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Convex conditions on decentralized control
for graph topology preservation

Mirko Fiacchini∗, Irinel-Constantin Morărescu#

Abstract— The paper focuses on the preservation of a given
graph topology which is usually chosen to ensure its connectivity.
This is an essential ingredient allowing interconnected systems
to accomplish tasks by using decentralized control strategies.
We consider a networked system with discrete-time dynamicsin
which the subsystems are able to communicate if an algebraic
relation between their states is satisfied. Each subsystem is called
agent and the connected subsystems are called neighbors. The
agents update their state in a decentralized manner by taking
into account the neighbors’ states. The characterization of the
local control feedback gains ensuring topology preservation is
provided. The results are based on invariance and set-theory and
yield to conditions in Linear Matrix Inequality (LMI) form. The
conditions for topology preservation are applied to an illustrative
example concerning partial state consensus of agents with double
integrator dynamics.

Index Terms— Interconnected systems, set-theory, consensus,
decentralized control.

I. I NTRODUCTION

Multi-agent systems have been used in the last decade to
model different dynamics occurring in a large panel of applica-
tions going from biology and medicine to transportation, com-
munication and sociology. It has also been emphasized that
controlling interconnected systems in a decentralized manner
[8], [10], [11] has advantages related to the computation and
communication cost reduction. On the other hand the changes
of the network topology may hamper the global coordination
goal. To avoid this, recent works have been oriented towards
the connectivity preservation of the interconnection graph
of mobile networks [5], [13]. In [9] the authors compute a
robust connected spanning subgraph which allows the highest
degree of freedom for the agents position and find the initial
states (position and velocities) assuring the graph preservation.
Starting from this idea, in this paper we present conditionsfor
network topology preservation. Note that the procedure may
be designed for dynamic graph topologies with the intersection
given by the core graph to be preserved.

The main contribution of this paper is the characterization
of the control laws preserving a given graph. As in [13], the
primary aim of our method is not a given global coordination
objective. However, the controllers that pursue secondary
global objectives, as flocking or rendez-vous, can be selected
among those ensuring the graph topology preservation.
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We consider a networked system with discrete dynamics
and a given interconnection topology. The subsystems are
able to communicate if an algebraic relation, defined in the
next section, between their states is satisfied. The connected
subsystems are called neighbors. The subsystems update their
state in a decentralized manner by taking into account their
neighbors states. Each connection is preserved as far as the
algebraic relation is verified. Our aim is to characterize the
decentralized control laws that ensure the satisfaction ofthe
algebraic constraint. The design of the decentralized con-
trollers satisfying the algebraic constraint can be done either
by minimizing a cost function [7], or by negociations through
the network at each step [6]. Our approach use invariance
based techniques (see [1]–[3] for the use of invariance in
control theory) to characterize the conditions assuring that the
algebraic constraint holds. The resulting topology preservation
conditions rewrites as a convex constraint that may be posed
in LMI form. Thus, we not only propose a new tool for
decentralized control but also an easy implementable one.

Notation

The set of positive integers smaller than or equal to the
integer n ∈ N is denoted asNn, i.e. Nn = {x ∈ N : 1 ≤
x ≤ n}. Given the finite setA ⊆ Nn, |A | is its cardinality.
Given a symmetric matrixP∈ R

n×n, notationP> 0 (P≥ 0)
means thatP is positive (semi-)definite. ByA† we denote
the left pseudoinverse of the matrixA. Given the matrix
T ∈ R

n×m and N ∈ N, diagN(T) ∈ R
nN×mN is the block-

diagonal matrix whoseN block-diagonal elements are given
by T, while diag(A,B, ...,Z) is the block-diagonal matrix, of
adequate dimension, whose block-diagonal elements are the
matricesA,B, ...,Z. Given a set ofN matricesAk with k∈NN,
denote by{Ak}k∈NN the matrix obtained concatenatingAk in
column. Given a square matrixA, λmax(A) denote the maximal
eigenvalue ofA.

II. PROBLEM STATEMENT

Throughout the paper we consider a system consisting of
V ≥ 2 interconnected subsystems assumed identical, whose
states have dimensionn∈N. Each subsystem is referred to as
agent. Let us suppose that the initial interconnection topology
is given by the graphG= (V ,E ) where the vertex set isV =
NV and the connecting edge setE ⊆ V ×V represents the
set of pairs of agents that satisfy a distance-like condition.
Precisely, for givenr > 0, d ∈ N, d ≤ n and T ∈ R

d×n with
TT⊤ invertible, the initial edge set is given by

E = {(i, j) ∈ NV ×NV | ‖T(xi(0)− x j(0))‖2 < r},
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where xi and x j are the states of thei-th and j-th agents,
respectively. SinceT is a matrix, i.e. a linear application, the
graphG is undirected, which means that(i, j)∈E ⇔ ( j, i)∈E .

In the sequel we denote byN ⊆ E the set of edges that
must be preserved. Hence, it is sufficient to suppose that every
agenti knows the state of thej-th one if (i, j) ∈ N .

Definition 1: For all i ∈ V we define the set of connected
neighbors of thei-th agent as

Ni = { j ∈NV : (i, j) ∈ N }.
The dynamics of each agent is given by

x+i = Axi +Bui, (1)

for all i ∈NV , with A∈R
n×n, B∈R

n×m and wherexi ∈R
n is

the state andui ∈R
m is the control input of thei-th agent. As

usual in multi-agent systems, the interconnection appearsin
the control inputui which is designed by taking into account
not only the statexi but also the statesx j , for all j ∈ Ni .

In order to clarify the concepts let us consider a network
of mobile agents moving in a two dimensional space which
are able to select the variation of their velocity. Modelling
the input as a velocity variation or, equivalently, the variations
along the two Cartesian axis, the dynamics of thei-th agent,
with i ∈ NV , along thex axis is given by

{

px
i (k+1) = px

i (k)+ tvx
i (k),

vx
i (k+1) = vx

i (k)+ux
i (k),

(2)

where px
i is the position,vx

i the velocity,ux
i the control input

and t the sampling time. So, the overall dynamics of thei-th
agent along thex axis is given by a linear system with matrices

Ā=

[

1 t
0 1

]

, B̄=

[

0
1

]

.

The dynamics along they axis are clearly analogous. Then the
full dynamics of thei-th agent is given by (1) with

A=

[

Ā 0
0 Ā

]

, B=

[

B̄ 0
0 B̄

]

,

where the state isxi(k) =[px
i (k), vx

i (k), py
i (k), vy

i (k)]
⊤ and the

input ui = [ux
i , uy

i ]
⊤. Supposing that the agents can communi-

cate only if the euclidean distance between them is smaller
than r, is equivalent to defineT as the projectionTxi(k) =
[px

i (k), p
y
i (k)]

⊤.
Given the set of connectionsN , the objective is to design

a decentralized control law ensuring that none of these con-
nections is lost. Thus, the objective can be posed in terms of
the error dynamics between connected neighbors:

e+i, j = x+i − x+j = A(xi − x j)+B(ui −u j), (3)

for all (i, j) ∈ N . In the sequel, thei-th input is defined by

ui = ∑
j∈Ni

Ki, j(xi − x j) = ∑
j∈Ni

Ki, jei, j , (4)

with the controller gainsKi, j depending on the current states
and chosen such that the link(i, j) is preserved. Thus, the
design of eachui is reduced to the design of the controller
gains associated to eachi, j system:

e+i, j = (A+BKi, j +BKj ,i)ei, j +
k6= j

∑
k∈Ni

BKi,kei,k−
k6=i

∑
k∈N j

BKj ,kej ,k, (5)

for all (i, j) ∈ N .
Remark 1:Our objective is to characterize the feedback

gains involved in (5) such that the link(i, j) is preserved.
Since such a characterization must be shared by thei and
the j agents to be useful in the decentralized context, only
the information common to both of them should be involved.
Such information consists in the states of thei and j agents
and of those of the common neighbors. The shared information
on the non-common neighbors reduces to their number (and
implicitly a bound on their position). Such knowledge is used
for determining a bound on the effect of the non-common
neighbors on thei, j system, as shown in the following.

The dynamics of thei, j system is given by the matrix
A+BKi, j + BKj ,i if no interaction with the other agents is
present. The perturbation on thei, j system induced by such
an interaction can be bounded within a set depending on the
radius r and on the knowledge of common neighbors of the
i-th and j-th agents. Consider the sets

Ni, j = Ni ∩N j , N̄i, j = Ni \ (Ni, j ∪{ j}),
N̄ j ,i = N j \ (Ni, j ∪{i}), (6)

then,Ni, j denotes the common neighbors of thei-th and the
j-th agents andN̄i, j the neighbors of thei-th one which are
neither j nor one of its neighbors, analogously for̄N j ,i . The
elements ofN̄i, j ∪ N̄ j ,i are referred to as the non-common
neighbors of thei, j system. The dynamics of thei, j system,
perturbed by the non-common neighbors, is

e+i, j =(A+BKi, j +BKj ,i)ei, j+ ∑
k∈Ni, j

(BKi,kei,k−BKj ,kej ,k)+wi, j ,

(7)
with the bounded perturbation described by

wi, j = ∑
k∈ ¯Ni, j

(BKi,kei,k)− ∑
l∈ ¯N j,i

(BKj ,l ej ,l ). (8)

For all the neighbors of thej-th and the i-th agents, the
following relations hold

‖Tei,k‖2 ≤ r, if k∈ ¯Ni, j , ‖Tej ,k‖2 ≤ r, if k∈ ¯N j ,i . (9)

The problem addressed in this paper can be stated as follows.
Problem 1: Design a procedure to find at each step a

condition on the decentralized control gainsKl ,k, with l ,k∈NV

in (7) and (8) such that the following algebraic relation is
satisfied

‖Te+i, j‖2 < r, ∀(i, j) ∈ N . (10)

III. C ONVEX CONDITIONS FOR TOPOLOGY PRESERVATION

In the following, we restrict the study to the generici, j
system with(i, j) ∈ N . In this way, Problem 1 reduces to a
set of simpler problems as explained below.

Problem 2: Given thei, j system (7) and (8) with(i, j) ∈
N , pose a condition on the gainsKi,k, with k ∈ Ni , and
K j ,l , with l ∈ N j , such that the following algebraic relation
is satisfied

‖Te+i, j‖2 < r, (11)

if ‖Tei,k‖2 ≤ r, ‖Tej ,l‖2 ≤ r for all ei,k, k∈Ni andej ,l , l ∈N j .
Let us consider the 2|N |-uples of gainsKi, j , (i, j) ∈ N

ordered lexicographically. We suppose that the Problem 2 is
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solved for the link(i, j) and the solution is given bySoli j , the
set of all tuples of gains satisfying its conditions. A solution
of Problem 1 is then obtained by applying the following
decentralized algorithm:

Algorithm 1 Solving Problem 1
Input: value r, distance matrixT, the setN , the setV

1: initialize x
2: for i ∈ V do
3: for j ∈ Ni do
4: agenti solves Problem 2 and getsSoli j
5: end for
6: if

⋂

j∈Ni

Soli j = /0 then Problem 1 has no solutionStop

7: end if
8: end for

Remark 2: It is important to recall that in this paper we
provide only necessary conditions and sufficient ones for the
existence of controllers preserving the graph topology. Due to
local knowledge it is clear that agenti can only find conditions
to preserve its own links. The design of the controllers
preserving the whole topology can be done by minimizing cost
functions that may be also related to a secondary agreement
goal (see Section IV).

Definition 2: Given (6), (7) and (8), define

N = 2|Ni, j |+1, N̄ = |N̄i, j |+ |N̄ j ,i|,
Ei, j = {ei,k}k∈Ni, j , E j ,i = {ej ,k}k∈Ni, j ,

E = [e⊤i, j , E⊤
i, j , E⊤

j ,i ]
⊤ ∈ R

nN, Z = diagN(T)E ∈ R
dN,

Ǩi, j = [{K⊤
i,k}k∈Ni, j ]

⊤, Ǩ j ,i = [{−K⊤
j ,k}k∈Ni, j ]

⊤,
∆ = T [A+B(Ki, j +K j ,i), BǨi, j , BǨ j ,i ]diagN(T)

† ∈R
d×dN,

Ēi, j = {ei,k}k∈ ¯Ni, j
, Ē j ,i = {ej ,k}k∈ ¯N j,i

,

Ē = [Ē⊤
i, j , Ē⊤

j ,i ]
⊤ ∈ R

nN̄, Z̄ = diagN̄(T) Ē ∈ R
dN̄,

K̂i, j = [{K⊤
i,k}k∈ ¯Ni, j

]⊤, K̂ j ,i = [{−K⊤
j ,k}k∈ ¯N j,i

]⊤,

Γ = T[BK̂i, j , BK̂ j ,i ]diagN̄(T)
† ∈R

d×dN̄.
(12)

Notice thatE, Z and∆ are two vectors and a matrix which
are functions of the states and the gains of thei, j system
and its common neighbors;̄E, Z̄ andΓ concern the states and
gains of the non-common neighbors of thei, j system. The
dependence ofN, N̄, E, Z, ∆, Ē, Z̄ andΓ on the indicesi, j is
omitted to simplify the notation. Using Definition 2, we have
that Te+i, j = ∆Z+ΓZ̄ and then the algebraic constraint (11) is
equivalent to

[∆Z+ΓZ̄]⊤[∆Z+ΓZ̄]< r2, (13)

and the uncertainties bounds are given, in the terms ofZ̄, by

Z̄⊤DkZ̄ ≤ r2, ∀k∈NN̄, (14)

from (9), for all k∈NN̄, with

Dk = diag(0d, . . . , 0d, Id, 0d, . . . , 0d) ∈ R
dN̄×dN̄,

whereId ∈R
d×d is the identity, 0d ∈R

d×d is the zero matrix
andk indicates thatId is thek-th block of Dk.

Remark 3:We have shown that Problem 2 is equivalent to:
(13) is satisfied for everȳZ ∈R

dN̄ fulfilling (14).

A. Necessary condition for network preservation

In this section we derive some bounds on the gains asso-
ciated to the non-common neighbors that are necessary for
the feasibility of Problem 2. In other words, we look for
constraints on the matrixΓ that hampers the existence of
admissible realizations of the uncertaintȳZ which lead to the
break of the(i, j) link.

Consider the matrixΓ⊤Γ which is real, symmetric, positive
semidefinite and block diagonal, i.e. there areMk ∈ R

d×d,
with k ∈ NN̄, real, symmetric and positive semidefinite such
that Γ⊤Γ = diag(M1, . . . , MN̄). Then there existGk ∈ R

d×d

diagonal andHk ∈ R
d×d unitary, for all k∈ NN̄, such that

Γ⊤Γ = diag(M1, . . . ,MN̄)
= diag(H⊤

1 G1H1, . . . , H⊤
N̄ GN̄HN̄) = H⊤GH,

(15)

with G = diag(G1, . . . , GN̄) and H = diag(H1, . . . , HN̄) such
that HH⊤ = IdN̄. The diagonal entries ofGk (resp. ofG) are
the eigenvalues ofMk (resp. ofΓ⊤Γ) and the columns ofH⊤

k
(resp. ofH⊤) are the related eigenvectors, for allk∈NN̄. All
the eigenvalues are nonnegative.

Assumption 1:The matrixΓ is such that ∑
k∈NN̄

λmax(Mk)<1.

The necessity of Assumption 1 is proved below.
Proposition 1 (Necessary condition):If Assumption 1 does

not hold, then there is̄Z ∈R
dN̄ such that (14) holds and

[∆Z+ΓZ̄]⊤[∆Z+ΓZ̄]≥ r2, (16)

for all Z ∈ R
dN and∆.

Proof: Given Γ⊤Γ as in (15), denote withλk the maximal
eigenvalue ofMk, i.e. λk = λmax(Mk), and suppose with no
loss of generality thatλk is the first element of the diagonal
of Gk, for everyk∈NN̄. Defining withhk ∈R

d an eigenvector
of norm one related toλk we haveHkhk = [1, 0, . . . ,0]⊤, for
all k∈NN̄.

Suppose that∑
k∈NN̄

λk ≥ 1 and choosēZ = r{hk}k∈NN̄
∈R

dN̄.

We have that

Z̄⊤DkZ̄ = r2h⊤k hk = r2, (17)

for all k∈ NN̄, thusZ̄ fulfills (14). Moreover

Z̄⊤Γ⊤ΓZ̄ = Z̄⊤H⊤GHZ̄ =
r2 ∑

k∈NN̄

[1, 0, . . . ,0]Gk[1, 0, . . . ,0]⊤ = r2 ∑
k∈NN̄

λk ≥ r2. (18)

Notice that (17) and (18) do not depend on the sign ofZ̄.
Thus, for allZ and∆ there exists an adequate selection of the
sign of Z̄ such that

Z⊤∆⊤∆Z+2Z̄⊤Γ⊤∆Z+ Z̄⊤Γ⊤ΓZ̄ ≥ Z̄⊤Γ⊤ΓZ̄. (19)

Actually, the first term in (19) is always nonnegative and the
second term in (19) becomes nonnegative by appropriately
choosing the sign of̄Z. From (18) and (19) we have (16).

An alternative necessary condition for the Problem 2 to
have a solution, inspired by the comments of an anonymous
reviewer, follows from the lemma below. This condition is
employed in the next section to provide sufficient conditions
for Problem 2 to admit solutions.
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Lemma 1:The matrix Γ satisfies Assumption 1 if and
only if there existsΛ = diag(λ1Id, . . . , λN̄Id) with λk ≥ 0 and

∑
k∈NN̄

λk < 1 such that

Γ⊤Γ < Λ. (20)
Proof: For the necessity, suppose that Assumption 1 holds.

Denote ε = 1− ∑
k∈NN̄

λmax(Mk)> 0 and defineΛ with λk =

λmax(Mk)+0.5ε/N̄. Clearly (20) holds and

∑
k∈NN̄

λk = ∑
k∈NN̄

λmax(Mk)+0.5ε < ∑
k∈NN̄

λmax(Mk)+ ε = 1.

For the sufficiency, suppose the existence ofΛ that satifies
(20) with ∑

k∈NN̄

λk < 1. From the particular structure ofΓ, (20)

impliesMk < λkId which yieldsλmax(Mk)< λk, for all k∈NN̄.
From this and ∑

k∈NN̄

λk < 1, Assumption 1 follows.

Remark 4:Given Λ as in Lemma 1, the quantityδ =

∑
k∈NN̄

λk may be geometrically interpreted as a bound on the

uncertainty. In fact, from Definition 2, condition (20) leads to

‖Twi, j‖2
2 = Z̄⊤Γ⊤ΓZ̄ < Z̄⊤ΛZ̄ = ∑

k∈NN̄

λkZ̄
⊤DkZ̄ ≤ ∑

k∈NN̄

λkr
2,

for all ei,k, with k∈ ¯Ni, j , andej ,k with k∈ ¯N j ,i such that (9)
holds. Precisely, the effect of the non-common neighbors can
be modelled as a perturbation on thei, j system bounded by
an ellipsoid determined byT⊤T and of radius

√
δ r. Therefore

the conditionΓ⊤Γ < Λ results in a bound on the gains related
to the non-common neighbors of thei-th and j-th agents. It
can be interpreted as a joint limitation on the control efforts
of the agentsi and j aimed at regulating and preserving their
other connections.

Using the interpretation above, Proposition 1 may be refor-
mulated as an intuitive result saying that:it is not possible to
guarantee the ”distance” constraint as far as the uncertainties
are too large, i.e.‖Twi, j‖2 ≥ r.

B. Sufficient condition for network preservation

This section provides conditions on the gainsΓ and Λ
for guaranteeing the existence of solutions for Problem 2. In
order to derive the sufficient condition we use the S-procedure
(see [4] for further details). This commonly used procedure
gives sufficient conditions in terms of LMI. An important
contribution of this paper, namely the sufficient conditionfor
the constraint (11) to hold, is stated in the following theorem.

Theorem 1 (Sufficient condition):Problem 2 admits solu-
tions (i.e. condition (13) is satisfied for everȳZ∈R

dN̄ fulfilling
(14) ) if there existsΛ = diag(λ1Id, . . . , λN̄Id) with λk ≥ 0, for
all k∈ NN̄ such that





r2− r2δ 0 Z⊤∆⊤

0 Λ Γ⊤

∆Z Γ Id



> 0, (21)

with δ = ∑
k∈NN̄

λk. Furthermore, any(∆,Γ) satisfying (21) de-

fines admissible controller gains for the Problem 2.

Proof: First notice that every solution of (21) satisfies also

∑
k∈NN̄

λk < 1, Γ⊤Γ−Λ < 0, (22)

as the principal minors of a positive definite matrix are positive
definite. Since (22) is a necessary condition for the Problem2
to admit a solution, see Section III-A, there is no loss of
generality in assuming it satisfied. Condition (13) is equivalent
to

[Z⊤, Z̄⊤]

[

∆⊤∆ ∆⊤Γ
Γ⊤∆ Γ⊤Γ

][

Z
Z̄

]

< r2. (23)

This condition must be satisfied for everȳZ such that (14)
holds. Applying the S-procedure, a sufficient condition for(13)
to hold for everyZ̄ ∈ R

dN̄ satisfying (14) is the existence of
λk ≥ 0, for all k∈ NN̄, such that

Z⊤∆⊤∆Z+2Z̄⊤Γ⊤∆Z+ Z̄⊤[Γ⊤Γ−Λ]Z̄ < r2− r2δ , (24)

for every Z̄ ∈ R
dN̄. From (22) andZ being known, the left-

hand side of (24) is a concave function in̄Z whose maximum
is attained at

Z̄ =−(Γ⊤Γ−Λ)−1Γ⊤∆Z. (25)

Hence condition (24) holds for everȳZ ∈R
dN̄ if and only if it

is satisfied for the maximum of the function at left-hand side,
that is if and only if

Z⊤∆⊤∆Z−Z⊤∆⊤Γ(Γ⊤Γ−Λ)−1Γ⊤∆Z < r2− r2δ , (26)

which is given by (24) at (25). Hence everyΛ, ∆ and Γ
satisfying conditions (22) and (26) ensure the satisfaction of
‖Te+i, j‖2 < r for all Z̄ such that (14) holds. The condition (26)
is equivalent to

[

Z⊤∆⊤∆Z− r2+ r2δ Z⊤∆⊤Γ
Γ⊤∆Z Γ⊤Γ−Λ

]

< 0

⇔
[

Z⊤∆⊤∆Z Z⊤∆⊤Γ
Γ⊤∆Z Γ⊤Γ

]

<

[

r2− r2δ 0
0 Λ

]

⇔
[

Z⊤∆⊤

Γ⊤

]

[

∆Z Γ
]

<

[

r2− r2δ 0
0 Λ

]

⇔





r2− r2δ 0 Z⊤∆⊤

0 Λ Γ⊤

∆Z Γ Id



> 0.

Thus (21) is equivalent to (24), sufficient condition for (13) to
hold.

C. Guaranteed network preservation: common feedback gains

The condition presented in the previous subsection ensures
that the algebraic constraint related to thei, j system is satisfied
at the successive time instant. No insurance on its satisfaction
along the evolution of the overall system can be guaranteed,
unless proper choices ofKi, j are done. In case the feedback
gains are assumed to be the same for every agent and every
i, j system, a sufficient condition for guaranteeing the network
topology preservation at every future time instant can be posed.

Assumption 2:Given the system (1) with control (4), as-
sume thatKi, j = K̄ for all (i, j) ∈ N .
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The objective is to characterize the set of common feedback
gains such that, if applied to control the multi-agent system,
they ensure the non-increasing of the values‖Tei, j‖2 for
all (i, j) ∈ N . If the connection condition is satisfied by
the initial condition, i.e.‖Tei, j(0)‖2 ≤ r for all (i, j) ∈ N ,
the network topology preservation is iteratively guaranteed at
every successive instant. Given the sets as in (6), define

NM = max
(i, j)∈N

{|Ni |+ |N j |−2}.

Then, for all (i, j) ∈ N , NM ∈ N is an upper bound of
the number of agents different fromi and j affecting thei, j
system.

Proposition 2: Let Assumption 2 hold. If there existsλ ∈
[0,1] such that

[

λT⊤T (A+2BK̄)⊤T⊤

T(A+2BK̄) λ Id

]

≥ 0,
[

(1−λ )T⊤T NMK̄⊤B⊤T⊤

NMTBK̄ (1−λ )Id

]

≥ 0,
(27)

then the systems given by (7) and (8) are such that‖Te+i, j‖2 ≤ r
for all (i, j) ∈ N if ‖Tel ,k‖2 ≤ r for all (l ,k) ∈ N .

Proof: Define the setBT = {e∈R
n : ‖Te‖2 ≤ r}, thene∈

BT if and only if e⊤T⊤Te≤ r2. The first condition in (27)
is equivalent to(A+2BK̄)⊤T⊤T(A+2BK̄)≤ λ 2T⊤T, which
implies that(A+2BK̄)BT ⊆ λBT . From Assumption 2 one
have thatKi, j = K j ,i = K̄, which means thatA+ 2BK̄ is the
dynamics of anyi, j system in the absence of the perturbation
of the neighbors. Then the setBT is mapped inλBT if no
perturbation is present, that is(A+BKi, j +BKj ,i)ei, j ∈ λBT ,
for all ei, j ∈BT . Analogously, the second condition in (27) is
equivalent toN2

MK̄⊤B⊤T⊤TBK̄ ≤ (1−λ )2T⊤T, which leads
to ∑

k∈NNM

BK̄BT = NMBK̄BT ⊆ (1− λ )BT . This means that if

ei,k ∈BT for all k∈Ni \{ j} andek, j ∈BT for all k∈N j \{i},
as implicitly assumed, then

∑
k∈Ni, j

(BK̄ei,k−BK̄ej ,k)+∑
k∈ ¯Ni, j

(BK̄ei,k)−∑
l∈ ¯N j,i

(BK̄ej ,l )∈(1−λ )BT ,

for all (i, j) ∈ N . From properties of the Minkowski set
addition, see [12], we havee+i, j ∈ λBT +(1− λ )BT = BT ,
if el ,k ∈ BT for all (l ,k) ∈ N , which ends the proof.

Proposition 2 characterizes the common gains that ensure
the network topology preservation along the whole trajectories.
An analogous sufficient condition for convergence follows.

Corollary 1: Let Assumption 2 hold. If there existλ ∈ [0,1]
and λ̄ > 0 such that

[

(λ − λ̄)T⊤T (A+2BK̄)⊤T⊤

T(A+2BK̄) (λ − λ̄)Id

]

≥ 0,
[

(1−λ )T⊤T NMK̄⊤B⊤T⊤

NMTBK̄ (1−λ )Id

]

≥ 0,

then the systems given by (7) and (8) are such that

‖Te+i, j‖2 ≤ (1− λ̄)‖Tei, j‖2,

for all (i, j) ∈ N if el ,k ∈ R
n satisfies‖Tel ,k‖2 ≤ r for all

(l ,k) ∈ N .
Hence the corollary provides a sufficient condition for the

exponential convergence of thei, j system to the set‖Te‖2= 0,

for all (i, j) ∈ N , if ‖Tel ,k(0)‖2 ≤ r for every (l ,k) ∈ N .
Notice that this would imply‖Te+i, j‖2 < r, strictly, as required
in Problem 2.

Proposition 2 and Corollary 1 provide sufficient conditions
on the local feedback gains for the recursive satisfaction of
the algebraic constraints and for convergence, respectively. On
the other hand, the price to pay for the recursive guarantee of
constraints satisfaction (or of convergence) is a certain degree
of conservativeness of the results in comparison with thoseof
Theorem 1.

IV. A PPLICATION TO DECENTRALIZED CONTROL OF

MULTI -AGENT SYSTEMS

Let us consider the problem of flocking for a set of agents
with the dynamics along thex axis given by (2) and similar
one alongy axis. We consider an interaction graph in which
the euclidean distance between two neighbors is smaller than
or equal tor. The matrixT defining the algebraic constraint
to be preserved is

T =

[

1 t 0 0
0 0 1 t

]

. (28)

Thus, denoting∆pi, j =
(

(px
i (k)− px

j(k))
2+(py

i (k)− py
j(k))

2
) 1

2

we suppose∆pi, j(k+1)≤ r and we determine the controllers
ensuring∆pi, j(k+ 2) ≤ r. Among all these controllers we
chose the one that minimize the difference between neighbors
speeds, i.e. the value∆vi, j =

(

(vx
i (k) − vx

j(k))
2 + (vy

i (k) −
vy

j(k))
2
)

1
2 . Let us consider the six interconnected agents with

the initial conditions given in [9] and connected by the
minimal robust graph computed in the same work. That is:
N = {(1,2), (2,3), (3,4), (4,5), (5,6)}, r = 3.2 and initial
conditions:

x1(0) = [−4 − v0 3 0]⊤ , x6(0) = [4 v0 3 0]⊤ ,

x2(0) = [−2 − v0 2 0]⊤ , x5(0) = [2 v0 2 0]⊤ ,

x3(0) = [−1 − v0 0 0]⊤ , x4(0) = [1 v0 0 0]⊤ ,

wherev0 is used as a parameter to analyze the maximal initial
speed that can be dealt with by different control strategies. It
is noteworthy that, as shown in [9], for the classical consensus
algorithm the preservation of the minimal robust graph is guar-
anteed for a critical speed valuevc ≃ 0.23. Nevertheless, it is
numerically shown that the sufficient condition is conservative
since forv0 =1.5vc (generating approximately a 4 times higher
global velocity disagreement) the robust graph is not broken.
We also note that the classical consensus algorithm is not able
to preserve the connectivity when the global disagreement is
5 times superior to the one guaranteeing the consensus (i.e.
v0 > 2.1vc).

In the sequel, we use Theorem 1 to compute the sets of
gains ensuring the topology preservation. The choice of the
controllers gain within these sets is done heuristically bymini-
mizing a cost function that expresses the velocity disagreement
and penalizes the links break. This strategy has admissible
solutions forv0 = 19vc (see Figures 1, 2) and the connection
between the third and the fourth agent is lost forv0 = 20vc.
It is worth noting that the control acts like springs between
agents’ velocities (compare the Figures 1 and 2, noticing that
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the system 1,2 has the same evolution as the 5,6 and the 2,3
the same as 4,5, by symmetry). First, the control cancels the
speed difference between neighbors with opposite velocities
creating a speed disagreement in both symmetric branches of
the graph. Next, it cancel the disagreement between 2-nd and
the 3-rd agent and between the 4-th and 5-th one, mimicking a
gossiping procedure where the choice of active communication
link is given by the error between neighbors speeds. Doing so,
either the flocking is reached before the connectivity is lost, or
the graph splits into two groups that will independently agree
to two different velocity values.
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Fig. 1. Trajectories (top) and errors of the systems 1,2 and 5,6, (bottom).

V. CONCLUSION AND FURTHER WORKS

In this paper we have provided necessary conditions and
sufficient ones in terms of controller gains for the preservation
of a given graph topology. These conditions are written as a
convex constraint that may be posed in LMI form allowing an
easy implementation of the controller design. An illustrative
example shows how the procedure can be applied to achieve
both the topology preservation and an additional global ob-
jective which is in this case the partial state consensus. In
this example our controller allows to solve the coordination
problem for a set of initial conditions that is larger than the
one existing in the literature.
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