
HAL Id: hal-00920875
https://hal.science/hal-00920875

Submitted on 20 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MIL : A language to build program analysis tools
through static binary instrumentation

Andres Charif-Rubial, Denis Barthou, Cédric Valensi, Shende Sameer, Allen
Malony, William Jalby

To cite this version:
Andres Charif-Rubial, Denis Barthou, Cédric Valensi, Shende Sameer, Allen Malony, et al.. MIL : A
language to build program analysis tools through static binary instrumentation. High Performance
Computing, Dec 2013, India. pp. 206-215. �hal-00920875�

https://hal.science/hal-00920875
https://hal.archives-ouvertes.fr

1

MIL : A language to build program analysis tools

through static binary instrumentation
Andres S. Charif-Rubial∗, Denis Barthou†, Cédric Valensi∗, Sameer Shende‡, Allen Malony‡, William Jalby∗

∗ Exascale Computing Research Laboratory, FR

Email: {achar,cedric.valensi,william.jalby}@exascale-computing.eu
† Laboratoire LaBRI, University of Bordeaux, Bordeaux, FR

Email: denis.barthou@labri.fr
‡ Department of Computer and Information Science

University of Oregon, Eugene, OR, USA

Email: {sameer,malony}@cs.uoregon.edu

Abstract—As software complexity increases, the analysis of code
behavior during its execution is becoming more important. Instru-
mentation techniques, through the insertion of code directly into
binaries, are essential to program analyses such as performance
evaluation and profiling. In the context of high-performance
parallel applications, building an instrumentation framework is
quite challenging. One of the difficulties is due to the necessity
to capture coarse grain behavior, such as the execution time of
different functions, as well as finer-grain behavior in order to
pinpoint performance issues.

In this paper, we propose a language, MIL, for the development
of program analysis tools based on static binary instrumentation.
The key feature of MIL is to ease the integration of static, global
program analysis with instrumentation. We will show how this
enables both a precise targeting of the code regions to analyze,
and a better understanding of the optimized program behavior.

I. INTRODUCTION

As software complexity increases with the development of
multicore architectures, high performance parallel applications
are increasingly difficult to tune for performance, to debug and
profile. Due to compiler optimizations, runtime interactions
and complex shared memory hierarchies, capturing the runtime
behavior of the code is an essential step in code analysis.
The purpose of binary instrumentation is to insert new code
into an executable in order to collect and analyze information
concerning an execution. Tools offering binary instrumentation
such as Dyninst [1], MAQAO [2], Pebil [3], Pin [4] or Val-
grind [5], are at the heart of code analysis tools used today. For
performance analysis, a first coarse grain analysis is usually
achieved in order to identify hotspots, and on these hotspots,
a finer grain analysis capturing more details, follows. In order
to adapt to the level of details required and to avoid the cost
of an indiscriminate and expensive fine-grain instrumentation,
several instrumentation languages have been proposed [6],
[7], [8]. Instrumentation languages help to define where to
insert the instrumentation probes, based on the structure of
the binary code in terms of functions, loops, and sometimes
blocks or instructions. However, compiler optimizations may
change deeply the structure of the code, from the source to the

Fig. 1. pprof tool output for thread 1 on NAS OMP bt.A benchmark using
Dyninst with TAU

binary, and this limits the effectiveness of such approaches.
Indeed, if the compiler generates two versions of a loop,
one vectorized and the other not, the binary instrumentation
techniques proposed only report performance analysis for each
loop, independently of the other. Similarly, when a function
“foo” has been inlined or cloned by the compiler as it occurs
for OpenMP codes, current instrumentation techniques cannot
instrument the “foo” inlined versions (no longer functions),
nor relate instrumentation results of cloned versions to the
“foo” function. For instance, Figure 1 shows the output of
the TAU profiler [9] using Dyninst [1] on the bt.A NAS
OpenMP benchmark for the thread 1 (out of twelve), the
three most time-consuming functions have names that do not
match those of the source code, x_solve, y_solve and
z_solve. The reason is that the compiler has generated new
functions, associated to the parallel for constructs and
the profiler has not found the correspondance with the source
code functions. For optimized codes, the main challenge for
instrumentation languages is therefore not only to enable an
efficient description of the code fragments to instrument but
also to report information relevant for users.

In this paper we propose a binary rewriting framework
and a domain specific instrumentation language, MIL, for the
development of code analysis tools. This language is built on
top of MAQAO, a static performance analysis tool[10]. The
original contributions of our approach are:

• MIL, a versatile language for instrumentation: the lan-
guage MIL can be used to gather information on large
variety of events, from functions to loops, blocks and
instructions for control-flow profiling or value-profiling.

2

The probes inserted in the binary code can be user-
defined, enabling for instance hardware counter profiles,
and written either in MIL (MILRT runtime), in C
(through an external library) or in assembly. Besides the
precise location of these probes, their parameters can be
defined by scripts, using a rich API of static analysis.
In particular, probes can have parameters dependent on
some static property of their insertion location.

• A framework for optimized multi-threaded code anal-
ysis: compiler optimizations can generate functions for
OpenMP codes with complex control-flow. MIL enables
the developer of code analysis tools to focus on functions
appearing in the source code, independently of any name
mangling, inlining or transformation due to OpenMP
directives.

• A low-overhead instrumentation: We combine tech-
niques presented in Dyninst[1] with more aggressive
techniques for adding instrumentation code. In partic-
ular, we introduce in MIL interpreter new techniques
for low-overhead instrumentation of OpenMP optimized
codes.

The paper is organized as follows: Sections II and III present
the instrumentation language and describe how the binary code
is restructured using different algorithms. Section IV shows
how this tool is integrated into the TAU parallel performance
system, along with an example of a simple function profiler,
fully written in MIL for multi-threaded codes. Finally, section
V presents the evaluation of the overhead due to instrumenta-
tion and a comparison with other existing tools.

II. INSTRUMENTATION LANGUAGE

MIL is a scripting language to define binary code instrumen-
tation. The interpreter of MIL scripts is detailed in Section III
and is built on top of MAQAO [2]. Running a MIL script with
an input executable produces a new instrumented executable.
The possible locations where instrumentation can be inserted
are called events and the description of what to instrument
corresponds to event filters. The definition of the probes, i.e.
the code to insert for a given event, is also given in MIL. We
present thereafter how to express both in MIL.

A. Abstract Code Structures and Filters

To define instrumentation points, the following structural ab-
stractions can be manipulated: the program itself, its functions,
loops, basic blocks, instructions and a particular case of in-
structions, the call sites. These notions are usual structurations
of programs and correspond here to structural abstractions
found in the binary code. Loops correspond to only natural
loops, and functions may have multiple entries. To define
precisely where to insert some instrumentation, we define
the notion of event as being a particular location in these
structures, as for instance the entries and exits of a loop. The
events associated to a particular structure are summarized in
Table I.

The structures defining the events are described in a hier-
archical way, reflecting the nesting of functions, loops, basic
blocks and instructions.

program,

blocks
functions

callsites,

instructions
loops

Event

names

entry,

exit

entries,

exits

before,

after

entries,

exits,

backedge

TABLE I. STRUCTURAL ABSTRACTIONS AND ASSOCIATED EVENT

NAMES.

program,

functions
callsites loops blocks instructions

Whitelist,

blacklist
name target name id id address

Depth

integer

inner,

outer

User user-defined function

TABLE II. STRUCTURAL ABSTRACTIONS AND ASSOCIATED FILTER

MECHANISMS.

MIL is an object-oriented and event-directed language. It
extends the Lua syntax[11] providing additional classes and
constructs to specifically manipulate all the concepts of our
DSL (binary instrumentation), namely, structural objects (func-
tions, loops, ...), events, filters and probes. For a complete
set of examples showing all the language capabilities and
an exhaustive description of the syntax, please refer to the
MAQAO tool project page [10]. We also provide language
files for the vim editor. An Eclipse plugin is envisioned.

Figure 2 depicts the rationale of a MIL script. We select a
binary and target structural objects. For this example, ”Object”
is used as a generic container for Function, Loop, Block,
Instruction or Callsite (Binary being a special one). Then we
can specify filters and events related to objects. The final step
is to create probes for each selected event. More details on
each stage is given in the next subsections.

Instrumentation overhead is one of the dominant concerns
when considering how a binary rewriting tool is used to enable
performance measurement. There are two ways to reduce the
overhead of instrumentation at binary level: reduce the time
taken by the probes themselves or reduce the number of
structures instrumented by applying filters. In order to be able
to restrict the field of objects to be processed, a filtering mech-
anism is mandatory. The filtering mechanisms associated to a
particular structure are summarized in Table II. A set of filters
may be defined for every structure and can be either a list,
a built-in filter or a user-defined filter. A filter using lists can
define whitelists and blacklists for any structure. Depending
upon the given structural object, its main attribute is used to
apply the filtering. For instance, the whitelist filter defined by
the "ˆcalc" followed by blacklist filter "_test$" selects
all functions with name beginning with calc that does not
end in _test. For callsites, the whitelist filter "ˆcalc"

selects all instructions calling functions beginning with calc.
It is also possible to select a set of structures based on their
structural attributes (built-in). So far, only one built-in attribute,
depth is defined for loops. It is possible to select loops with
this filter at a given depth ({depth = 3}) or using the key
words inner, outer for relative depths.

Figure 3 presents an example of multiple (here two) events,

3

--the main object is name "this"

binary = this:addMainBinary() --to select our binary;

--Define target objects

obj = binary:addObject()

obj_nested = obj:addObject(); --nested object

--Apply filters to narrow down the set objects targeted

obj:addFilter() --Different types of filters available

--Define events on objects

event = obj:newEvent("event_name"):

probe = event:AddProbe()

--Then fill the probe: specify the target and parameters

Fig. 2. MIL script rationale.

each using a nested definition. The first event nest counts the
number of innermost loops, of function ”foo1”, that only has
one basic block. Hence using a nest of function, loop and basic
block events. The second event nest counts the total number
of iterations passed in outermost loops of function ”foo2”.

function isinner_oneblockloop(loop)

if(loop:get_nblocks() == 1) then return true; end

return false;

end

this:setRunDir("/PATH_TO_OUTPUT_FOLDER/");

mb:newEvent("at_entry"):newProbeExt("init_data","my.so");

mb:newEvent("at_exit"):newProbeExt("dump_rslt","my.so");

mb = this:addBinaryMain("PATH_TO_BINARY");

--First function event

fct1 = mb:addFunction():addFilterWL("ˆfoo1$");

loop1 = fct1:addLoop();

loop1:addFilterBI({depth = "inner"});

loop1:addFilterUser(isinner_oneblockloop);

block = loop:addBlock();

block:newEvent("entry"):newProbeExt("count_blocks","my.so");

--Second function event

fct2 = mb:addFunction():addFilterWL("ˆfoo2$");

loop2 = fct2:addLoop():addFilterBI({depth = "outer"});

loop2:newEvent("backedges"):newProbeExt("count_iters","my.so");

Fig. 3. Combining multiple events

It also illustrates the usage of user-defined filters, here
used to detect innermost loops (in the first event nest) that
are composed of only one basic block. A special attribute,
user, exists for all structures. This attribute corresponds to
a user-defined boolean function that evaluates to true only if
the structure should be considered for instrumentation. User-
defined filters provide more flexibility when simple filters fail
to identify precisely the code fragment to instrument. These
functions are written in Lua and are meant for more advanced
filtering which can manipulate the structure through MAQAO
API (in Lua).

B. Instrumentation Probes

After having selected target instrumentation location through
events, it is possible to describe the probes to insert into the
binary. It is possible to define the probes either in Lua, or
to provide the name of the probe function with the name
of a shared library containing it, or to define a string with
inlined assembly code. With the first method, defining probes
in Lua, the complete instrumentation configuration, including
filters, probes, can be defined in one single file. We believe this

can ease the use of MIL and help developers to define new
profiling analyses. In this case, a call to this function, through
the Lua interpreter is inserted in the binary and the script of
the function is appended to the binary. As many calls to an
interpreter may generate large overheads, the Lua Just-In-Time
compiler [12] is added to the binary instead of the interpreter.

External calls to precompiled libraries containing the probes
have been used by other tools, such as Dyninst [1]. Concerning
the insertion of assembly text, we propose a gcc-like inline
assembly that handles loops and global variables. Note that
both external calls and inline assembly can be used at the
same time for the same instrumentation point. When inserting
a call to an external function, it is possible to disable context
saving. This may be useful when the inserted function already
saves and restores all the registers it will be using. Even if
most of the users will only use the insertion to external calls
or Lua functions, it is important to be able to insert assembly
code because it enables significant optimization opportunities.

Given an event, any number of probes can be inserted. For
each event, the following attributes can be specified:

• Assembly code to insert before/after the current probe,
• nowrap, avoid saving the current probe context,
• Library containing the function to be called,
• Name of the function, for functions defined in libraries

or in Lua (in the MIL script)
• Parameters of the called function if any.

The available parameters types are:

• Immediate
• String
• Global variable: Global variables are declared at the

beginning of the specification file and can have default
values (immediate or string). They are usually used to
store the return values of inserted functions and then
passed to others.

• Memory: the default behavior is to return the target
address of the instruction (of a jump, a load or a store
for instance). This enables to capture memory references
(accesses) or the value pointed by the memory reference
(specified through an additional option). It can also help
capturing complex control flow in case of indirections
(computed destination). This type of parameter is only
available for instruction-level events.

• User defined function.

User defined functions allow to pass to the probes any value
computed statically from the analysis of the binary. Note
that while the probe is executed during the execution of the
application, the evaluation of the parameters of these probes is
at the instrumentation time. These functions receive the object
(pointer) of the structure instrumented to perform a variety of
queries and operations. Given a structure object, MIL is able
to provide an access to the MAQAO Framework API (in Lua) .
It is beyond the scope of this paper to describe how this occurs
internally. Detailed documentation is available on the MAQAO
website [10]. Such user-defined parameters can depend on the
instrumentation site and can be used to pass the information
to the probe that the current loop is vectorized or unrolled for
instance.

4

C. Using MIL to reduce instrumentation overhead

The first step to reducing overhead is to limit the number
of code fragments to instrument. The filtering mechanism
proposed in Section II-A proposes a simple way to instrument
only some parts of the code. Other analyses may require more
elaborated filters. Mussler et al. [8] use a predefined group of
structural properties on the code as filters. Predefined filters
may apply to limited class of applications, but selecting a
priori which parts of the code are of interest is in general
intractable. We propose user-defined filters, introduced as
a more generic and complementary approach to predefined
filters.

Optimizing instrumentation time also concerns the way the
instrumentation is inserted into the code. Inserting a function
call in a binary application has a cost, namely, the call instruc-
tion itself and the instructions to save the context before the
call and restore it after. Inserting assembly instructions instead
of calling a function removes this overhead. It may seem an
extreme optimization, but it could be effective in cases where
an instrumented routine contain loops that themselves call
other functions. Although this kind of optimization requires
architecture-specific considerations, it can reduce significantly
the cost of inserted instrumentation calls.

III. MIL INTERPRETER

The instrumentation language interpreter is developed as a
new module for MAQAO [10]. MAQAO is a framework for
analyzing and optimizing binary codes and it combines binary
disassembly, rewriting, and assembly with analysis to identify
code semantics and reconstruct control flow. The framework
relies on usual compiler algorithms to detect functions, loops
and basic blocks. MIL interpreter complements this informa-
tion from the binary code with additional static analyses for
handling optimized OpenMP codes. For the generation of the
instrumented code, the interpreter drives a module of MAQAO,
named MADRAS, that proposes a very low level API for
instrumentation of x86 64 codes. MADRAS only considers
instructions (no loops, functions, or blocks). This same module
is used for disassembling the binary code.

Figure 4 shows the components of the instrumentation
language and its integration in the MAQAO framework. Blacks
arrows describe the components involved in the basic workflow
of MIL. Gray arrows depict the additional possible interactions
with the MAQAO framework.

A. Static Binary Instrumentation

Several approaches have been considered for instrumen-
tation. In contrast to source code instrumentation (such as
proposed in OPARI[13] for instance), or instrumentation that
operates at an intermediate language level, binary analysis
and instrumentation starts with the program code in its final
executable form. Source instrumentation, while flexible, has
the disadvantage of requiring recompilation of the application.
Besides, the modification of the code can alter the effects of
compiler optimizations. Working with the binary code avoids
recompilation and preserves any optimization performed by

Fig. 4. MIL : MAQAO Instrumentation Language and its integration in the
MAQAO framework.

the compiler. However, it does present additional challenges
that need to be overcome to deliver a robust instrumentation
solution. Below we discuss the issues that arise, the different
alternatives, and our approach.

In general, static binary rewriting has two important ad-
vantages compared to the dynamic instrumentation. First,
because the whole executable code is available when inserting
instrumentation, static rewriting is more robust, able to perform
more instrumentation requests, and can implement optimiza-
tion methods more easily. Second, instrumentation occurs only
once and before execution. Subsequent runs of the program
will include the instrumentation.

For MIL, we use the MAQAO module, MADRAS, to
disassemble binary. MADRAS can insert function calls or
assembly instructions, delete instructions, or modify them by
changing their opcode or operands. Inserted function calls can
be wrapped with instructions for saving the context (contents
of registers and stack frame) and restoring it after the inserted
call, thus ensuring that the execution of the inserted function is
transparent for the executable. MADRAS is also able to insert
global variables and reference them in inserted or modified
code. The MIL interpreter drives MADRAS in order to han-
dle optimized OpenMP codes, as described in the following
section.

B. Advanced Static Analysis

Multithreaded and optimized binary codes can present some
specificities that introduce challenging binary analysis prob-
lems. Four of the major issues we encountered when analyzing
codes, as far as code structure is concerned, were handling
indirect branches, interleaved functions, inlining and probe
insertion in some (difficult) cases. Our solutions to these
issues are discussed below. To illustrate our explanations, we
will be using bt and dc (class A) benchmarks from NPB-
OMP3.3 [14], and 312.swim benchmark (Medium) from SPEC
OMP 2001 [15] , all compiled by the Intel Fortran compiler
(ifort) with -O3 optimization.

1) Indirect Branch Resolution: There is a major issue with
indirect branches if not handled because they can hide exits

5

(of a function). In order to obtain the complete set of exits of a
function, we need to resolve indirect branches within functions.
We introduce the concept of conditional probes. It consists
of a regular probe combined with a set of conditions. The
core idea is to set a condition on the target of the indirect
branch once resolved. When considering function boundaries,
the condition holds on the set of intervals that describes the
limits of the function in terms of addresses. If the target is
outside these intervals, then it is an exit and the probe would
be executed. This algorithm is implemented internally inside
MIL interpreter and requires no input from the users. If desired,
users can disable indirect branch resolution in the configuration
part of their script.

2) Interleaved Functions: At source level, it is relatively
straightforward to identify the structure of a function, and
functions have one entry and multiple exits (returns). While
exits can be a little tricky to instrument in source, when we
consider the general problem at binary level, optimizations
achieved by the compiler may produce a more complex code
structure. In binary, functions are only labels and it is even
possible for two functions to share common blocks (due to
compiler optimizations). These interleaved functions make the
abstraction of the code more complex to handle and are gen-
erated for instance by the Intel compiler for OpenMP codes.
When it comes to instrument a function, specific measures
have to be taken.

To detect interleaved functions, we apply a connected
component search on the control flow graph (CFG) of a
given function, in our static analysis phase, and make the
interleaved functions appear as separate components. If we
consider the bt benchmark, the multi-threaded part of the code
in functions containing OpenMP directives (i.e., the part of
code that will be called by the OpenMP runtime) is inlined.
Figure 5 reveals a part of the control flow graph of one
of the most time-consuming functions of the bt benchmark
after MIL advanced static analyses. We can observe that it
has successfully separated each component of the CFG. By
default, MIL default behavior is to consider each component
as a regular function. The name of the function is the same as
the container function concatenated with a unique suffix and
may be different when, for instance, inlining is detected. It is
possible to disable this behavior in the configuration section
(properties) of a MIL script file.

Let us consider a more complex example with the swim
benchmark. This application contains four main (most con-
suming time) functions called from the program entry function.
Taking a closer look to the code, we observe that three of these
functions are actually inlined in the main routine. The inlined
functions are called from the OpenMP runtime and entry/exit
points are merged with the ones of the main routine. If only
the main routine entry and exits points were instrumented, we
would miss accounting for the three inlined routines. In fact,
basic time profiling methods show only main and the routine
not inlined as the two dominant time-consuming functions. The
connected component analysis of MIL can discover the inlined
functions and correctly apply function level instrumentation.
The most important point of this approach is solving the
problem using a static analysis, which is essential to reduce

Fig. 5. Part of the CFG of the main function (MAIN), from the bt
benchmark (using Intel fortran compiler with -O3), revealing an example of
interleaved functions

the instrumentation runtime overhead.

3) Inlined Functions: In the previous paragraph, we men-
tioned the swim benchmark example where functions where
inlined. In the OpenMP class codes, that is what usually
happens because the multi-threaded part of the code is actually
called by the OpenMP runtime. As far as Intel compilers are
concerned, the starting address of the multi-threaded code to
execute is a pointer passed as a parameter of the function of the
runtime which is responsible for calling that code. In general,
detecting inlining is at least a challenging task and may be
impossible at binary level. In MIL, we added a new heuristic
that uses debug symbols, when available, to detect inlined
functions. The instructions of functions that are inlined have a
specific source line, the call site source line. Given the control-
flow graph of a function, we look for subgraphs with basic
blocks that have a high percentage (80%) of instructions that
have that property. If we consider again interleaved functions,
this heuristic works almost every time (with Intel compilers)
and helps figuring out the name of the inlined function.
Actually the name is given by the destination function of the
call site. This algorithm is implemented internally and requires
no input from the users. If desired, users can disable inlined
functions detection in the configuration part of their script.

Even if it can be considered as a weak approach, we propose
this debug information based heuristic because it is by far
more accurate and faster than our original pattern matching
algorithm (which does not require debug symbols and can be
used as a fallback). It works with GNU and Intel compilers,
considering that most users use one of these two compilers (in
HPC) for a variety of languages (Fortran, C or C++).

4) Probe Insertion Issues: We introduce the concept of
conditional probes in order to control the conditions under
which a probe should be executed or not. After inserting a
probe, a set of conditions can be applied on it. Thanks to this
approach, it is possible to solve challenging issues.

One recurrent concern when dealing with instrumentation
is the ability to insert probes wherever the users asks for.
The usual solution involves using function relocation which
actually does not work with function pointers since they

6

continue to point to the original function. Inserting probes
anywhere is not always possible at limited cost. For instance,
on x86 64 architecture, the dc benchmark contains 11 func-
tions with insufficient space for probe insertion happens. The
common workaround is the concept of trampolines. It is used
to find the required space close to the instrumentation site.
This works most of the time. However, when considering
one byte instructions (i.e. return instruction), trampolines are
useless. Indeed, the smaller branch instruction that can be
used for trampolines need at least two bytes. Therefore, when
trampolines cannot be found or instructions are too short, the
only existing technique is to resort to a trap instruction which
has a size of one byte. Basically, a trap instruction invokes a
system trap (signal) handler that can then execute the probe.
The induced overhead is however consequent, larger by a factor
of 15 compared to a regular probe.

We propose a new algorithm, which is part of MIL internals,
that solves most of these cases, including the issue observed
in the dc benchmark. Algorithm 1 details our approach. We
perform a control flow analysis to figure out the predecessors
of the current block where instrumentation should have taken
place and instrument them. We go through these predecessors
and verify that there is enough space to insert probes. If not,
we have no choice but to insert a trap instruction. If there is
enough space in all the predecessor blocks, then we have to
determine for each of them if their target is the current insertion
block or not (where the probe must be inserted). One case is
quite complex, when considering a conditional branch. Since
we only can insert the probe before it, we must add a condition
so that the probe is only executed if we are sure that the flow
is going to the current instrumented block. When considering
the previous example, that means when branching to the exit
block of the function.

In a nutshell, our method minimizes, and even removes, the
number of trap instructions needed to correctly instrument a
function.

5) Debug symbols: MIL works even without debug informa-
tion. It is only used in order to relate assembly (dissassembled
binary) instructions to source line codes. As a consequence,
only heuristics and analyses based on source lines will fail.
Thus, all the major features and improvements we described,
compared to the other instrumentation frameworks, still work.
Having said that, we reasonably think that debug information
will be most often present.

IV. BUILDING PERFORMANCE TOOLS

A systematic performance analysis approach must adopt
a measurement methodology where critical performance bot-
tlenecks can be identified at a coarse level and then instru-
mentation at a finer level can pinpoint performance issues.
The challenge is to create a performance analysis system
that supports both flexible instrumentation that preserves code
properties relevant to the user and lightweight performance
measurement that keeps overheads to a minimum.

The TAU Performance System [9] from the University of
Oregon is a performance evaluation toolkit that supports sev-
eral instrumentation, measurement, and analysis alternatives.

Algorithm 1: InsertProbe

input : probe to insert
output : SUCCESS or FAILURE

inst← GetInsertInst(prob);
block← GetBlockFromInst(inst);
if IsSmallBlock(block) then

predBlocks← GetPredBlock(block);
foreach pb in predBlocks do

if IsSmallBlock(pb) then
Insert a trap instruction (INT 3)

LIB← GetLastInstOfBlock(pb);
if InstIsBranch(LIB) then

if InstIsUncondBranch(LIB) then
ProbInsert(inst,prob,BEFORE)

else // InstIsCondBranch(LIB)
brTargB← GetBranchTarg(LIB);
if brTargB == block then

BC←
GetOppositeBranchCond(LIB);
CV← ExtractCompareVal(BC);
ProbCondInsert(inst,prob,CV,BEFORE);

else
ProbInsert(inst,prob,AFTER);

else
ProbInsert(inst,prob,AFTER);

TAU presents a good target to prototype a MIL-based instru-
mentation tool because it has challenging requirements. The
goal in integrating TAU with MIL was to simplify the usage of
TAU and create an efficient binary rewriter for multi-threaded
applications. A new script, named tau rewrite, has been added
to the TAU distribution in order to add instrumentation to
binary files and dynamic shared objects using MIL (included
in the Program Database Toolkit). The tool enables users to
inject a specified TAU measurement library while rewriting the
executable.

Figure 6 shows the instrumentation file in MIL for the TAU
performance tool. Probes calling the TAU runtime are placed
at the entries and exits of the functions of the program. For
each processed function, a specific registration call is added
to the stub of functions executed when the binary is loaded. It
is a more flexible approach to generate a stub of calls while
discovering functions. At the end of the program, results are
dumped by the TAU runtime. This is all what is necessary
to enable binary instrumentation for the TAU performance
measurement demonstrated below. The code achieving the
same functionality, for Dyninst, requires around 200 lines of
code, according to the authors.

Figure 7 depicts a simple standalone profiler completely
written in MIL using embedded probes. The aim here is to
show that we can easily and quickly implement a performance
tool without having to actually manipulate complex data
structures. The example contains two main sections, namely,
runtime code and the events. The events part first specifies

7

fct_iter = Iterator:new(-1);

this:setRunDir("output_path/");

mb = this:addBinaryMain("./bt.S");

mb:setOutputSuffix("_i");

mb:setProperty("instru_trace_log",true);

--Program entry probe

e_exit = mb:newEvent("at_exit");

p_exit = e_exit:newProbeExt("tau_cleanup","libTau.so");

--Instrumentation at function level

fct = mb:addFunction();

--Probe at function entries

e_entries = fct:newEvent("entries");

p_entries = e_entries:newProbeExt("traceEntry","libTau.so");

p_entries:addParamIterCurr(fct_iter);

--Special event to fill Binary:at_entry from function level

e_ape = p_entries:newEvent("at_program_entry");

p_ape = e_ape:newProbeExt("trace_register_func","libTau.so");

p_ape:addParamIterNext(fct_iter);

--Probe at function exits

e_exits = fct:newEvent("exits");

p_exits = e_exits:newProbeExt("traceExit","libTau.so");

p_exits:addParamIterCurr(fct_iter);

Fig. 6. TAU instrumentation file using MIL.

that we will target function instrumentation, and that we will
be using runtime code written in Lua (embedded probes). Then
instrumentation probes are specified targeting the entries and
exits of functions. The code of these probes is defined in
the first section of the script. We create a global table (each
thread will have its own) that will contain timing information
(incremented by each call). At the end of the execution, the
table is dumped.

V. EXPERIMENTS

In addition to evaluating MIL from a functional standpoint,
it is important to compare the quality of the instrumentation
framework on real applications and against existing binary
rewriting tools. The OpenMP NAS parallel benchmarks [14]
are used for testing instrumentation speed and execution
overhead. For all experiments TAU is used for performance
measurements.

Parallel applications such as OpenMP codes are optimized
and transformed by the compilers in a way that hampers static
binary instrumentation. Besides usual compiler optimizations,
parallel regions are transformed into new functions and called
through function pointers.

In the following experiments, we want to compare both the
overhead of instrumented parallel NAS benchmark codes and
overall the precision of the resulting data. To achieve this,
the TAU profiling tool 1is configured to use MIL, Dyninst [1],
PEBIL [3] tools. While using the latest versions of PEBIL and
MIL, we must mention that we used Dyninst 7.0.1 because it
covered more benchmarks (more crashes with Dyninst 8). To
be completely fair, we verified that there was no overhead
difference between versions 7 and 8.

1We use the following TAU package:
http://tau.uoregon.edu/tau releases/tau-2.21.2p2.tgz and the associated PDT
toolkit http://www.cs.uoregon.edu/research/tau/pdt releases/pdt-3.19p1.tar.gz

-## Runtime code section ##

dyn meta_info={}; dyn results={}; dyn myfreq = 2799489000;

-- Get current clock cycles

dyn function timer() return timer() end

-- Gathers meta information initialize structures

dyn function register_function(fct_name,fid)

meta_info[fid] = fct_name;

results[fid] = {start = 0,inc_time = 0,calls = 0};

end

-- Start counting time at function entry

dyn function fct_start(fid)

results[fid].start = timer();

results[fid].calls = results[fid].calls + 1;

end

-- Stores/Accumulates time at function exit

dyn function fct_stop(fid)

results[fid].inc_time = results[fid].inc_time +

os.difftime(timer(),results[fid].start);

end

-- Show profiling results

dyn function fct_dump()

print("Simple profiler results");

print("Function name\t| Calls \t| Inclusive time");

for id,result in pairs(results) do

fct_name = meta_info[id];

print(fct_name.."\t"..result.calls.."\t"..

(result.inc_time/myfreq).." seconds");

end

end

--## Events sections ##

--Use MAQAO builtin info_summary (function class)

function fct_info_summary(func)

return func:info_summary();

end

--functions to be present in runtime environment

this:importC("timer","get_rdtsc","libmilrt.so");

--Events definition

fct_iter = Iterator:new(-1);

this:setRunDir("output_path/");

mb = this:addBinaryMain("./bt.S");

mb:setOutputSuffix("_iMDyn");

mb:setProperty("instru_trace_log",true);

--Program entry probe

e_entry = mb:newEvent("at_exit");

p_entry = e_entry:newProbeDyn(fct_dump);

--Instrumentation at function level

fct = mb:addFunction();

--Probe at function entries

e_entries = fct:newEvent("entries");

p_entries = e_entries:newProbeDyn(fct_start);

p_entries:addParamIterCurr(fct_iter);

--Special event to fill Binary:at_entry from function level

e_entries_ape = p_entries:newEvent("at_program_entry");

p_entries_ape = e_entries_ape:newProbeDyn(fct_register);

p_entries_ape:addParamUser(fct_info_summary);

p_entries_ape:addParamIterNext(fct_iter);

--Probe at function exits

e_exits = fct:newEvent("exits");

p_exits = e_exits:newProbeDyn(fct_stop);

p_exits:addParamIterCurr(fct_iter);

Fig. 7. Simple profiler all in MIL. This file contains the definition of the
probes in LUA (under the runtime code section) with the definition of where
to insert this instrumentation.

The experiments are run on a dual socket six-core 2.27Ghz
Xeon Westmere-EP X5650 (total of twelve cores) machine.
The Intel Fortran compiler (12.1.4) was used to compile the
benchmarks and execute them with the OpenMP runtime. All
benchmarks are compiled with the -O3 optimization level and
with debug symbols (-g). The TAU profiling measurements
were the same in each case. Only the overhead of invoking

8

Fig. 8. Comparing overhead time on NAS OMP benchmarks for MIL, Dyninst
and PEBIL using TAU. X axis reports the overhead ratio compared to the
original run. Lower is better. Overhead ratios greater than 10 are cut. A zero
ratio means a crash at runtime

the measurement code is different, and this is a result of how
the instrumentation was done by each tool. MIL, Dyninst and
PEBIL similarly use static binary rewriting. All measurements
could be viewed using the TAU pprof profile analysis tool.

Figure 8 summarizes the obtained results of the TAU profil-
ing tool when using MIL, Dyninst and PEBIL on the Class A
OpenMP NPB suite. MIL has a lower or equivalent overhead
compared to Dyninst in all cases. Interestingly, bt.A and dc.A
reveal an important overhead factor for all tools. For dc.A,
the difference between MIL and Dyninst (a factor 7) comes
from the different ways to handle one-byte basic blocks (see
Algorithm 1).

MIL also has a lower or equivalent overhead compared to
PEBIL in all cases. PEBIL behaves like MIL in half of the
benchmarks but have huge overheads for ep.A and ua.A. To a
lesser extent, there is a non negligible overhead for f t.A and
dc.A.

After having studied the overheads, the next aspect we must
check is the quality of the results. Having a low overhead
execution time means nothing if the quality of results is not in
the cards. Figure 9 exhibits the output obtained with MIL,
Dyninst and PEBIL profiling results for thread 1 (out of
twelve) when considering the NAS OMP bt.A benchmark.
Dyninst reports but fails to display the function names for
the functions executed by the OpenMP runtime. As mentioned
before, since we are able to statically identify the new OpenMP
functions, we can provide a more accurate information to

TAU. Since both tools find the same hotspots within the same
proportions (roughly 32% for each dominant hotspot), we
expect a higher number of instructions inserted at binary level
by Dyninst. That is exactly what is happening since Dyninst
uses a trampoline mechanism inducing multiple branches for
one insertion. Our binary rewriting layer only inserts one level
of indirection, directly adding instrumentation instructions to
the displaced basic block without additional branches. Fur-
thermore, since whole basic blocks are moved when adding
instrumentation, our approach reduces the overhead when
multiple instrumentations are to be performed in the same
basic block. Observed results on the bt benchmark highlight
this kind of case.

PEBIL generates less overhead when compared to Dyninst
but it actually fails to detect functions executed by the OpenMP
runtime as shown in Figure 9.c. According to the results, thread
1 does not consume more than 2% of the wall execution time.

VI. RELATED WORKS

The approach we presented in this paper is based on static
binary instrumentation techniques and in particular focuses on
instrumentation for OpenMP codes. We describe an expressive
language for instrumentation that can be used by existing
performance analysis tools and provides some unique features.

Concerning instrumentation techniques, we propose an ap-
proach very similar to what is presented in Dyninst [1], [16].
Also from the Dyninst Project, the DynC language [17] is
a subset of C with a domain specification for selecting the
location of a resource. Compared to MIL, user-defined filters in
DynC can only be of limited types of statements (assignments,
if-then-else, calls to ”mutatee” functions). In MIL, these filters
are written in Lua language with MAQAO API using all
features of the Lua language itself (loops, function declaration,
control structures) along with call to external functions, inline
assembly and all the other features which are specific to instru-
mentation. More recently Dyninst Project introduced PatchAPI
which is an intent to perform new types of instrumentation
through CFG annotation.

PEBIL [3] or Saxena et al. [18]. More precisely, Dyninst
uses two trampolines (two branches) before reaching the
instrumentation code. This is due to the capacity of Dyninst
to add/remove at runtime instrumentation code. We choose
instead to have a static approach, able to insert code with low
overhead. This difference shows on the previous section.

Work of Saxena et al. [18] uses an offline approach for
binary disassembling and a backend based on nasm assembler
for generating machine code for new instructions introduced
during rewriting. With MIL, all assembly instructions added
or modified are directly modified in the binary form (no tex-
tual representation). This enables assembly binary instruction
modifications and injection.

Comparing PEBIL [3] and our work, PEBIL resorts to
whole function relocation in order to apply overhead reduction
techniques. However, function relocation does not work with
OpenMP codes, since function pointers are passed to the
OpenMP runtime. MIL is able to handle OpenMP codes
because it uses block relocation and advanced static analyses

9

%Time Exclusive Inclusive #Call #Subrs Inclusive Name

msec total msec usec/call

100.0 256 1:04.767 1 1012 64767483 .TAU application

32.4 20,744 21,005 201 207576 104503 x_solve#omp#loop#1

32.0 20,525 20,720 201 155905 103089 y_solve#omp#loop#1

31.5 20,260 20,427 201 136524 101628 z_solve#omp#loop#1

2.2 1,402 1,402 202 0 6942 compute_rhs#omp#region#1

1.0 515 666 2 100001 333030 initialize#omp#region#1

0.2 150 150 100001 0 2 exact_solution

0.2 138 138 100001 0 1 binvcrhs [THROTTLED]

(a) TAU profiler using MIL

%Time Exclusive Inclusive #Call #Subrs Inclusive Name

msec total msec usec/call

100.0 63 8:48.699 1 1012 528699937 .TAU application

33.1 2:53.907 2:54.752 201 136524 869416 void targ4189a1()

33.0 2:52.955 2:54.255 201 207576 866943 void targ413191()

32.8 2:52.373 2:53.392 201 155905 862647 void targ414bf1()

0.7 2,656 3,541 2 100001 1770777 void targ402bae()

0.3 1,378 1,378 202 0 6826 void targ40c003()

0.2 896 896 1 0 896002 void targ4042de()

0.2 885 885 100001 0 9 void exact_solution()

(b) TAU profiler using Dyninst

Exclusive Inclusive #Call #Subrs Inclusive Name

msec total msec usec/call

100.0 1:05.057 1:05.900 1 607742 65900127 .TAU application

0.2 153 153 100001 0 2 exact_solution_

0.2 137 137 100001 0 1 binvcrhs_ [THROTTLED]

0.2 132 132 100001 0 1 matmul_sub_ [THROTTLED]

0.2 130 130 100001 0 1 matvec_sub_ [THROTTLED]

0.2 112 112 100001 0 1 lhsinit_ [THROTTLED]

0.2 108 108 100001 0 1 binvrhs_ [THROTTLED]

0.1 59 59 815 0 74 __kmpc_barrier

(c) TAU profiler using PEBIL

Fig. 9. Comparison of pprof tool output for thread 1 of NAS OMP bt.A benchmark when MIL, Dyninst and PEBIL tools being used by TAU profiler

to detect interleaved functions. Andrew Bernat et al. [19]
also suggest that the conservative approach of PEBIL is
dangerous because it assumes that particular instructions (e.g.,
calls) are safe to move without transformation. PEBIL focuses
onproviding a way to insert code snippets (avoiding a call
in the trampoline) and minimizing context saving. MIL offers
similar mechanisms with the nowrap option, reducing context
saving and being able to directly specify inline assembly code.
Moreover, PEBIL is an API-oriented approach which is less
flexible than an instrumentation language.

For OpenMP performance analysis, POMP [20] proposes
a performance monitoring interface for OpenMP. Tools im-
plementing this interface, such as OmpTrace[21] based on
Dynamic Probe Class Library[22] or OPARI[13] are based on
source to source modifications, with the inherent known lim-
itations: instrumentation may prevent compiler optimization,
the code analyzed is not the code the user want to analyze. In
INTONE [23], OpenMP directives are directly instrumented

by the compiler. The approach taken with MIL is to pro-
vide instrumentation able to capture per thread information.
OpenMP parallel loops, OpenMP API functions can therefore
be instrumented and results of the instrumentation can expose
OpenMP parallel execution to the performance system. Besides
most compilers implement directives by inserting calls to the
runtime. This is dependent of the OpenMP runtime but can
provide a larger implementation of the POMP interface. Going
further and capturing runtime decisions (size of chunks for
instance) is not handled by MIL so far.

Finally, several instrumentation languages have been pro-
posed in the past [6], [7], [8]. Atune-IL instrumentation
language corresponds to pragma inserted in the source code.
These pragmas are then handled to the instrumentation tool.
This approach enforces recompilation of the application. Mus-
sler et al. propose an instrumentation tool driven by configu-
ration files. The filters used in their instrumentation language
do not handle blocks or instructions and value profiling does

10

not seem possible, as it is in our tool. However, they propose
predefined filters using some more elaborate metrics on the
code. Predefined filters may apply to limited class of appli-
cations, but selecting a priori which parts of the code are of
interest is in general intractable. This is not the approach taken
here in MIL. Besides, their tool is based on Dyninst for binary
rewriting.

VII. CONCLUSION

In this paper, we present MIL, a rich instrumentation lan-
guage that reduces the complexity of writing performance anal-
ysis tools for high performance computing. Using static binary
instrumentation that does not require additional compilation
pass, MIL proposes a rich interface to instrument applications
for a large range of uses, from profiling of functions, hardware
counter analysis to value profiling. MIL provides a filtering
mechanism to instrument only some specific code fragments,
from functions, loops, to individual assembly instructions,
and different types of instrumentations can be performed
simultaneously on different code fragments. In this paper, we
illustrated the capabilities of MIL on parallel OpenMP appli-
cations. Besides, a scripting mechanism relying on an API for
code analysis offers the possibility to extend instrumentations
and performance analyses.

We believe MIL offers a unique way to implement and
investigate new performance analysis techniques, able to tackle
the challenging complexity of performance tuning for multi-
threaded applications. We have demonstrated the flexibility
of MIL through the study of different scenarii, exploring
different granularities and through its integration in TAU
performance analysis framework. The MIL interpreter offers
a rich abstraction layer based on static analysis and a robust
binary rewriting tool. Execution overheads have been evaluated
on NAS Benchmarks and compared to Dyninst and PEBIL,
similar instrumentation frameworks. They show that the in-
strumentation provided by MIL has a low overhead.

For future work, we plan to extend the language to sup-
port OpenMP events. We also plan to introduce an iterative
instrumentation approach in order to automatically take into
account previous profiles. It may be a key feature in designing
systematic performance evaluation tools, refining at each step
the identification of performance issues.

REFERENCES

[1] B. Buck and J. K. Hollingsworth, “An api for runtime code patching,”
Intl. Journal on High Performance Computing Applications, vol. 14,
pp. 317–329, November 2000.

[2] D. Barthou, A. Charif Rubial, W. Jalby, S. Koliai, and C. Valensi,
“Performance tuning of x86 openmp codes with maqao,” in Tools

for High Performance Computing 2009, M. S. Mller, M. M. Resch,
A. Schulz, and W. E. Nagel, Eds. Springer Berlin Heidelberg, 2010,
pp. 95–113.

[3] M. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, “Pebil:
Efficient static binary instrumentation for linux,” in IEEE Intl. Symp.

on Performance Analysis of Systems and Software, 2010, pp. 175–183.

[4] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. Redd, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” in ACM SIGPLAN Conf.

on Programming Language Design and Implementation. ACM Press,
2005, pp. 190–200.

[5] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in ACM SIGPLAN Conf. on Program-

ming Language Design and Implementation, vol. 42. ACM Press, 2007,
pp. 89–100.

[6] J. K. Hollingsworth, O. Niam, B. P. Miller, Z. Xu, M. J. R. Goncalves,
and L. Zheng, “Mdl: A language and compiler for dynamic program
instrumentation,” ACM/IEEE Intl. Conf. on Parallel Architectures and

Compilation Techniques, vol. 1525, pp. 201–212, 1997. [Online].
Available: http://portal.acm.org/citation.cfm?id=522659.825654

[7] C. A. Schaefer, V. Pankratius, and W. F. Tichy, “Atune-IL: An instru-
mentation language for auto-tuning parallel applications.” in Euro-Par

Conference, ser. Lect. Notes in Computer Science. Springer-Verlag,
2009, pp. 9–20.

[8] J. Mußler, D. Lorenz, and F. Wolf, “Reducing the overhead of direct
application instrumentation using prior static analysis,” in Euro-Par

Conference, ser. Lect. Notes in Computer Science, vol. 6852. Springer-
Verlag, Sep. 2011, pp. 65–76.

[9] S. S. Shende and A. D. Malony, “The tau parallel performance system,”
Intl. Journal on High Performance Computing Applications, vol. 20, pp.
287–331, 2006.

[10] MAQAO, “Modular assembly quality analyser and optimizer,”
http://www.maqao.org.

[11] P. C. U. of Rio de Janeiro in Brazil, “Lua is a powerful, fast,
lightweight, embeddable scripting language.” [Online]. Available:
http://www.lua.org

[12] M. Pall, “Luajit.” [Online]. Available: http://luajit.org

[13] B. Mohr, A. D. Malony, S. Shende, and F. Wolf, “Towards a per-
formance tool interface for openmp: An approach based on directive
rewriting,” in Workshop on OpenMP, 2001.

[14] “Nas parallel benchmarks,” http://www.nas.nasa.gov/publications/npb.html.

[15] V. Aslot, M. J. Domeika, R. Eigenmann, G. Gaertner,
W. B. Jones, and B. Parady, SPEComp: A New Benchmark

Suite for Measuring Parallel Computer Performance. Springer-
Verlag, 2001, vol. 2104, pp. 1–10. [Online]. Available:
http://www.springerlink.com/index/80FUKBECRGXM8GKW.pdf

[16] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary instrumen-
tation,” in Proceedings of the 10th ACM SIGPLAN-SIGSOFT workshop

on Program analysis for software tools, ser. PASTE ’11. New York,
NY, USA: ACM, 2011, pp. 9–16.

[17] Dyninst, “Dync language description.” [Online]. Available:
ftp://ftp.cs.wisc.edu/paradyn/releases/release7.0/doc/dynC API.pdf

[18] P. Saxena, R. Sekar, and V. Puranik, “Efficient Fine-Grained Binary
Instrumentation with Applications to Taint-Tracking,” in ACM/IEEE

Intl. Symp. on Code Optimization and Generation, Apr. 2008.

[19] A. R. Bernat, K. Roundy, and B. P. Miller, “Efficient, sensitivity resis-
tant binary instrumentation,” in Proceedings of the 2011 International

Symposium on Software Testing and Analysis, ser. ISSTA ’11. New
York, NY, USA: ACM, 2011, pp. 89–99.

[20] L. D. Rose, B. Mohr, and S. R. Seelam, “Profiling and tracing
openmp applications with pomp based monitoring libraries.” in Euro-

Par Conference, ser. Lect. Notes in Computer Science. Springer-Verlag,
2004, pp. 39–46.

[21] J. Caubet, J. Gimenez, J. Labarta, L. DeRose, and J. Vetter, “A dynamic
tracing mechanism for performance analysis of OpenMP applications,”
in Workshop on OpenMP applications and tools, Jul. 2001.

[22] L. DeRose, T. Hoover, and J. Hollingsworth, “The dynamic probe
class library - an infrastructure for developing instrumentation for
performance tools,” in IEEE Intl. Parallel and Distributed Processing

Symposium, 2001.

[23] E. Ayguadé, M. Brorsson, H. Brunst, H. C. Hoppe, S. Karlsson,
X. Martorell, W. E. Nagel, F. Schlimbach, G. Utrera, and M. Winkler,
“OpenMP Performance Analysis Approach in the INTONE Project,” in
Workshop on OpenMP, 2001.

