metric dO(p1, p2)

is first proposed. It is based on the difference of the ellipsoid volumes O. Thus,

a weighting function wO(P1, P2) is designed as follows:

wO(P1, P2) = 1−
dO(P1, P2)

dmax
, with dO(P1, P2) = |OP1

−OP2
|. (8)

Similarly, three other weighting functions are introduced, based on three differ-

ent distances and features (namely the eigenvalues λ, the geometrical features

a, and the optimal radii r):

• wλ(P1, P2) = 1− dλ(P1,P2)
dmax

, with dλ(P1, P2)
2 =

∑3
i=1(λ

1
i − λ2

i )
2;

• wa(P1, P2) = 1− da(P1,P2)
dmax

, with da(P1, P2)
2 =

∑3
i=1(a

1
iD − a2iD)2;

• wr(P1, P2) = 1− dr(P1,P2)
dmax

, with dr(P1, P2) = |(r1 − r2)|.

Finally, normal compatibility can be inserted to define another weighting

function: wN (P1, P2) = −→n1.
−→n2. Since normal computation has been improved

using the method of (Demantké et al., 2011), this solution is also tested.

3.4. Rejecting step

The literature generally proposes to reject the worst corresponding pairs,

based on various distance criteria:

• Distance threshold such as 2.5 times the standard deviation of distances

of pairs (Masuda et al., 1996);
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• Rank filter: n% with the greatest distance (Pulli, 1999).

The rejection distance being not necessarily the same as for the matching

step, different distances are adopted in order to discard the worst corresponding

pairs:

• n% with the greatest distance, using dO;

• n% with the greatest distance, using da;

• n% with the greatest distance, using dr;

• n% with the greatest distance, using ddim.

The distances dO, da, and dr have been introduced in Section 3.3. In addition,

we have for a pair of points (P1, P2): ddim(P1, P2) = d2(P1, P2) if (l
∗
1 = l∗2) and

ddim(P1, P2) = ∞ otherwise.

4. Datasets

Three kinds of lidar datasets are exploited in order to assess the relevance

and performance of each proposed variant of the algorithm. These datasets have

various point densities, point distribution, and points of view since they have

been acquired with different lidar systems: airborne (ALS), terrestrial static

(TLS), and mobile mapping systems (MMS).

4.1. ALS

The dataset has been acquired over a dense urban area (city center with low-

elevated buildings, cf. Figure 3) at two different dates, and with distinct airborne

lidar scanners, resulting in two different ground patterns. The first acquisition

(ALS03) was completed in 2003 (point density of 7.5 pts/m2, 400, 000 pts),

with a Toposys fiber scanner (Lohr and Eibert, 1995). The spatial sampling is

therefore very inhomogeneous (1.5m between two fibers, and 0.15m between two

measurements of the same fiber). The second acquisition (ALS 08 ) occurred in

2008 (point density of 2 pts/m2, 90, 000 pts, oscillating mirror) with an Optech
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3100 EA device. Registering these two epochs is crucial for change detection

purposes (Figure 3).

Figure 3: Two ALS datasets. ALS03 and ALS08 correspond to point clouds acquired in 2003
and 2008, respectively.

4.2. TLS

The TLS concerns an indoor environment (point density of 0.3 pt/cm2,

20, 000 pts). Two points of view of the same area (office desk covered with var-

ious objects) were consecutively acquired with the same Trimble system (Fig-

ure 4), and slightly different points of view. One can see that an object (a house

plant) has also been removed.

Figure 4: TLS dataset, with two points of view, colored using ambient occlusion.
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4.3. MMS

This dataset covers one building facade in an urban area in France (Figure 5).

The mobile mapping system acquired two times the same area the same day but

with a time shift of one hour. A RIEGL LMS-Q120i lidar has been used for

that purpose, and oriented towards the roof top (pavement and road surfaces

omitted).

The challenges are that: (1) not exactly the same parts of the buildings are

sampled, and (2) a 3D shift between both point clouds naturally exists, due to

georeferencing process. The point cloud density is very variable, even inside the

same point cloud, depending on the angle of incidence of the variable distance

between objects and the MMS. However, the typical density on the facades of

the buildings is near 100 pts/m2 (around 200, 000 pts per point cloud).

Figure 5: MMS dataset colored using ambient occlusion: two acquisitions of the same area,
but with a temporal shift.

5. Experiments

Variants of ICP can be analysed and compared through several criteria:

speed, overall accuracy, stability, tolerance to noise or outliers, and maximal

initial misalignment. Since we deal with real lidar datasets, we will not tackle

the noise/outlier tolerance issue. The problem of initialization will also be put

aside since this is out of the scope of the paper. Finally, ICP variant effectiveness
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will be assessed with speed and geometrical accuracy performances, considering

the stability issue embedded in the discussions of the matching step.

Firstly, the comparison protocol will be detailed. Then, it will be applied at each

proposed variant of the ICP algorithm, in order to evaluate each of them, and

find the best proposition. Therefore, fifteen different solutions have been tested

on three datasets. All of them are presented and commented, but variants with

the worst results may not be depicted.

5.1. Comparison method

Point cloud registrations can be compared by straightforwardly computing,

for each mobile point cloud, the mean of the distances of the closest points in

the reference point cloud. Nevertheless, non-overlapping areas may exist: this

value is thus not relevant for that purpose.

To address this issue, the n-resolution Rn of a point cloud is defined by the

mean distance of the n-closest points in the same dataset. In our experiments,

the value n = 5 is selected, even if the selection of the optimal neighbors may be

a better solution. Then, a distance threshold t = 10×Rn has been introduced,

and the mean of the distances smaller than t (noted t̄) is computed. Finally,

the performance of each variant is evaluated through a graph of the final t̄ with

respect to the convergence speed, computed on a Intel Core2 2.83 GHz CPU

with 4 GB of RAM. These results are compared with a default configuration,

considered at each stage of the registration process. Such a configuration is (see

Section 3.1):

• Selecting: all 3D points;

• Matching: closest point;

• Weighting: constant weight wC ;

• Rejecting: none, all corresponding pairs;

• Minimizing: point-to-point distance, without normal computation.
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5.2. Selecting

Five variations, as discussed in Section 3.2, have been proposed. The point

cloud is first randomly sampled (random) and 10% of the points are conserved.

Then, only the 3D points with high entropy values (E∗
f ) are selected. Two

empirical thresholds are tested: E∗
f > 0.6, and E∗

f > 0.7. Finally, points have

been selected according to their dimensionality label, resulting in three cases:

l∗ = 1, l∗ = 2, and l∗ = 3. Results are presented in Figure 6.

The first conclusion is that faster registrations can be achieved with proposed

selection variants. The accuracy is only increased with l∗ = 2, which allows

to focus on planar surfaces. Improvements are noticed for the three datasets.

This is due to the fact that such areas are the most stable with respect to point

density and point of view variations.

Speed is significantly improved with all other selection methods, since, indeed, a

smaller number of points is introduced in the ICP procedure. While the random

subsampling of the point clouds often achieves the worst results, and should be

discarded (except for the TLS dataset, where the point density is still very

important after reduction). Besides, the entropy-based selection improves the

convergence time by a factor of 5 to 7, depending on the value of the threshold.

However, the accuracy is slightly lower than the default configuration, especially

for the ALS dataset. Finally, for such case, the l∗ = 1 and l∗ = 3 selections

steadily improve the convergence times but not the geometrical accuracy. Such

labels correspond in practice, for the airborne case, to building roof top and

gutter lines, respectively. A fewer number of points are concerned in the data,

resulting in saving computing times. However, as such labeling may vary a lot

with changing point densities, it is not so stable and not optimal registration

quality is achieved. These results show that the E∗
f feature should be introduced

for registration issues where a trade-off between accuracy and computing time

has to be found. For highly sampled objects (TLS and MMS datasets), E∗
f is

all the more relevant as it allows to tune how confident on the local analysis we

are. It is directly related to how well a surface is described with the available

point density. Thus, when the point distributions is homogeneous, such as for
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the ALS dataset, this solution is less efficient.

5.3. Weighting

Six different weighting functions have been proposed and compared to the

default configuration : the omnivariance-based weight wO, the normal com-

patibility wN , the eigenvalues-based weight wλ, the geometrical feature-based

weight wa, and the optimal radius-based weight wr. Results are presented in

Figure 7. The default weighting provides the best results in terms of speed for

all datasets. Furthermore, slightly similar results to the default configuration

are achieved in terms of accuracy (but with slower convergence) for the three

weights directly related to the shape of the local neighborhood: wO, wλ, and

wr. The optimal neighborhood size retrieval thus offers a reliable alternative

for the weighting step.

5.4. Rejecting

Finally, for the rejection step, eleven configurations (noted as follows : 2.5σd,

d502 , d702 , d50O , d70O , d50dim, d
70
dim, d

50
r , d70r , d50a , d70a ) have been proposed, tested on

each dataset and compared to the default case. Those configurations can be

classified into two categories:

1. Distance threshold: Such threshold 2.5σd has to be inferior to 2.5 times

the standard deviation of all pair distances.

2. Rank filter: Ten configurations, noted dβα, are tested, where α is the dis-

tance type and β is the percentage of best matches that are conserved.

• Five distances are used (see Section 3.3): d2, dO, ddim, dr, and da.

• Two percentages are tested: keeping only the 50% and the 70% of the

best matches. These values have been empirically selected among the

best 50% matches. They provided the best convergence speed and

accuracy results.

Results are depicted in Figure 8. We can first conclude that for each dataset,

several new variants improve both the accuracy and the convergence speed of
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Figure 6: Results of the Selection step.
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Figure 7: Weighting step results.
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the registration. This is particularly true for the TLS and MMS datasets where

almost all proposed configurations perform better. For the ALS case, the default

case remains suitable in terms of speed but provides the worst results in terms

of accuracy.

The distance-threshold variant can also be discarded since it corresponds to one

of the less efficient proposal for the three datasets. Conversely, the omnivariance-

based and the geometrical feature-based methods (dO and da, respectively) give

the best results for the three datasets with 50% of rejection. The convergence

time is improved by a factor of 1.1 to 1.4 when the accuracy is increased up to

a factor of 7 for the TLS dataset. Not as good results, especially in terms of

speed, are achieved with a greater percentage of rejection. Finally, the Euclidian

distance d2 performs well for the three datasets but only both for speed and

accuracy concerns for ALS and TLS datasets.

5.5. Proposal of an optimal variant

As detailed before, the selecting step can be improved by focusing on high

entropy points. Besides, the weighting step has no influence on the performance

of ICP, and rejecting points using neighborhood-shape criteria (optimal radius

or local omnivariance) provides satisfactory results, as illustrated in Figures 9, 10

and 11. This is particularly visible in Figure 11, where no change exists between

both surveys. Figures 9 and 10 enhance the relevance of accurate registration

for change or mobile object detection since slight shifts can be noticed (cars,

vegetation or crane in ALS). Good results are also obtained even when a low

overlap exists between both acquisitions (TLS dataset). Finally, the optimal

variant is therefore:

• Selecting only points with E∗
f > 0.7: It improves the convergence speed

by a factor of two while maintaining an accuracy by one tenth of the point

cloud resolution. Focus is made on 3D points with a clear local prominent

behaviour, i.e. in urban areas, building facades for TLS and MMS cases,

and ground and building roofs for ALS datasets.
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Figure 8: Rejecting step results.
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• Weighting: A constant weight is sufficient. The same accuracy can be

achieved with other configurations but with higher convergence speed.

• Rejecting: Keeping only the 50% best matches using dO appears to be the

best trade-off between high accuracy and fast convergence speed.

Figure 9: Registration accuracy for the ALS dataset. Left and center: orthoimages temporally
coherent with each dataset. Right: Accuracy map. Fine alignment is achieved. Shift between
both datasets now correspond to real changes, e.g., new buildings (top area in Figure 9),
moving objects like cars (middle area) or vegetation growth (above area).

Figure 10: Illustration of the proposed ICP optimal variant for the TLS dataset. (a) Before
registration. (b) After registration. (c) Accuracy map. Objects visible in a single scan are
clearly enhanced.

The best improvements are retrieved for TLS and MMS datasets i.e. The

main limitation of the proposed approach is the failure of improvement of the

ALS dataset. This comes from the fact that with fiber scan patterns, the optimal

local supports are difficult (1) to retrieve and (2) to be matched with more
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Figure 11: Optimal configuration alignment for the MMS dataset. (a) Before registration.
(b) After registration. (c) Accuracy map. The only discrepancies correspond to areas visible
in a single point cloud.

regular sampling of the Earth surface.

6. Conclusion

In this paper, we have demonstrated how the standard and well-known It-

erative Closest Point algorithm can be improved by using geometrical features

which optimally describe the local shape around of each 3D lidar point. Our

method, which both takes into account the neighborhood shape and how confi-

dent in the estimate of this shape we are, allowed to improve two of the five steps

of the method, namely the selection and rejection issues. Since the computation

of the features of interest only requires the knowledge of the position of the 3D

points, the method has been tested on datasets acquired from various sensors

(airborne, terrestrial static, mobile mapping system). Ten attributes, extracted

from a multi-scale local Principal Component Analysis, have been computed.

More than twenty variants of the standard ICP procedure have been investigated

and analysed in terms of registration accuracy and convergence speed. Even if

the three datasets are dissimilar (especially airborne point clouds compared to

terrestrial static or mobile ones), general common conclusions can be drawn.

First, it is possible to propose an optimal variant, suitable for the three kinds of

lidar data, with two salient features (the entropy and the omnivariance). Sec-

ondly, very close results are noticed for TLS and MMS datasets since surfaces are
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highly and similarly sampled. For the ALS dataset, even if the point densities

and the laser scanning patterns were very different, relevant eigenvalue-based

solutions have been found. In particular, we have noted that very particular

behaviours corresponding to building tops and edges can be interesting as key

areas for fast registration.

Consequently, two improvements of our approach are conceivable, so as to pro-

vide more efficient features for registration. On the one hand, it appears nec-

essary to fully exploit the multi-scale geometrical analysis. Instead of working

only at the most prominent level, the integration of several scales of interest

would allow to provide a more specific feature. On the other hand, for datasets

acquired with two very different points of view, the local neighborhood (linear,

planar, volumetric) shape may not be helpful since it may appear noisy. Con-

versely, 3D points with no particular prominent dimension seem more stable

with varying survey conditions.
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