
HAL Id: hal-00920901
https://hal.science/hal-00920901

Submitted on 20 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Static and Dynamic Validation of MPI
Collective Communication

Emmanuelle Saillard, Patrick Carribault, Denis Barthou

To cite this version:
Emmanuelle Saillard, Patrick Carribault, Denis Barthou. Combining Static and Dynamic Validation
of MPI Collective Communication. EuroMPI 2013 - 20th European MPI Users’ Group Meeting, Sep
2013, Madrid, Spain. pp.117-122, �10.1145/2488551.2488555�. �hal-00920901�

https://hal.science/hal-00920901
https://hal.archives-ouvertes.fr

Combining Static and Dynamic Validation of MPI Collective
Communications

Emmanuelle Saillard
CEA, DAM, DIF

F-91297 Arpajon, France
emmanuelle.saillard@cea.fr

Patrick Carribault
CEA, DAM, DIF

F-91297 Arpajon, France
patrick.carribault@cea.fr

Denis Barthou
University of Bordeaux / INRIA

Bordeaux, France
denis.barthou@labri.fr

ABSTRACT

Collective MPI communications have to be executed in the same
order by all processes in their communicator and the same number
of times, otherwise a deadlock occurs. As soon as the control-
flow involving these collective operations becomes more complex,
in particular including conditionals on process ranks, ensuring the
correction of such code is error-prone. We propose in this paper a
static analysis to detect when such situation occurs, combined with
a code transformation that prevents from deadlocking. We show on
several benchmarks the small impact on performance and the ease
of integration of our techniques in the development process.

General Terms

Verification

Keywords

MPI, debugging, collective, static analysis, correctness

1. INTRODUCTION
Most of scientific applications in High-Performance Computing

rely on the MPI parallel programming model to efficiently exploit a
supercomputer and reach high parallel performance. Based on the
distributed-memory paradigm, this model exposes two ways to ex-
press communications between tasks/processes: point-to-point and
collective. While point-to-point functions involve only two tasks,
collective communications require that all processes in a commu-
nicator invoke the same operation. Each process does not have to
statically invoke such collective function at the same line of the
source code, but the sequences of collective calls in all MPI pro-
cesses must be the same and corresponding function calls should
have a compatible set of arguments. Due to the control flow inside
a MPI program, processes may execute different execution paths.
Such behavior may cause errors and deadlocks difficult for the user
to detect and analyze.

To tackle this issue, this paper presents a two-step analysis to
detect incorrect collective patterns in SPMD MPI programs. For
each function, we first identify at compile-time the code fragments

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroMPI’13 Madrid, SPAIN
Copyright 2013 ACM 978-1-4503-1903-4/13/09 $15.00.

calling collectives that may deadlock and the control-flow parts that
may lead to such situation. Warnings are issued during this phase.
Then, we transform the identified code fragments in order to dy-
namically capture these situations before they arise. The runtime
overhead of this instrumentation is limited since only the pieces of
code calling collectives that can deadlock are modified. In case of
actual misuse, the application stops with an explicit error message
highlighting both the collectives and the control-flow code respon-
sible for this situation.

1.1 Motivating example
The following simple example illustrates the potential issues with

collective communications.

void f(int r) {
if(r == 0) MPI_Barrier(MPI_COMM_WORLD);
return;

}
void g(int r) {

f(r);
MPI_Barrier(MPI_COMM_WORLD);
exit(0);

}

Assume here that g is called by all processes. Depending on the
value of the input parameter r, a process will execute or not the
barrier in the if statement in f. If r is not uniformly true or false
among all MPI processes, some tasks will be blocked in f while
the remaining process ranks will reach the barrier in g. These pro-
cesses will then terminate, while the first ones will be in a deadlock
situation at the barrier in g. The machine state when the deadlock
occurs does not help to identify the cause of the deadlock.

We propose in this paper methods (i) to identify the conditional
in f as the cause for a possible deadlock, using compiler analysis
and (ii) to prevent from deadlocking using a code transformation.
As the value of r is unknown at compile time and might be the
same for every MPI process, the dynamic state of control flow has
to be checked in order to prevent from entering a deadlock state.
Transforming the previous example would lead to the code:

void f(int r){
MPI_Comm c; int n1, n2;
if(r == 0) {

MPI_Comm_split(MPI_COMM_WORLD, 1, 0, &c);
MPI_Comm_size(c, &n1);
MPI_Comm_size(MPI_COMM_WORLD, &n2);
if (n1 != n2) MPI_Abort();
MPI_Comm_free(&c);
MPI_Barrier(MPI_COMM_WORLD);

}
MPI_Comm_split(MPI_COMM_WORLD, 0, 0, &c);
MPI_Comm_size(c, &n1);
MPI_Comm_size(MPI_COMM_WORLD, &n2);
if (n1 != n2) MPI_Abort();
MPI_Comm_free(&c);

return;
}

In order to partition processes according to their behavior regard-
ing the conditional, two calls to the collective MPI_Comm_split are
inserted in the code: one before the barrier operation with color 1
(2nd parameter of the call), and one before the return statement
with color 0. All processes call the MPI_Comm_split collective,
whatever their execution path. However, both the communicator
for color 1 and the one used in the following barrier should have the
same size, otherwise the function is incorrect and an MPI_Abort is
issued in order to prevent from deadlocking.

1.2 Context and Contributions
This paper focuses on scientific SPMD applications parallelized

with MPI. We suppose functions calling collective operations are
called by all processes in the same order and the same number of
time. A function is said to be a correct function regarding blocking
collective communication if all MPI processes entering the func-
tion eventually exit without leaving any process blocked inside a
collective operation. We consider that mismatching collectives are
the only source of deadlock, neglecting other possible sources such
as infinite loops, blocking IOs and other deadlocks which would
require dedicated analysis. While all types of collectives are han-
dled, collective operations are assumed to be called on the same
communicators, with compatible arguments. In this context, this
article makes the following contributions:

• Identification of collective callsites that may lead to dead-
locks, and of control-flow codes responsible for such sit-
uation within each function. If all execution paths can be
executed in parallel, the identified collective corresponds to
deadlock situations (no over-approximation then).

• Limited instrumentation based on the previous analysis to
prevent collective errors at execution time, pinpointing the
control-flow divergence responsible for such errors.

• Full implementation inside a production compiler, experi-
mental results on MPI benchmarks and applications.

1.3 Outline
Section 2 describes related work on MPI debugging and analy-

sis, focusing on collective operations. The static analysis detecting
collective issues is presented in Section 3, and the code transforma-
tion to capture incorrect functions is described Section 4. Section 5
shows experimental results.

2. RELATED WORK
Related work on MPI code verification can be organized in 3

categories: (i) static analyses, (ii) online dynamic analyses and (ii)
trace-based dynamic analyses.

Static tools.
Few MPI validation tools rely exclusively on static analysis. This

class of tools mainly based on model checking does require sym-
bolic program execution, at the expense of combinatorial number
of schedules or reachable states to consider, making this approach
challenging. TASS[9], a successor of MPI-SPIN follows this ap-
proach: using model checking and symbolic execution, it checks
numerous program properties explicitly annotated with pragmas. If
a property is violated (as wrong order of collective calls) by explor-
ing reachable states of the model built, an explicit counter-example
is returned to the user in the form of a step-by-step trace through
the program showing the values of variables at each state of the syn-
thesised model. Unlike TASS, our static check analyzer requires no

source-code modifications to verify collective matching since it is
integrated inside a compiler. Potential errors are automatically re-
turned to the programmer with their context (including the line of
the erroneous conditional) through a low-complexity control-flow
graph analysis. A pragma-based approach however could be useful
to improve our static analysis (for example by tagging MPI rank
dependent variables), thus reducing false-positive possibilities. Be-
sides, in our approach, the combinatorial aspect of detecting effec-
tive mismatch is avoided by the runtime checking.

Online dynamic tools.
Dealing with dynamic tools able to check collective operations,

we can mention DAMPI[13], Marmot[6, 8], Umpire[12, 8], MPI-
CHECK[7, 8], Intel Message Checker (IMC)[2, 8] and MUST[5,
4]. Umpire, Marmot and MUST rely on a dynamic analysis of
MPI calls instrumented through the MPI profiling interface (PMPI).
They are able to detect mismatching collectives either with a time-
out approach (DAMPI, Marmot, IMC and MPI-Check) or with a
scheduling validation (Umpire and MUST). Methods performing
deadlock detections through a timeout approach are known to pro-
duce false positives, for example in case of abnormal latencies. In
our approach we detect possibly erroneous calls at compilation time
(filtering phase) but by analyzing the code function by function,
our method detects errors sooner compared to most other tools.
DAMPI uses a scalable algorithm based on Lamport Clocks (vector
clocks focused on call order) to capture possible non determinis-
tic matches. For each MPI collective operation, participating pro-
cesses update their clock, based on operation semantics. Umpire,
limited to shared memory platforms, relies on dependency graphs
with additional arcs for collective operations to detect deadlocks,
whereas in Marmot, an additional MPI process performs a global
analysis of function calls and communication patterns. Both of
these approaches, however, might be limited by scalability. MUST
overcomes the limitations of Umpire and Marmot in term of scala-
bility by relying on a tree-based layout. Another tool, MPI-CHECK
instruments the source code at compile time replacing all MPI calls
with modified calls with extra arguments. In our approach, we per-
form a runtime check, taking advantage of the compile time analy-
sis results (code locus and potential error filtering) in order to scale
to large programs, avoiding instrumentation of the whole MPI in-
terface or systematic code instrumentation like in MPI-CHECK.

Validation can also be done inside MPI libraries such as in an
extension of MPICH, allowing collective verification for the full
MPI-2 standard[3, 10]. The detection of runtime deadlock causes
is however limited to the information available to the MPI rou-
tines. Comparatively to most dynamic analysis tools, our method
provides more precise errors including the conditionals responsible
with the help of our static check.

Trace-based dynamic tools.
IMC (recently replaced by the Intel Trace Analyzer, an online

analysis) uses a different approach as it collects all MPI-related in-
formation in trace files. The post-mortem analysis of these traces
tends to be difficult and with limited scalability due to the trace
sizes, correlated to the number of cores.

Our detection of incorrect functions combines both static and dy-
namic approaches. The compilation analysis finds all locations that
may cause potential errors and the code is transformed in order to
stop the execution whenever a function is incorrect. More precisely,
when a deadlock situation occurs in a run, an error message is re-
turned with both the location and the type of the collective and the
control-flow code responsible for this situation. The program then

aborts allowing a program state exploration with a debugger. As
our dynamic check is performed by a lightweight library (see Al-
gorithm 2), it is also independent from the MPI implementation.

3. COMPILE-TIME VERIFICATION
The first step consists in a static analysis of the control-flow

graph (CFG) for each function. The CFG is defined as a directed
graph (V,E) where V represents the set of basic blocks and E is the
set of edges. Each edge u−→ v∈ E depicts a potential flow of con-
trol from node u to v. A node u ∈V has a set of successors denoted
as SUCC(u). Moreover, we assume that the underlying compiler
appends two unique artificial nodes for entry and exit points.

3.1 Algorithm Description
Based on this structure, Algorithm 1 details the steps of our static

compile-time analysis to detect if a function is correct (see Section
1.2). The algorithm takes as input the CFG of the current function
and outputs nodes that may lead to collective errors (from S) and
a set O of collectives that may deadlock. This set will be given as
parameter to the instrumentation detailed in Section 4.

The principle of the algorithm is the following: we compute for
each node of the CFG the number of collectives executed to reach
the node from the function entry. This number will be 0 for nodes
before the first collective (including the node with the first collec-
tive), 1 for nodes reached after one collective and so on. When
multiple paths exists, nodes can have multiple numbers, at most the
number of collectives in the function. Loop backedges are removed
to have a finite numbering and the algorithm is applied to the CFG
of each loop separately. For nodes with collectives, these numbers
correspond to the possible execution ranks of the collective within
the function. In a correct function, for any given rank k, all exe-
cution paths from entry to exit should traverse the nodes of rank
k with the same collective operation. A function is not correct if
there are nodes with out-going paths through nodes of execution
rank k and other paths that do not traverse nodes of rank k or with
different collectives. These nodes correspond to possible control-
flow divergence leading to deadlocks, since it is possible to execute
a different number of collectives, or in a different order. They can
be computed using the iterated postdominance frontier [1].

A node u postdominates a node v if all paths from v to exit go
through u. We extend this relation to sets: a set U postdominates
a node v if all paths from v to exit go through at least one node of
U . The postdominance frontier of a node u, PDF(u) is the set of
all nodes v such that u postdominates a successor of v but does not
strictly postdominate v. If≫ denotes the postdominance relation,

PDF(u) = {v | ∃ w ∈ SUCC(v),u≫ w and u 6≫ v}

This notion is extended to a set of nodes U . The iterated postdom-
inance frontier PDF+ is defined as the transitive closure of PDF ,
when considered as a relation [1].

Algorithm 1 describes this computation applied to each function
and loop, entry and exit being defined then as loop entry and exit.
Execution rank computation corresponds to a simple traversal of
the acyclic CFG, counting traversed nodes with collectives. Then
for each execution rank r, the nodes calling the same function c, at
rank r are clustered into Cr,c. The iterated postdominance frontier
of this set corresponds to nodes that can lead both to the execution
of such collective or not. Note that the algorithm can handle any
collective operation, but since comunicators are expected to be the
same along collectives, and other parameters are assumed to be
correct, only the name of the collective is used in the algorithm.

3.2 Example

Algorithm 1 Step 1 - Static Pass

1: function STATIC_PASS(G = (V,E)) ⊲ G: CFG
2: O← /0

3: S← /0 ⊲ Output set
4: Remove loop backedges in G to compute execution ranks for nodes

with collectives
5: for r in node ranks do

6: for c in collective names of execution rank r do
7: Cr,c←{u ∈V |u of rank r, of collective name c}
8: S← S∪PDF+(Cr,c)
9: O← O∪ c

10: end for
11: end for
12: Output nodes in S as warnings, nodes in O for Step 2.
13: end function

entry

1

2-Barrier

3

exit

(a) CFG of function f

entry

1

2

3-Barrier

4

5

6

7-Barrier 8-Barrier

9

11

10-Allreduce

12

13

exit

(b) CFG from a Benchmark

Figure 1: Examples of Control Flow Graphs

Figure 1(a) depicts the CFG extracted from the initial code of
Section 1.1. It contains 3 nodes: the first one represents the if

statement while the second one contains the if body with the col-
lective call. Finally the last one denotes the return instruction.
The algorithm considers the set C0,Barrier = {2} corresponding to
the collective Barrier. As its iterated postdominance frontier is
node 1, the algorithm finally outputs a warning for the condition
located in node 1 and flags the collective Barrier for the follow-
ing dynamic analysis (set O).

Figure 1(b) presents another CFG extracted from a real bench-
mark. This example contains 2 collectives: Barrier (nodes 3, 7
and 8) and Allreduce (node 10). The algorithm first removes the
backedge 5→ 2 from the loop and computes ranks. Nodes 7,8 are
of rank 0, 10 of rank 1. For the collectives in C0,Barrier = {7,8},
the iterated postdominance frontier corresponds to node 1. Note
that node 6 is postdominated by {7,8} according to the defini-
tion of previous section. C1,Allreduce contains only node 10 and
PDF+(C1,Allreduce) = {1,9,10}. Indeed from these nodes, it is
possible to execute the Allreduce or not. Finally, the same al-
gorithm is applied once more on the graph with nodes {2,3,4,5}
corresponding to the loop, without the backedge. Node 2 is marked
as entry and exit. This node is the only one in the iterated postdom-
inance frontier of the barrier in node 3. To sum up, node 1 decide
of the number of execution of Barriers in 7,8, nodes 9,11 decide
of the number of execution of Allreduce and node 2 is responsible
for the number of Barriers executed in node 3.

3.3 Algorithm Proof
Previous algorithm computes the set S of control-flow nodes that

have execution paths with different number or type of collectives,
from the node to the exit node. We prove that the algorithm finds
a non-empty set O if and only if the function is incorrect, and the
nodes in S correspond exactly to the nodes that lead to a deadlock.

Consider a node u from S, computed from the function CFG. u

belongs to a set PDF+(Cr,c) for some rank r and collective func-
tion c. It implies that there is an outgoing path from u that goes
through the collective c of rank r, and another path that reaches the
exit node without going through a collective c of same rank. If the
second path never reaches a collective c (any rank) and if both paths
are executed by different tasks, then some tasks will wait at the col-
lective c while the other tasks will either wait at another collective
(a deadlock) or exit the function (incorrect function). In both cases,
function is incorrect. If both paths traverse the same collective c,
since the ranks are different, one of the paths has more collectives
c than the other. Again, this leads to an incorrect function.

The algorithm is applied on each loop separately. This separate
analysis identifies at least loop exit nodes as control-flow nodes that
may be responsible for deadlocks, when the loop calls collectives.
Indeed, static analysis does not count iterations and collectives in
loops may be executed a different number of times for each process.

Now consider an incorrect function: when executing this func-
tion with multiple tasks, some task may reach the exit node while
other tasks are waiting at a collective c inside the function. This
collective is executed in a node u with rank r. u belongs to Cr,c. If
the iterated postdominance frontier PDF+(Cr,c) is empty, it would
imply that all nodes of the function are postdominated by a collec-
tive c at rank r. This means that all tasks would execute the same
kth collective c, whatever the path taken. As this is not the case,
PDF+(Cr,c) is not empty, Cr,c ⊆ O.

4. EXECUTION-TIME VERIFICATION
The code fragments leading potentially to incorrect functions,

detected with the previous analysis, are transformed in order to
raise an error message at the execution time: whenever MPI tasks
take execution paths that cannot lead to the same number of collec-
tives, in the same order, the program stops. This section presents
the code transformation involved.

4.1 Algorithm Description
We introduce the function CC depicted in Algorithm 2 to check

if a future call to a collective operation will ultimately generate
an error. It takes as input the communicator comc related to the
collective call c and a color ic specific to the type of collective.

Algorithm 2 Library Function To Check Collectives (CC)

1: function CC(comc, ic)
2: MPI_Comm c′

3: MPI_COMM_SPLIT(comc, ic,0,&c′)
4: MPI_COMM_SIZE(comc,&n)
5: MPI_COMM_SIZE(c′,&n′)
6: if n 6= n′ then
7: MPI_ABORT()
8: end if

9: MPI_COMM_FREE(&c′)
10: end function

Relying on the CC function, Algorithm 3 describes the instru-
mentation for the execution-time verification. It takes as param-
eter the function CFG and the set O generated by Algorithm 1.
For each node n containing a call to the collective c, a new com-
municator grouping processes traversing n is created just before
calling c. A piece of code testing the size of the resulting com-
municator and the original communicator used for the collective is

Algorithm 3 Step 2 - Selective Instrumentation

1: function INSTRUMENTATION(G,O)
2: ⊲ G: CFG, O: set created by Algorithm 1
3: for c ∈ O do
4: for n in nodes containing a call to collective c do
5: x← comn,c

6: Insert call to CC(x, ic) before the call to c

7: end for
8: end for
9: Insert call to CC(x,0) before the return statement

10: end function

then added. If both sizes are different, an error is issued and the
program is aborted through a call to MPI_Abort. This process is
repeated for each collective operation c in set O. Finally, in the
closest node of collective nodes that post-dominates and joins all
paths of the CFG, MPI_Comm_split with the color 0 is added to
eventually catch up processes not calling any additional collective.
Figure 2 presents the transformation achieved by Algorithm 3 on
the CFG Figure 1(b).

entry

1

2

CC(comB , iB)

3-Barrier

4
5

6

CC(comB , iB)

7-Barrier

CC(comB , iB)

8-Barrier

9

11
CC(comA , iA)

10-Allreduce

1213

CC(comB ,0)

CC(comA ,0)

exit

Figure 2: Instrumented CFG Figure 1(b) (Algorithm 3)

4.2 Correctness Proof
Algorithm 3 is correct if all deadlocks situations are captured

by the instrumentation and if the new collectives do not generate a
deadlock themselves.

We define a control sequence the sequence of collective calls ex-
ecuted by a process in a program execution. For an execution of a
given function, a control sequence is denoted as c1c2..cn with ci the
i-th collective called. Algorithm 3 rewrites each collective c j from
the set O into s jc j corresponding to the function MPI_Comm_split

called by CC based on the color j and the initial collective c j . The
function MPI_Comm_split with color 0 denoted as s0 is added af-
ter all collective nodes. To ease the proof, we will assume that
this conditional rewriting, performed only for collectives found by
the static analysis, is conducted for all collectives of the control
sequence. Consequently, a sequence c1..cn becomes s1c1..sncns0.

If all control sequences are the same for all processes, the func-
tion executes with no deadlock. By applying Algorithm 3, the mod-
ified control sequence are still identical, this algorithm does not in-
troduce deadlocks.

If a function deadlocks due to collective operations,

• Either a process calls a collective communication ci while
another process calls a collective function ck with k 6= i. The

control sequence of both processes differ only with their last
collective, ck and ci, and both are prefixed by c1..ci−1.

• Or a process calls a collective communication while another
one exits the function (a deadlock may occur at a later point
in the execution or outside of the function). The control se-
quence of the process exiting the function is c1..ci−1 and the
process inside the function executes the same prefix sequence
with one more collective ci.

In the first case, the algorithm changes both control sequences into
s1c1..si−1ci−1si and s1c1..si−1ci−1sk. These sequences stop with
si and sk since CC(x,i) and CC(x,k) lead to an error detection and
abort. Hence the modified function no longer deadlocks.

In the second case, the algorithm changes both control sequences
into s1c1..si−1ci−1si for the process inside the function, and s1c1..

si−1ci−1s0 for the one trying to leave the function. Note that the
process is stopped before leaving the function since CC(x,i) and
CC(x,0) both abort, generating an error message. Again, the modi-
fied function does not deadlock any more. To conclude, Algorithm
3 is indeed correct and prevents all deadlock situations.

5. EXPERIMENTAL RESULTS
We implemented our analysis in a GCC 4.7.0 plugin as a new

pass inserted inside the compiler pass manager after generating the
CFG information. Thus, this solution is language independent, al-
lowing to check MPI applications written in C, C++ or FORTRAN.
The pass applies Algorithms 1 and 3. The application needs to
be linked to our dynamic library for runtime checking (see Algo-
rithm 2). Our static analysis is simple to deploy in existing envi-
ronment as it does not modify the whole compilation chain.

This section presents experimental results obtained on a repre-
sentative C++ MPI application, EulerMHD[14], solving the Euler
and ideal magnetohydrodynamics equations both at high order on
a 2D Cartesian mesh, and on the MPI NAS Parallel benchmarks
(NASPB v3.2) using class C [11]. We selected six benchmarks
from the NASPB to have both C and Fortran programs.

5.1 Test Platform and Methodology
All experiments were conducted on Tera 100, a Petaflopic super-

computer with an aggregate peak performance of 1.2 PetaFlops. It
hosts 4,370 nodes for a total of 140,000 cores. Each node gathers
four eight-core Nehalem EX processors at 2.27 GHz and 64 GB of
RAM. All performance results are computed as the average over 8
runs (compilation or execution) with BullxMPI 1.1.14.3.

5.2 Static Check Results
At compile time, a warning is returned to the programmer when

a potential deadlock situation is detected. The following example
shows what a user can read on stderr for NAS benchmark IS:

is.c:In function ‘main’:
is.c:1093:1: warning: STATIC-CHECK: MPI_Reduce may
not be called by all processes in the communicator
because of the conditional line 923
Check inserted before MPI_Reduce line 994

This warning provides the name of the collective that may dead-
lock (MPI_Reduce) and the line of the conditional leading to the
collective call (line 923). This collective call is instrumented at
line 994 as described in Algorithm 3. Notice that the line number
where the control flow divergence may lead to a deadlock is not
close to the collective call. However, this case corresponds to a
false positive result because the conditional statement is a test over
the number of processes (exit if more than 512 MPI processes).

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

EulerMHD IS CG BT SP LU FT

O
ve

rh
ea

d
in

 %

Without instrumentation
With instrumentation

Figure 3: Overhead of average compilation time with and with-

out code instrumentation

Figure 3 details the overhead of compilation time when activat-
ing our GCC plugin. This overhead remains acceptable as it does
not exceed 3%. It is presented with and without the code generation
which accounts for the insertion of CC function calls (see Algo-
rithm 2). This specific step is mainly responsible for the overhead
except for CG and FT. Indeed, according to the static analysis, these
benchmarks are correct, no collective operation is instrumented.

Table 1: Compilation and Execution Results
Benchmark # collective # nodes % instrumented # calls

calls in S collectives to CC

EulerMHD 28 14 36% 26

BT 9 5 78% 8

LU 14 2 14% 6

SP 8 5 75% 7

IS 5 2 40% 3

CG 2 0 0% 0

FT 8 0 0% 0

For each benchmark, Table 1 presents the number of nodes found
by the Algorithm 1 (set S) and the number of static calls to a collec-
tive communication. This table shows that the static analysis is able
to reduce the amount of instrumentation needed to check the col-
lective patterns (third column). Reducing further the number of in-
strumented collectives would require an inter-procedural data-flow
analysis on the nodes in S. For all these nodes, the control-flow
does not depend on process ranks and the functions are correct.
Such analysis is outside the scope of this paper and is left for future
work. Finally, the last column depicts the number of calls to the
CC function during the execution of the benchmarks.

5.3 Execution Results
Figure 4 shows the overhead obtained for NASPB class C from 4

to 512 cores (CG and FT have no overhead as no collective is instru-
mented). The overhead does not exceed 18% and tends to slightly
increase with the number of cores. Figure 5 presents weak-scaling
results for EulerMHD from 1 to 1,280 cores where the overhead re-
mains comparable with the same increasing trend. Table 1 presents
the number of runtime checks. Processes about to call collectives
identified as potential deadlock sources are counted. If some pro-
cesses are missing, the abort function is called to stop the program
before deadlocking. An error is printed to stderr with the line
number, the collective name and conditionals responsible:

DYNAMIC-CHECK: Error detected on rank 0
DYNAMIC-CHECK: Abort before MPI_Barrier line 47
DYNAMIC-CHECK: See warnings about conditional(s)

line 45

0

1

2

3

4

5

6

7

8

9

10

4 8 16 32 36 64 100 128 196 256 324 484 512

O
v
e

rh
e

a
d

 i
n

 %

MPI processes

IS
LU
SP
BT

Figure 4: Execution-Time Overhead for NASPB (Class C,

Strong Scaling)

0

2

4

6

8

10

12

14

16

18

20

1 128 256 384 512 640 768 896 1024 1152 1280

O
v
e
rh

e
a
d
 i
n
 %

MPI processes

EulerMHD

Figure 5: Execution-Time Overhead for EulerMHD (Weak

Scaling)

6. CONCLUSION AND FUTURE WORK
In this paper we described a two-phase analysis to detect collec-

tive patterns in MPI programs that can cause deadlocks. The first
pass statically identifies the reduced set of collective communica-
tions that may eventually lead to potential deadlock situations, and
issues warnings. Using this analysis, a selective instrumentation of
the code is achieved, displaying an error, synchronously interrupt-
ing all processes, if the schedule leads to a deadlock situation. If all
execution paths can be executed in parallel, we have shown that the
number of collectives transformed is minimal. This method is eas-
ily integrated in GCC compiler as a plugin, avoiding recompilation.
We have shown that the compilation overhead is very low (3%).
Dealing with the runtime overhead, it could become non-negligible
at larger scale as our analysis adds collectives for instrumentation.
However, with the help of collective selection, the runtime over-
head remains acceptable (less than 20%) at a representative scale
on a C++ application.

Although it satisfies both scalability and functional requirements,
our analysis is only intra-procedural with the possible drawback of
missing conditional statements out of function boundaries. More-
over, our analysis is focused on a particular error and should be ex-
tended to cover common verification, for example, MPI call argu-
ments, such as different communicators. These improvements are
currently under development, and the analysis is being extended to

inter-procedural analysis, gathering more data-flow information at
compile-time in order to further reduce the number of instrumented
collectives. Furthermore, our approach is a preliminary work set-
ting the basis for a wider set of analysis combining static and dy-
namic aspects and extended to OpenMP and hybrid (OpenMP +
MPI) parallelisms.

7. ACKNOWLEDGMENTS
This work is (integrated and) supported by the PERFCLOUD

project. A French FSN (Fond pour la Société Numérique) cooper-
ative project that associates academics and industrials partners in
order to design then provide building blocks for a new generation
of HPC datacenters.

8. REFERENCES
[1] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and

F. Zadeck. Efficiently computing static single assignment
form and the control dependence graph. In ACM TOPLAS,
pages 13(4):451–490, 1991.

[2] J. DeSouza, B. Kuhn, B. R. de Supinski, V. Samofalov,
S. Zheltov, and S. Bratanov. Automated, scalable debugging
of MPI programs with Intel Message Checker. In SE-HPCS,
pages 78–82, 2005.

[3] C. Falzone, A. Chan, E. Lusk, and W. Gropp. Collective
error detection for MPI collective operations. In PVM/MPI,
pages 138–147, 2005.

[4] T. Hilbrich, J. Protze, M. Schulz, B. R. de Supinski, and
M. S. Müller. MPI runtime error detection with MUST:
advances in deadlock detection. In Supercomputing, pages
30:1–30:11, 2012.

[5] T. Hilbrich, M. Schulz, B. de Supinski, and M. Muller.
MUST: A scalable approach to runtime error detection in
MPI programs. Parallel Tools Workshop, 2010.

[6] B. Krammer, K. Bidmon, M. S. Müller, and M. M. Resch.
MARMOT: An MPI analysis and checking tool. In PARCO,
pages 493–500, 2003.

[7] G. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva, and
Y. Zou. MPI-CHECK: a tool for checking Fortran 90 MPI
programs. Concurrency and Computation: Practice and
Experience, pages 15:93–100, 2003.

[8] S. Sharma, G. Gopalakrishnan, and R. M. Kirby. A survey of
MPI related debuggers and tools. 2007.

[9] S. Siegel and T. Zirkel. Automatic formal verification of MPI
based parallel programs. In PPoPP, pages 309–310, 2011.

[10] J. L. Träff and J. Worringen. Verifying collective MPI calls.
In PVM/MPI, pages 18–27, 2004.

[11] NASPB site:http://www.nas.nasa.gov/software/NPBl.

[12] J. S. Vetter and B. R. de Supinski. Dynamic software testing
of MPI applications with Umpire. In Supercomputing, pages
51–51. ACM/IEEE, 2000.

[13] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R. d.
Supinski, M. Schulz, and G. Bronevetsky. A scalable and
distributed dynamic formal verifier for MPI programs. In
Supercomputing, pages 1–10, 2010.

[14] M. Wolff, S. Jaouen, and H. Jourden. Hight-order
dimensionally split lagrange-remap schemes for ideal
magnetohydrodynamics. In Discrete and Continuous

Dynamical Systems Series S. NMCF, 2009.

