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Convex conditions on decentralized control
for graph topology preservation

Mirko Fiacchini, Irinel-Constantin Morareséu

Abstract— The paper focuses on the preservation of a given = We consider a networked system with discrete dynamics
graph topology which is usually chosen to ensure its conneuity. and a given interconnection topology. The subsystems are
This is an essential ingredient allowing interconnected stems able to communicate if an algebraic relation, defined in the

to accomplish tasks by using decentralized control stratdgs. . . . -
We consider a networked system with discrete-time dynamica next section, between their states is satisfied. The coediect

which the subsystems are able to communicate if an algebraic SUbsystems are called neighbors. The subsystems update the
relation between their states is satisfied. Each subsysters ¢alled state in a decentralized manner by taking into account their

agent and the connected subsystems are called neighbors. €'h neighbors states. Each connection is preserved as far as the
agents update their state in a decentralized manner by takig  g\gaprajc relation is verified. Our aim is to characterize th

into account the neighbors’ states. The characterization fothe . . .
local control feedback gains ensuring topology preservain is decentralized control laws that ensure the satisfactiothef

provided. The results are based on invariance and set-thegrand ~ algebraic constraint. The design of the decentralized con-
yield to conditions in Linear Matrix Inequality (LMI) form. The trollers satisfying the algebraic constraint can be dorieeei

conditions for topology preservation are applied to an illstrative  py minimizing a cost function [7], or by negociations thréug
gxample concerning partial state consensus of agents wittodble the network at each step [6]. Our approach use invariance
integrator dynamics. based techniques (see [1]-[3] for the use of invariance in
Index Terms—Interconnected systems, set-theory, consensus,control theory) to characterize the conditions assurirag the
decentralized control. algebraic constraint holds. The resulting topology prestsn
conditions rewrites as a convex constraint that may be posed
. INTRODUCTION in LMI form. Thus, we not only propose a new tool for
Multi-agent systems have been used in the last decadedizentralized control but also an easy implementable one.
model different dynamics occurring in a large panel of aggli
tions going from biology and medicine to transportationnmeo Notation
munication and sociology. It has also been emphasized thatl.he set of positive integers smaller than or equal to the
controlling interconnected systems in a decentralizedmaan .

. integer n € N is denoted asN,, i.e. Ny={xe N:1<
[8], [10], [11] has advantages related to the computatia aQ <?1}. Given the finite sets CnNn, |4z%|n is iis cardinality.

communication cost reduction. On the other hand the chan%aI en a symmetric matri® € R™", notationP > 0 (P > 0)
of the network topology may hamper the global coordinatioljﬂeans thatP is positive (semi-)définite. BA™ we denote
goal. To avoid this, recent works have been oriented towarﬁj]se left pseudoinverse of the matrik. Given the matrix

the connectivity preservation of the interconnection grapl. € R™M and N € N, diagy(T) € R™N*™ s the block-

of mobile networks [5], .[13]' In [9] the guthors compute %iagonal matrix whosé&\ block-diagonal elements are given
robust connected spanning subgraph which allows the h]ghs T, while diagA,B, ...,Z) is the block-diagonal matrix, of

degree of fr_eedom for thg_agents pqsition and find the initig equate dimension, whose block-diagonal elements are the
states (position and velocities) assuring the graph prasen. matricesA B..... Z. Given a set oN matricesA, with k € Ny

Starting from this idea, in this paper we present conditfons denote by{A}xr, the matrix obtained concatenatirg in

network topology preservation. Note that the procedure may | imn. Given a square matr AmadA) denote the maximal
be designed for dynamic graph topologies with the inteisect eigenvélue ofA max

given by the core graph to be preserved.
The main contribution of this paper is the characterization

of the control laws preserving a given graph. As in [13], the . -
primary aim of our method is not a given global coordination, |roughout the paper we consider a system consisting of

objective. However, the controllers that pursue s;econda\(%/Z 2 interconnected subsystems assumed identical, whose

global objectives, as flocking or rendez-vous, can be sadectlates have dlmensmmerl]\l. Er?ch _sgt:s_ystem IS refgrreld to as
among those ensuring the graph topology preservation. agent. Let us suppose that the initia interconnection lamo
is given by the grapls = (7,&) where the vertex set i¥ =
* GIPSA-lab, Grenoble Campus, 11 rue des Mathématiques,63B8402 N, and the connecting edge sétC ¥ x ¥ represents the

Saint Martin d’'Heres Cedex, Franoer ko. f i acchi ni @i psa-|ab. fr ; ; ; i e
# Universitt de Lorraine, CRAN, UMR 7039, and CNRS, CRAN,Set o.f pairs of -agents that satisfy a distance IIEEnCOI.’miI'[IO
UMR 7039, 2, Avenue de la Foret de Haye, 54500, Vandceuvrancer Precisely, for givemr >0, de N, d <nandT € R%" with
constantin. norarescu@niv-lorraine.fr TTT invertible, the initial edge set is given by
This work has been partially founded by the Lorraine regigrant: "Anal-
yse et conception de lois de commande pour des systémesoimiectés”. & ={(i,j) e Nv x Ny | [[T(x(0) —x;(0))|l2 <r},
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where x; and x; are the states of theth and j-th agents, for all (i,j) € 4.
respectively. Sincd is a matrix, i.e. a linear application, the Remark 1:0ur objective is to characterize the feedback
graphG is undirected, which means th@tj) € & < (j,i) €£. gains involved in (5) such that the link, j) is preserved.

In the sequel we denote by C & the set of edges that Since such a characterization must be shared byi taed
must be preserved. Hence, it is sufficient to suppose thay evehe | agents to be useful in the decentralized context, only

agenti knows the state of th¢-th one if (i, j) € 4. the information common to both of them should be involved.
Definition 1: For alli € ¥ we define the set of connectedSuch information consists in the states of thand j agents
neighbors of the-th agent as and of those of the common neighbors. The shared information

on the non-common neighbors reduces to their number (and

implicitly a bound on their position). Such knowledge is dise

for determining a bound on the effect of the non-common
X~ = Ax% +Bu;, (1) neighbors on the, j system, as shown in the following.

for all i € Ny, with A€ R™" B R™M and whereg € R" is The dynamics of thd,j system is given by the matrix

the state andi € R™ is the control input of thé-th agent. As A+ BKi.j + BK;i if no interaction with the other agents is
usual in multi-agent systems, the interconnection appmrspresent. The perturbation on thg system induced by such

the control inputy; which is designed by taking into account” _mteractlon can be bounded within a set de.pendlng on the

not only the stateq but also the state;, for all j € /4. _radlusr gnd on the knowl_edge of common neighbors of the
In order to clarify the concepts let us consider a netwolgt" @ndj-th agents. Consider the sets

of mobile agents moving in a two dimensional space which M= MNOA, «/1_41 =M\ (A jU{i}), (6)

are able to select the variation of their velocity. Modelin Nii =M\ (AjU{i}),

the input as a velocity variation or, equivalently, the atidns

along the two Cartesian axis, the dynamics of itk agent,

with i € Ny, along thex axis is given by

M ={jeNyv:(i,j)e N}
The dynamics of each agent is given by

then,.#; denotes the common neighbors of théh and the
j-th agents and/{; the neighbors of thé-th one which are
neitherj nor one of its neighbors, analogously fof{;. The
{ Pi(k+1) = pi (k) +tvi(k), ) elements of.4{; U._4j; are referred to as the non-common
vi(k+1) = vi(k) + ui(k), neighbors of the, j system. The dynamics of thiej system,
where p* is the positiony the velocity,u* the control input Perturbed by the non-common neighbors, is

andt the sampllng_ tl_me._ So, the qverall dynamlc_s of tkt@ e|+j — (A+BK;j +BKj)ej+ S (BK @ x— BK k&) + Wi,
agent along th& axis is given by a linear system with matrices "

ke
~ 1t ~ 0 @)
A= 0 1| B= 1| with the bounded perturbation described by
The dynamics along thgaxis are clearly analogous. Then the Wi = Z(BKi’ke,’k) - Z(BKJ-Je“). (8)
full dynamics of thei-th agent is given by (1) with ke | leA;
A_[A O B_[B O For all the neighbors of thg-th and thei-th agents, the
10 A 10 B |’ following relations hold

where the state ig(k) =[pX(k), v‘(k), p/(k), W/ (K)]" and the | Teyl2<r, if ke A}, [Texl2<r, if ke i (9)

input u; = [U¥, u?’]T. Supposing that the agents can communij- o

cate only if the euclidean distance between them is small-gPe problem addr_essed in this paper can be stated as follows.
Problem 1: Design a procedure to find at each step a

th L ivalent to defind as the projectionl (k) = " . .
[p??(rll)r F)I;(S?le'va en prol % (k) condition on the decentralized control gaiig, with |,k € Ny
| P | -

Given the set of connectiong’, the objective is to design in (7) and (8) such that the following algebraic relation is

a decentralized control law ensuring that none of these C(ﬁ?-tiSﬁe'd
nections is lost. Thus, the objective can be posed in terms of
the error dynamics between connected neighbors:

N P 1. CONVEX CONDITIONS FOR TOPOLOGY PRESERVATION

&1 =X X =AK X)) +B(ui—uj), @) in the following, we restrict the study to the genefig
for all (i,]j) € 4. In the sequel, théth input is defined by system with(i, j) € .4". In this way, Problem 1 reduces to a

o e v o set of simpler problems as explained below.
= J.EZ/VK"J(X' XJ)ijZMK'vJQ’J’ )™ problem 2: Given thei, j system (7) and (8) withi, }) €

. . . /', pose a condition on the gairs y, with k € .4, and
with the controller gaink; ; depending on the current state§<j ,, with | € %, such that the following algebraic relation

and chosen such that the linf j) is preserved. Thus, the

. . is satisfied
design of eachy; is reduced to the design of the controller Te ]2 < (11)
gains associated to eaclj system: g ’
Kt | Kt if [[Taxll2<r, [|Tey,ll2<r forall gy, ke .4 andej, | € A].

e}fj = (A+BK+BKji)a+ z BKi k& k — z BK; «ejk, (5) Let us consider the |2/V|—uples' of gainsK; j, (i,j) € A _
' kEA kEH; ordered lexicographically. We suppose that the Problem 2 is



solved for the link(i, j) and the solution is given bgol;, the A. Necessary condition for network preservation

set of all tuples_ of gains sat-isfying its conQitions. A siﬂut. In this section we derive some bounds on the gains asso-
of Proble_m Lis then obtained by applying the fOIIOW'ng:iated to the non-common neighbors that are necessary for
decentralized algorithm: the feasibility of Problem 2. In other words, we look for
constraints on the matriX that hampers the existence of
admissible realizations of the uncertaitywhich lead to the

Algorithm 1 Solving Problem 1

Input: valuer, distance matrixT, the set./’, the set?’ break of the(i, j) link.
1: initialize x Consider the matrix "I which is real, symmetric, positive
2: for i e ¥ do semidefinite and block diagonal, i.e. there aig € R9¥9,
& for je.sido with k € Ny, real, symmetric and positive semidefinite such
4 agenti solves Problem 2 and ge®ol; that F''T = diagMy, ..., My). Then there exisGy € R9*d
5 end for _ diagonal andHy € R4 unitary, for allk € Ny, such that
6: if N Solj =0 then Problem 1 has no solutioBtop
je r'r =diagMy,...,My
7 endif iagMy, .., M) (15)

8: end for = diagH{ GiHy, ..., HI GgHy) = HGH,

with G = diag(Gy, ..., Gy) and H = diag(Hy, ..., Hy) such
Remark 2:1t is important to recall that in this paper wethatHH" = I4g. The diagonal entries oBy (resp. ofG) are
provide only necessary conditions and sufficient ones fer tthe eigenvalues ol (resp. of 'T') and the columns ofi,
existence of controllers preserving the graph topologye Bu (resp. ofH ) are the related eigenvectors, for ke Ny. All
local knowledge it is clear that ageintan only find conditions the eigenvalues are nonnegative.
to preserve its own links. The design of the controllers Assumption 1:The matrixI" is such that y Amax(Mk) <1.
preserving the whole topology can be done by minimizing co:ﬂ1 keNg

¢ i necessity of Assumption 1 is proved below.
unctions that may be also related to a secondary agreemerlfm osition 1 (Necessary conditionlf Assumption 1 does
goal (see Section 1V). p ( Y i p

Definition 2: Given (6), (7) and (8), define not hold, then there ig € RN such that (14) holds and

— — — =T 2 2
N =2]4{j| +1, N = A+ Al AZ+TZ] [AZ+TZ] =17, (16)
Eij = {& ke Eji = {€ kfke.s f dN

' : ! ' ' b or all Ze R andA.

—[al. ET ENT nN — di dN
%_ [e,’j, 51’7 Ejyi] TE R™ %_ dlag\,('I'T)E €R ~ Proof: GivenT 'T" as in (15), denote witi, the maximal
Kij = [{Kixtkes;] . Kiviv: [{fKJ,k}ki-%j] dedn eigenvalue ofMy, i.e. Ax = Amax(Mk), and suppose with no
A =T[A+B(Kij+Kj,), BKij, BKji]diagy(T)" € R™,  |oss of generality thady is the first element of the diagonal
B :_{a,klke./ﬁja _ Eji= {ej,k}ke/_VIi’ _ of Gy, for everyk € Ny. Defining withh, € RY an eigenvector
E=[E],E[i]" eR™ Z = diagy(T)E € RN of norm one related td, we haveHyh, = [1,0,...,0]", for
Ris = [{Khe )] Rii = [{—Kihesr]. @l keNg ) .
r— T[BKLJ’, BRjyi]diagq(T)T c RAxdN, Suppose thfit%}" > 1 and choos& = r{hg}keng € R.

N

) ) (12)_ We have that
Notice thatE, Z andA are two vectors and a matrix which

are functions of the states and the gains of ithe system
and its common neighborE, Z andl" concern the states andfor || k € Ny, thusZ fulfills (14). Moreover

gains of the non-common neighbors of thg system. The _ o _

dependence ¥, N, E, Z, A, E, Z andl on the indices, j is Z'r'rz=zZ"H'GHzZ =

omitted to simplify the notation. Using Definition 2, we have r?> ¥ [1,0,...,0/G[1,0,...,0]" =r2 5 A >r2  (18)

Z'DZ =r?h)h=r2, (17)

thatTg = AZ + [Z and then the algebraic constraint (11) is "W keNg
equivalent to Notice that (17) and (18) do not depend on the signZof
AZ+TZ)T[AZ+TZ] <12, (13) Thus, for allZ andA there exists an adequate selection of the

_ sign of Z such that
and the uncertainties bounds are given, in the termsg, diy

_ ZTATAZ+2Z'TTAZ+Z2'TTrz>Z2"T'rz. (19)
Z'DZ<r?  vkeNg, (14)

) Actually, the first term in (19) is always nonnegative and the
from (9), for allk € Ny, with second term in (19) becomes nonnegative by appropriately
Dy = diag(Oq, ..., Og, Id, O, - .., Og) € Rdﬂxdﬂ, choosing the ;ign of. From (18) E%I':Id (19) we have (16m

An alternative necessary condition for the Problem 2 to
wherelq € R9%9 is the identity, @ € R9*9 is the zero matrix have a solution, inspired by the comments of an anonymous
andk indicates thaly is thek-th block of Dy. reviewer, follows from the lemma below. This condition is

Remark 3:We have shown that Problem 2 is equivalent temployed in the next section to provide sufficient condiion

(13) is satisfied for everyg e RIN fulfilling (14). for Problem 2 to admit solutions.



Lemma 1:The matrix ' satisfies Assumption 1 if and Proof: First notice that every solution of (21) satisfies also
only if there existsA = diag(A1lg, ..., Aglg) with Ay > 0 and

.
S Ak < 1 such that > A<l rr-a<o, (22)
keNg keNg
rr<A. (20) as the principal minors of a positive definite matrix are posi
Proof: For the necessity, suppose that Assumption 1 hold$efinite. Since (22) is a necessary condition for the Prolem
Denotee = 1— ¥ AmaxMk)> 0 and defineA with Ay = to admit a solution, see Section lll-A, there is no loss of
keNg generality in assuming it satisfied. Condition (13) is eglént
AmaxMk) +0.5¢/N. Clearly (20) holds and 0
ATA ATT Z
=S AmaxiMk) + 0.5 < § Amax(My) +£=1. [zT,z—T][ CTA T } [ z‘} <r? (23)

keNyg keNyg keNy

For the sufficiency, suppose the existence/othat satifies This condition must be satisfied for evelysuch that (14)

: : holds. Applying the S-procedure, a sufficient condition(ft3)
20) with ¥ Ak < 1. F th ticular structure 6f, (20 — e . .
(20) wi kg\m k< fom the particular structure o1 (20) to hold for everyZ € RIN satisfying (14) is the existence of

implies My < Axlg which yieldsAmaxMk) < Ay, for allke Ng. A >0, for all k € Ng, such that

From this and ¥ A < 1, Assumption 1 follows. [ ] — — —
ke%ﬁ “ P Z'ATAZ+2Z'TTAZ+ZTI'T —NZ<r?—r25, (24)

Remark 4:Given A as in Lemma 1, the quantity =

vl dN ;
S A may be geometrically interpreted as a bound on tHf@r €veryZ € R%". From (22) andZ being known, the left-
kENg hand side of (24) is a concave functiondnwhose maximum

uncertainty. In fact, from Definition 2, condition (20) leatb s attained at

[Twil3=Z2"T"TZ<Z'AZ=5 MZ'DiZ< § A, Z=—(T-Nr"az (25)
keNg keNg — —

_ N _ N Hence condition (24) holds for eve&e RN if and only if it

for all gk, with ke .4 j, andejx with k € .4j; such that (9) is satisfied for the maximum of the function at left-hand side

holds. Precisely, the effect of the non-common neighbons cthat is if and only if

be modelled as a perturbation on th¢ system bounded by AT AT T 1T > 2

an ellipsoid determined by ' T and of radius/3r. Therefore ZADZ=Z AT T=NTTAZ<r"=r%, (26)

the condition "I < A results in a bound on the gains relateqyhich is given by (24) at (25). Hence every, A and I

to the non-common neighbors of titeh and j-th agents. It gatisfying conditions (22) and (26) ensure the satisfactit

can be interpreted as a joint limitation on the control eﬁorHTqﬂllz < for all Z such that (14) holds. The condition (26)

of the agents and j aimed at regulating and preserving theifg equivalent to
other connections.

Using the interpretation above, Proposition 1 may be refor- [ ZTATAZT— r?+r25 ZTTATF ] 0
mulated as an intuitive result saying that:is not possible to I raz rr—A
guarantee the "distance” constraint as far as the uncertas [ ZTATAZ ZTATT r2—r23 0
are too large, i.e.|Tw j|l2>r. < raz rr 0 A

T 7TAT 2_ 2
N B | - Z?}[AZF}<[r r2g O}
B. Sufficient condition for network preservation L T 0 A
: : : - ; r2—r25 0 Z'AT

This section provides conditions on the gaifisand A b
for guaranteeing the existence of solutions for Problerm2. 1 < 0 AT >0.
order to derive the sufficient condition we use the S-prooedu | AZ r la
(see [4] for further details). This commonly used procedutghys (21) is equivalent to (24), sufficient condition for (18
gives sufficient conditions in terms of LMI. An importantphg)q. m

contribution of this paper, namely the sufficient conditfon
the constraint (11) to hold, is stated in the following trerar

Theorem 1 (Sufficient conditionroblem 2 admits solu- C. Guaranteed network preservation: common feedback gains

tions (i.e. condition (13) is satisfied for evefye RN fulfilling The condition presented in the previous subsection ensures
(14) ) if there exist9\ = diag(A1lg, ..., Aglg) with A, >0, for thatthe algebraic constraint related to thiesystem is satisfied
all k e Ny such that at the successive time instant. No insurance on its sdiisfac
y _— along the evolution of the overall system can be guaranteed,
r“°=r6 0 z'A unless proper choices & ; are done. In case the feedback
0 A TT >0 (21)  gains are assumed to be the same for every agent and every
Az T 4 i, j system, a sufficient condition for guaranteeing the network
. _ ‘o topology preservation at every future time instant can segdo
with o _ke%ﬁ)\k' Furthermore, anyA,T’) satisfying (21) de Assumption 2:Given the system (1) with control (4), as-

fines admissible controller gains for the Problem 2. sume that; ; = K for all (i,j) € .+



The objective is to characterize the set of common feedback all (i, j) € .4/, if ||Tak(0)[|2 <r for every (I,k) € 4.
gains such that, if applied to control the multi-agent syste Notice that this would imply\Te{rj l2 <r, strictly, as required
they ensure the non-increasing of the valygss j|> for in Problem 2.
all (i,j) € 4. If the connection condition is satisfied by Proposition 2 and Corollary 1 provide sufficient conditions
the initial condition, i.e.|[Tq j(0)|2 <r for all (i,j) € .47, on the local feedback gains for the recursive satisfactibn o
the network topology preservation is iteratively guaradtat the algebraic constraints and for convergence, respéctiva
every successive instant. Given the sets as in (6), define the other hand, the price to pay for the recursive guararftee o

constraints satisfaction (or of convergence) is a certagreke
N = (if}‘)"g‘j‘yﬂ“m +I A =2} of conservativeness of the results in comparison with tlodse

Then, for all (i,j) € .4, Nu € N is an upper bound of Theorem 1.

the number of agents different fromand j affecting thei, j IV. APPLICATION TO DECENTRALIZED CONTROL OF

system.
Proposition 2: Let Assumption 2 hold. If there exists € . MULTI-AGERT SYSTEM.S
[0,1] such that Let us consider the problem of flocking for a set of agents

with the dynamics along the axis given by (2) and similar

{ ATIT _ (A+2BK)TTT T o one alongy axis. We consider an interaction graph in which

T(A+2BK) Alg T (27) the euclidean distance between two neighbors is smaller tha

[ 1-A)TIT NuK'B'T' ] >0 or equal tor. The matrixT defining the algebraic constraint
NmTBK (1-Mlg | =7 to be preserved is

then the systems given by (7) and (8) are suchlffiat; > <r 1t 00
! T:[OO 1t]. (28)

forall (i,j) € A if || Tal2<r forall (I,k) € 4.
Proof: Define the setBr = {ec R": ||Te|2 <r}, thenee .
%r if and only if €' T'Te< r2 The first condition in (27) Thus, denoting\p; j = ((pX(k) — (k)2 + (p!(k) — Y (K))?) 2
is equivalent to{A+2BK) T TTT(A+2BK) < A2T'T, which we supposép; j(k+1) <r and we determine the controllers
implies that(A+ 2BK)%t C A %r. From Assumption 2 one ensuringAp; j(k+2) <r. Among all these controllers we
have thatK;; = Kj;i = K, which means thafA+2BK is the chose the one that minimize the difference between neighbor
dynamics of any, j system in the absence of the perturbatiospeeds, i.e. the valudv;; = ((v¥(k) — v’j‘(k))2 + (W(k) —
of the neighbors. Then the sgfr is mapped inA %7 if no 3 ; o :
perturbatign is present, that (A:L BK,, fFI;KJ )8, eT/\ﬁ V(k))?)2. Let us consider the six interconnected agents with

the initial conditions given in [9] and connected by the
for all g j € 7. Analogously, the second condition in (27) is
equivalent toN2K B’ T TBK < (1—A)2T'T, which leads m|n|mal robust graph computed in the same work. That is:

to 5 BK#r = NMBK%T (1—A)%t. This means that if = {(1,2),(2.3), (3,4), (4,5), (5,6)}, r = 32 and initial

kel conditions:
ei,k_e%’T forallkem\{j}and@,je%T forallke 47\ {i}, x1(0)=[-4 —vg 3 O, x(0)=[4 v 3 0,
as implicitly assumed, then %(0)=[-2 —vo 2 O, x5(0)=[2 vo 2 O
Z (BK_Q’k— BI<_ej’k)—|— Z(BK_Q,k) — Z(BK_GJ'J)E(].—A)%T, X3(O) = [*1 -V O O]Tv X4(0) = [1 Vo O O]T
ke ke j leAj; wherevy is used as a parameter to analyze the maximal initial

for all (i,j) € .#. From properties of the Minkowski setspeed that can be dealt with by different control stratedtes
addition, see [12], we have, € A%r+ (1— )% = %, s noteworthy that, as shown in [9], for the classical cossen
if e %r forall (1,k) € .4, wh|ch ends the proof. m algorithm the preservation of the minimal robust graph iargu
Proposition 2 characterizes the common gains that ensaféeed for a critical speed valwg~ 0.23. Nevertheless, it is
the network topology preservation along the whole trajgeso  numerically shown that the sufficient condition is consévea
An analogous sufficient condition for convergence follows. since forvo = 1.5v; (generating approximately a 4 times higher
Corollary 1: Let Assumption 2 hold. If there exidte [0,1] ~ global velocity disagreement) the robust graph is not bmoke

andA > 0 such that We also note that the classical consensus algorithm is et ab
(A —X)TTT (A+ZBK_)TTT to preserve th_e connectivity when the global dlsagreement_l
— - >0, 5 times superior to the one guaranteeing the consensus (i.e.
T(A+2BK) (A —=A)lg
A-M)TTT NeKTBITT Vo > 2.1ve).
[ NuT BK 1A ] >0, In the sequel, we use Theorem 1 to compute the sets of
M (1=l gains ensuring the topology preservation. The choice of the
then the systems given by (7) and (8) are such that controllers gain within these sets is done heuristicallyrigi-

+ T _ mizing a cost function that expresses the velocity disagesg
”TQJHZS (2=A)lTe,ll2, and penalizes the links break. This strategy has admissible
for all (i,j) € A4 if g, e R" satisfies||Tq |2 <r for all solutions forvg = 19v. (see Figures 1, 2) and the connection
(1,k) € A" between the third and the fourth agent is lost ¥gr= 20v..
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the system 12 has the same evolution as thég%nd the 23

the same as,&, by symmetry). First, the control cancels the
speed difference between neighbors with opposite vedsciti
creating a speed disagreement in both symmetric branches c
the graph. Next, it cancel the disagreement between 2-nd ani
the 3-rd agent and between the 4-th and 5-th one, mimicking & 22 e
gossiping procedure where the choice of active commupicati o 02 04 0e 08 g

link is given by the error between neighbors speeds. Doing so 6
either the flocking is reached before the connectivity i, los

Apz3s, Apss

the graph splits into two groups that will independentlyesgr §4’ 1
to two different velocity values. 3,
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