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Abstract
Hydra accepts an equation written in terms of operations on
matrices and automatically produces highly efficient code to
solve these equations. Processing of the equation starts by
tiling the matrices. This transforms the equation into either a
single new equation containing terms involving tiles or into
multiple equations some of which can be solved in parallel
with each other.

Hydra continues transforming the equations using tiling
and seeking terms that Hydra knows how to compute or
equations it knows how to solve. The end result is that
by transforming the equations Hydra can produce multi-
ple solvers with different locality behavior and/or different
parallel execution profiles. Next, Hydra applies empirical
search over this space of possible solvers to identify the most
efficient version. In this way, Hydra enables the automatic
production of efficient solvers requiring very little or no cod-
ing at all and delivering performance approximating that of
the highly tuned library routines such as Intel’s MKL.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers, Optimization

General Terms Performance, Algorithms, Parallelism

Keywords Automatic Derivation, Linear Algebra

1. Introduction
Years of research have led to very powerful algorithms to
solve linear algebra on all classes of machines. The algo-
rithms and implementation strategies used for sequential
systems differ from those used for parallel systems. For this
reason, implementations that were developed for sequential
machines may not be the ideal place to start when looking
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towards parallel solutions to a problem since some of the se-
lections made to obtain efficient sequential codes may have
to be changed in order to obtain as good parallel version.

Loss of information. Typically, a program is developed
starting with an examination of the problem. Then, an al-
gorithm to solve it is devised and refined with certain ob-
jectives in mind. We can assume that the goal was to min-
imize complexity while ensuring good numerical behavior.
And while minimizing the complexity of an algorithm usu-
ally translates into less computation and thus faster sequen-
tial programs, this is not always the most important consid-
eration for modern machines where locality and parallelism
are of crucial importance. For parallel systems in particular,
one should focus on minimizing execution time, reducing
power consumption or a combination of these. Thus finding
and exposing the independence of the computation becomes
an important factor which is sometimes more important than
minimizing the quantity of computation.

The next step is the implementation of the algorithm.
Given that compilers often fail to generate optimal programs,
programmers that aim at maximum performance will often
apply transformations on their code to help the compiler in
its optimization process to the point where it can become
difficult to recognize what the code is doing. For example,
Figure 1 presents a simple triply nested loop that performs a
matrix multiplication. Figure 2 is the same code, after appli-
cation of a set of source optimization: tiling, scalar promo-
tion, loop unrolling and loop interchange. The code now has
3 additional loops with larger strides, the innermost loop has
two statements operating on scalars and single dimension ar-
rays instead of three double dimension arrays. While these
transformations may optimize sequential performance on a
specific machine, they may hide parallelism to a paralleliz-
ing or vectorizing compiler or even from the programmer.

We thus make the argument that, when possible, parallel
programs should be written starting at the problem specifi-
cation rather than with a sequential implementation or algo-
rithm.

Tuned parallel code generation.In this paper, we de-
scribe a system that automatically derive parallel codes from



for(int i = 0 ; i < N ; i++)
for(int j = 0 ; j < N ; j++)
for(int k = 0 ; k < N ; k++)

c[i][j] += a[i][k] * b[k][j];

Figure 1. Matrix multiplication baseline

for(int ii = 0 ; ii < N ; ii+=B){

for(int jj = 0 ; jj < N ; jj+=B){
for(int kk = 0 ; kk < N ; kk+=B){

for(int i = ii ; i < ii + B ; i++){
for(int k = kk ; k < kk + B ; k++){
c_i = c[i];

a_ik = a[i][k];
b_k = b[k];

for(int j = jj ; j < jj+B ; j+=2){
c_i[j] += a_ik * b_k[j];
c_i[j+1] += a_ik * b_k[j+1];

}
}

}
}

}
}

Figure 2. Optimized Matrix Multiplication

high level descriptions of linear equations. This description
includes the expressions in the mathematical equation, and
information on the operands. Working from this equation,
the system defines parameters to characterize a class of par-
allel solutions using a divide and conquer approach, then
explores this space of solutions to determine the best. Our
system’s output is a collection of equations connected by a
dependence graph that describes a solution to the original
equation.

Outline. The rest of this paper is organized as follows.
Section 2 describes the system. and Section 3 elaborates on
the generator component that is at the core of our contri-
bution. Section 4 presents results obtained on some matrix
problems. Section 5 discusses related work and finally Sec-
tion 6 describes our conclusions.

2. Overview of Hydra
Hydra is a code generator that starts from a mathematical
description of matrix linear equations to solve, and gener-
ates parallel codes for multi-core architectures. The steps in-
volved in this generation are described in Figure 3. The input
is the description of the equation to solve and a collection of
routines with their associated signatures. The signature iden-
tifies the form of the equation to be solved and the nature of
the terms. For example, the signature

LT ·UNK = MT

represents an equation of the formL ·X = M with X an un-
known (denotedUNK) andL a lower triangular matrix (de-
notedLT). Relying on algebraic properties and on the shape
of the matrices, Hydra applies a divide-and-conquer strategy
to automatically generate different recurrent formulations of

the initial problem. This crucial step is presented in the fol-
lowing section. As a result, multiple formulations are gener-
ated, they differ in terms of parallelism, computation grain
and data locality.

To identify the fastest version produced by the generator,
each one is executed on the actual target multi-core machine.
This requires the target system to be available and some
input data sets for the problem to solve. An alternative to
this auto-tuning approach would be to rely on performance
prediction [10] and keep for testing only the versions with
the best performance prediction, or even remove the need
for any execution. This possibility is not addressed in this
paper. For input data sets, we assume that the user provides
sample data sets or data generators. For dense linear algebra,
the determining factor of performance is the size of the input
data. It is thus important that the data provided matches the
size or size range of the data with which the program would
be used afterwards. The rest of this section describes the
different components and their roles in more details.

Description Generator Version Predictor

ExecutionDriver

Implementation

Figure 3. System graph

Our mathematicaldescription languagecan represent
matrix equations to solve. The only required information
beyond the actual equation is the shapes of the matrices
involved (e.g. triangular, symmetric matrices).

For a class of problems which can be said arenatively
supported, no additional information is required. In other
words, it is not necessary to provide an algorithm to solve
these problem. Figure 4 presents a full example with the de-
scription of a discrete triangular Sylvester equation (DTSY).

The input consists in:

• An equation on matrices. Basic matrix operations can
be handled. So far, only addition, substraction, multi-
plication are supported in our current implementation.
The matrices used in the equation are each described
by their shapes, using the keywordsSquare, Upper

Triangular, Lower Triangular and by their nature
with the keywordUnknown. Matrices are assumed to be
known by default, i.e. part of the input.

• The optional description of a library function, a kernel,
that can be executed to solve this problem. Hydra can use
this function for the base case of the recursion.

• An optional list of equations corresponding to other prob-
lems with the kernels to solve them; This list can be used
by Hydra to solve subproblems of the initial problem.



%% Operands
X: Unknown Square Matrix
A: Upper Triangular Square Matrix

B: Lower Triangular Square Matrix
C: Square Matrix

%% Equation

A ·X ·B−X =C

%% Parameters

@name sylvester
@codelet sylsolv

@operands A B C

Figure 4. Discrete Triangular Sylvester Equation descrip-
tion

The main component is theGenerator. The generator
has a set of native transformation rules that it applies on
equations. In particular, it transforms a single equation into
a set of equations, in order to generate divide-and-conquer
solutions to the problem. The results are task graphs that
represent different possible implementations. The generator
is further described in section 3.

In the future, aPredictor filter could be inserted between
the generator and the empirical evaluation step. This compo-
nent could increase the number of valid algorithms and im-
plementation that can be evaluated in a fixed amount of time.
Performance prediction is a difficult problem, but analysis
of the generated task dependence graph can be performed to
build bounds on achievable performance. The graphs width
and the length of the critical path are examples of metrics
that can be used to such end.

The Code Generator / Executioncomponent performs
empirical evaluation of the different versions. It first con-
verts the task graph into code, using the StarPU[1] runtime
scheduler API, compiles it and runs it on sample data to
measure appropriate metrics (e.g. execution time, memory
usage, power consumption, . . . ). Performance data are sent
forth to the driver component. Sample data or data genera-
tors must be provided. Although in the current version, the
output is selected based on a single data set, it is easy to
extend the system so that it could generate input dependent
libraries, that select a version as a function of characteristics
of the input data, which in the case of dense linear algebra
would be the size of the matrices and vectors.

If a codelet implementation is missing to translate a
graph, a message is generated, presenting both the equa-
tion and its signature. Hydra can be used as an interactive
development tool.

Finally, theDriver manages the process. In the simplest
case, which is the one currently implemented, it restricts the
search to a subset of all possible tilings of the equation,
keeping track of the fastest version, applying successive
recursive decompositions and stopping the generator once
all cases have been tested. But it can also implement machine
learning techniques to reduce the search space and improve
filtering poor versions out.

3. Generator
The generator is Hydra’s main component. It accepts the
high level description of an equation, breaks it into multi-
ple equations operating on smaller matrices, and possibly
repeats this process by further breaking the generated equa-
tions. Along the way, the generators builds a task depen-
dence graph specifying the necessary order in which these
equations must be solved.

The generator operates on one equation at a time and
on the dependence graph. At the beginning, the dependence
graph has a single node representing the initial equation.
At each step, the generator expands an equation by tiling
its operands and then adjusting the dependence graph to
incorporate the new equations and remove the one that was
expanded.

Example 1: Consider the equationM = L ·X with M a
known matrix,L a known lower triangular matrix andX
an unknown matrix. A way to expand this equation, is to
convert each operand into a tiled array with two tiles along
each dimension. Therefore, from

(

M00 M01

M10 M11

)

=

(

L00 0
L10 L11

)

·

(

X00 X01

X10 X11

)

we obtain the following four equations.

M00 = L00 ·X00 (1)
M01 = L00 ·X01 (2)
M10 = L10 ·X00+L11 ·X10 (3)
M11 = L10 ·X01+L11 ·X11 (4)

The dependence graph associated with the initialM =
L ·X equation is a single node. For the equations resulting
from the expansion the dependence graph has four nodes,
one per equation. We label the nodes with the numbers given
to each equation above. The graph has two arcs. One from
node (1) to node (3) becauseX00 must be computed by
solving equation (1) before equation (3) can be solved for
X10 and another from node (2) to node (4) becauseX01 is
needed to solve equation (4).

Example 2: Figure 5 illustrates the behavior of the gen-
erator for equationL ·X ·U−X =C. The first column of the
the flow diagram, illustrates the initial steps followed by the
generator. At the beginning, the original equation is avail-
able and the associated dependence graph is empty. Next,
in a process we callderivation, the equation is expanded
into four new equations while the dependence graph stays
unchanged (i.e. empty). Finally, a process that we calliden-
tification generates a dependence graph linking the newly
generated equations.

The last column of the figure, illustrates a step further
down the road. An equation, the one labeled (4), has been se-
lected for expansion. It is expanded into four new equations,
and the identification step generates a dependence graph for



Figure 5. Generator overview with example

those new equations as well as integrates it into the larger
dependence graph that represents the problem.

Termination of the generator can be decided by charac-
teristics of the dependence graph, or by a recursion depth
when all the operators have been tiled to the same granular-
ity. In Example 2 we assume that termination happens after
all equations have been expanded twice (recursion depth of
two).

3.1 Equation Expansion or Derivation

Equation expansion is the process by which different al-
gorithms are generated by the system. Different ways of
tiling and different depths of recursion produce different
algorithms. The first step of expansion, described in sec-
tion 3.1.1, is to make sure that tiling is done in the right
way. There would typically be numerous ways of tiling the
operands and this defines the exploration space from where
the final version of the solver will be selected. Section 3.1.2
describes how a solution is generated for one point in the
exploration space.

3.1.1 Validity of tiling

The first step in the process of deriving an equation is to par-
tition the operands of this equation into tiles. When consid-
ering matrix operations, one cannot arbitrarily partitionthe
operands. Since we partition the operands in order to per-
form symbolic execution of the operation, a few basic rules
must hold. e.g. when multiplying two matrices A and B, the
number of columns of A must be equal to the number of
rows of B. A blocking that does not conserve those rules is
considered invalid and shouldn’t be considered.

Instead of generating all possible tilings and then check-
ing their validity, we ensure that only useful tilings are gen-
erated. To do so, we use the matrix operation properties to
build a set of relations between the operand dimensions and
only generate tilings satisfying those relations. Block and
matrix sizes are at this point completely symbolic.

The shapes of the operands may also guide how block-
ing is applied to generate new equations with recognizable
shapes. For example, we may want to block a triangular ma-
trix so that it contains triangular matrices on the diagonal.

Figures?? to ?? illustrate the first step of the process.
Where we propagate the operands’ dimensions. For this ex-
ample, we look at equationA ·X ·B−X =C.

First (figure ??) the system creates the operation tree
assigning a tuple (x,y) to each operand where x and y are
the number of blocks per column and row respectively (see
figure 7). Real operands correspond to the leaves and the root
of the tree, they are named in the original equation. Virtual
operands are inner nodes of the tree and have no name in the
original equation.

We then look at the virtual operands to assign them a tuple
of dimensions. Knowing the dimensions of two operands of
a matrix operation, we can deduce the dimensions of the
result. i.e. the product of am×n-matrix by a n×l -matrix
will produce am×l -matrix. For example (figure??) we can
assign the tuple(xA,yX) to the node that is the result of the
product of A by X.

Now that all operands (real and virtual) have been as-
signed a set of dimensions, the system will examine each op-
erational node in the tree and create the set of equations (1).
For example, when looking at the node that represents the
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Figure 6. Operation Tree

x

y

Figure 7. An operand’s tiling dimensions

product of A.X by B. The number of columns of the left
hand operand has to be equal to the number of lines of the
right operand. That leads to equationyA = xX.

From equationsyA = xX, yX = xB, xA = xX, yB = yX ,
xC = xX , andyC = yX we get two sets of constraints on the
number of tiles per dimension.

{xA = yA = xX = xC}

{xB = yB = yX = yC}
(1)

Exploring all possible tilings of the problem is now re-
duced to finding two values and assigning them to their re-
spective sets of variables.

3.1.2 Tiling

To derive the equation the system first partitions (tiles) its
operands. It relies on the properties of matrix operations.
Once the operands have been partitioned, we use symbolic
execution of tiled operations to generate new sets of equa-
tions.

An important aspect of our system is how the operands’
shapes are used to identify the unnecessary computation.
0-blocks (a matrix block that only contains 0 values) are
absorbing elements for the matrix multiplication (i.e. 0·X =
0) and identity elements for matrix addition (i.e. 0+X = X),
thus computation involving 0-blocks can be simplified.

Figure 8. Original equation with operand shapes

Figure 9. Tiling operands

Figure 10. Expansion generates new equations

Figure 11. Removing 0 operands

Figures 8 to 11 illustrates an example of such block par-
titioning. In 11 the bottom two equations have been simpli-
fied since it is known from the shape information that block
A(1,0) is all zeros.

3.2 Identification and Dependence Graph
Computation

Once a collection of new equations is created by tiling the
operands (section 3.1), the generator proceeds to identify



the tasks described by those equations, and generate the
dependence graph between those tasks. In this section, we
describe how to achieve this.

3.2.1 Building Dependences

The crucial step in building the dependence graph is deter-
mining what is the input and output of each one of the equa-
tions. The input to Hydra identifies matrices whose values
that are known at the outset. As discussed in Section 2, these
are the matrices not annotated with theUnknown keyword in
the input to the system. These matrices are placed by Hydra
in the input setto the equations where they appear. Also all
tiles of these known matrices and vectors are assumed to be
input to the equations where they appear. All other operands
are initially placed in theoutput setof the equations.

Example 3:Let us consider again the equationM = L ·X
from Example 1.

Because matricesM andL are known, we have that ma-
tricesLi j andMi j for i, j ∈ {0,1} are also known, and be-
cause matrixX is unknown we have that matricesXi j for
i, j ∈ {0,1} are unknown.

And here are a couple of input/output set examples :

Equation Input set Output set

M00 = L00 ·X00 {M00,L00} {X00}
M10 = L10 ·X00+L11 ·X10 {M10,L10,L11} {X00,X10}

Algorithm 1 describes the process used to build the de-
pendence graph for a newly created set of equations. The
algorithm first (line 2) selects anunidentified equationfrom
E. Then (line 3) it removese from E converting in this way
e into an identified equation. An equatione is selected if
the system contains a kernel capable of solving the equation.
This means that there is a kernel that accepts as input all ma-
trices in the input set of the equation, solves the equation,
and returns values for each of the matrices in the output set
of the equation.

Algorithm 1 Building the dependence tree
1: while E 6= /0 do
2: Selecte in E % See section 3.2.2
3: E← E \ {e}
4: for all o∈ e.out putdo
5: for all d ∈ E do
6: if o∈ d.out putthen
7: T← T ∪{(e;d)}
8: d.out put← d.out put\ {o}
9: d.input← d.input∪{o}

All the matrices in the output set ofe can, after identifi-
cation, be considered as inputs to any of the equations inE.
To reflect that fact, the loop on line 4 finds every equation in
E that hase’s output matrices in their own output set (until
this point, those variables were unknown to every equation
using them) and transfers it to their input set. In addition,

a dependence edge is added between equatione and every
equation that uses matrices from its output set. Section 3.2.2
discusses the details of this process of selection.

OnceE is empty, every equation has been identified and
added to the dependence graph. The process is then over.

Example 4:Let us consider one more time the equation

M = L ·X,

whereM is a known matrix,L is a known lower triangular
matrix andX is an unknown matrix. Each matrix is parti-
tioned once along each dimension. The following equations
are generated and added to setE with their associated input
and output sets.

Equation Input set Output set

(1) M00 = L00 ·X00 {M00,L00} {X00}
(2) M01 = L00 ·X01 {M01,L00} {X01}
(3) M10 = L10 ·X00+L11 ·X10 {M10,L10,L11} {X00,X10}
(4) M11 = L10 ·X01+L11 ·X11 {M11,(4)10,L11} {X01,X11}

Equation (1) can clearly be solved using a triangular
solver, but equation (3) cannot be solved until (1) has been
solved because the value ofX0,0 is needed for its solution.
Also, equation (2) can be solved, but equation (4) must
wait for the solution to equation (2). When equation (1) is
selected, the matrixX00 becomes a known variable. Since
equation (3) hasX00 in its output set, a dependence edge is
created between (1) and (3)T = T∪{((1)→ (3))}. And the
input and output sets are updated. In addition, (1) is removed
from E.

Other arcs in the dependence graph (those corresponding
to incoming and outgoing arcs from the equation before ex-
pansion) can be trivially added since all that is needed is to
connect elements in the output set in one equation to ele-
ments in the input set of other equations. The reason is that,
except for newly expanded equations (which as mentioned
above may have an incorrect number of matrices in the out-
put set), the input and output set of all equations are properly
defined.

Equation Input set Output set

(2) M01 = L00 ·X01 {M01,L00} {X01}
(3) M10 = L10 ·X00+L11 ·X10 {M10,L10,L11,X00} {X10}
(4) M11 = L10 ·X01+L11 ·X11 {M11,L10,L11} {X01,X11}

3.2.2 Selection

The selection of an equation to add to the dependence tree
is performed following algorithm 2.

This process consists in identifying which equations are
solvable and thus can be added to the dependence graph.

First (line 1), we look for an equation that matches the
original problem. This is done by direct comparison of the
equation’s signature to the signature of the original problem.
Signatures are explained in detail in section 3.2.3.

If no such equation is found (line 4), we examine the
equations looking for one that can be massaged into a match
of the original problem. This is achieved by simplification
of the equations signature, if an equation’s signature can
be made to match the main equation’s signature then they



Algorithm 2 Equation Selection
Require: SetE of equations

1: for all e∈ E do
2: if e.signature= main.signaturethen
3: return e
4: for all e∈ E do
5: if |e.out put|= |main.out put| then
6: if simplification(e.signature,main.signature)then
7: e← expand(e)
8: return e
9: for all e∈ E do

10: if |e.out put|= 1 and solvable(e) then
11: return e
12: print Error

are equivalent if some pre-processing computation is per-
formed. For example, the equationL ·X + B = M with L
lower triangular andX unknown does not match the signa-
tureLT ·UNK = MT, but if we expand that into two equa-
tions: (1)R= M−B and (2)L ·X = M where (1) is a pre-
processing step, we would get a match.

On line 7, the equation is replaced by a subgraph that
contains the pre-processing steps and the new equation that
matches the original. Simplification rules are explained in
section 3.2.3 and the expansion step is explained in section
3.2.4.

Finally, if no equation is found that matches the original
or can be made to match the original, we look for simple
equations that produce a single output and are directly solv-
able (e.g. a matrix multiplication of the form Unknown =
Known * Known)

Example 5: In the first selection step in Example 4, both
M00 = L00 ·X00 andM01 = L00 ·X01 are possible candidates.
Both equations match the original problem : i.e. the product
of a lower triangular matrix by an unknown equaled to a
known matrix.

3.2.3 Signatures and Simplification

We define an equation’s signature as the combination of the
operations it contains and the shapes of its operands.

Let the following abbreviations stand:

• LT : Known Lower Triangular Matrix

• UT : Known Upper Triangular Matrix

• MT : Known Matrix of Unspecified shape

• UNK : Unknown matrix

• UNK LT : Unknown Lower Triangular matrix

• UNK UT : Unknown Upper Triangular matrix

For example, for LU decomposition (L ·U = A) the sig-
nature is :

UNK LT ·UNK UT = MT

The signature is used to identify the nodes. In particular
to identify when the new generated equations are instances
of the original problem on smaller data sets.

For the purpose of identification, simplification rules are
defined on an equation’s signature.

A few examples are :

• MT +MT ⇒ MT

• MT ·MT ⇒ MT

•
. . .MT = MT ⇒ . . .= MT−MT

The rules presented have variants for each combination
of shapes for the matrices. e.g.

• LT ·LT ⇒ MT

• LT +LT ⇒ LT

Example: Consider the equationL ·X +X ·U = M with
M a known matrix,L a known lower triangular matrix,U a
known upper triangular matrix andX and unknown matrix.
Each operand is blocked twice in each dimension.

The signature of the original problem isLT ·UNK +
UNK ·UT = MT

Consider the derivated equation

L00 ·X01+X00 ·U01+X01·U11 = M01

at a stage whereX01 is the only output. The equation signa-
ture is thus

LT ·UNK+MT ·MT +UNK ·UT = MT

and does not match the signature of the original problem.

LT ·UNK+MT ·MT +UNK ·UT = MT

⇔ LT ·UNK+MT +UNK ·UT = MT

⇔ LT ·UNK+UNK ·UT = MT−MT

⇔ LT ·UNK+UNK ·UT = MT

After simplification, the signature matches the original
problem.

3.2.4 Expansion

The expansion function allows to translate the simplifica-
tions applied on an equation’s signature into tasks. Every
simplification step applied on the signature is applied on the
actual operands of the equation, generating a graph of simple
solvable equations that lead to the new equation matching
the original problem.

Example: Consider the equation and the simplification
process described in the example in section 3.2.3.

LT ·UNK+MT ·MT L00 ·X01+X00 ·U01
+UNK ·UT = MT +X01 ·U11 = M01

⇔ LT ·UNK+MT +UNK ·UT = MT T0 = X00 ·U01
L00 ·X01+T0+X01 ·U11 = M01

⇔ LT ·UNK+UNK ·UT = MT−MT
⇔ LT ·UNK+UNK ·UT = MT T0 = X00 ·U01

T1 = M01−T0

L00 ·X01+X01 ·U11 = T1



For each simplification step that reduces the number of
operands, the corresponding operation is added to the nodes
equation set.

The set of operations corresponding to BLAS functions
are built-in Hydra, that is able to match them automatically.
In the previous example,T0 =X00·U01 thus matches a matrix
multiply kernel.

4. Results
Starting from different linear problems on matrices and
sequential kernels, Hydra generates automatically parallel
codes solving these problems and resorting to these kernels.
The task graph generated by Hydra is scheduled dynamically
with StarPU runtime system [1].

In the following experiments, all sequential kernels used
are from Intel MKL library [6]. In order to evaluate the
capabilities of Hydra in terms of parallel code generation,we
compare performance between the sequential MKL version
with the best parallel version generated by Hydra for any
given problem size. Besides, we compare the performance
with the parallel MKL version. All our experiments were
conducted on a 32-core (64 threads) platform composed of
four 8-core Intel L7555 CPUs with 64GB of memory.

Figure 12 presents the results for the matrix multiplica-
tion. Here the decomposition obtained through Hydra cor-
responds to a block matrix multiplication. Note that these
block matrix multiplications are not performed in-place, Hy-
dra generates copies for each tile, improving here locality.
We observe that the best parallel code generated by Hydra
consistently outperforms the MKL parallel version of the
matrix multiplication, for matrix sizes over 4000.
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Figure 12. Matrix Matrix Multiplication: X = A*B

For the triangular solver, Figure 13 shows performance
speed-ups compared to the sequential MKL and comparison
with the parallel version. Performance of Hydra remains
within roughly 10% of the parallel MKL performance. A
more detailed analysis in Figure 14 shows the influence of
the number of blocks on performance: tiling matrices in 10
by 10 blocks brings the best speed-up or large matrices.

Table 1 shows that for a blocking factor of 10, there
are 1000 tasks created, the maximum number of tasks ex-
ecutable at the same time during the course of the execution
is 90 (this is the width of the graph) and 255 copies of blocks
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Figure 13. Triangular Solver : L*X = C
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Figure 14. Exploring blocking factors for the triangular
solver : L*X = C.

Blocking factor Tasks Max Parallelism Copies
2 8 2 11
4 64 12 42
5 125 20 65
8 512 56 164
10 1000 90 255
16 4096 240 648

Table 1. Triangular Solver: Characteristics of the different
versions generated by Hydra, according to the blocking fac-
tor.

are performed. The high number of copies compared to the
number of computational tasks may account for some per-
formance loss.
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Figure 15. Triangular Sylvester:AXB−X =C



Figure 16. CTSY task graph for 2 by 2 blocking

Figure 15 show the speed-up of Hydra best code com-
pared to the sequential MKL version. On a 32-core machine,
the speed-up over 40 can be explained by the fact that Hy-
dra decomposes the triangular Sylvester problem into sub-
problems that have a higher sequential efficiency than MKL
CTSY (such as matrix multiplication). Thus, the speed-up
results from both the parallelization of the computation and
from the use of efficient kernels. The task graph obtained for
a 2 by 2 blocking of CTSY is shown in Figure 16. Square
tasks are copy tasks, darker rounded tasks are smalled in-
stances of CTSY and the others are various BLAS-3 opera-
tions. The method generated by Hydra to solve CTSY corre-
sponds to the one described by Jonssonet al. [7].

Moreover, we observe that the parallel MKL version of
CTSY has the same performance as the sequential one. This
shows here all the benefits of Hydra: from sequential kernels
and the initial formulation of the problem, we are able to
generate automatically, with no efforts in manual code tun-
ing, a parallel version of CTSY.
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Figure 17. LU Factorization: L*U = A

Finally, Figure 17 shows performance for LU factoriza-
tion. While the parallel MKL LU outperforms the code gen-
erated by Hydra, we note that the performance of Hydra con-
sistently grows with the problem size.

5. Related Works
The field of autotuning software generation tries to answer
the problem of generating high performance libraries that
are portable across platforms. The necessity comes from the

fact that compilers often fail to produce the best possible
executable from a normal source code, forcing programmers
to manually develop codes that are only optimized for the
specific machine it was developed for. Many projects have
tackled this problem in different fields, proving the validity
of exhaustive search to produce high performance library
generators.

ATLAS [9] is a system that exhaustively searches a space
of code transformations to find optimal implementations of
matrix multiplications and other BLAS operations on a tar-
get machine.

The Spiral [8] project is the closest to what is proposed
in this document. Spiral is a system to automatically gener-
ate high performance libraries for Digital Signal Processing
(DSP). It offers a language and set of operators to specify
linear transforms for DSP, from which their automatic gen-
eration system can derive different algorithms and in the end
implementations. They also use exhaustive search to evalu-
ate performance and select the best implementation among
all the versions generated by the system.

Our proposed system, differs from Spiral by its targeted
domain and from ATLAS in that its main focus on exposing
task parallelism. However, both projects offer insights inthe
different techniques that can be applied to guide the process
of exhaustive search through empirical execution of different
implementations.

The Flame [3] project advocates goal-oriented program-
ming. It offers a platform to develop algorithms in a system-
atical way to formally prove they achieve their goal. Flame
offers a framework to write iterative algorithms, while we try
to start from a problem and automatically derive algorithms
recursively using a divide-and-conquer approach. Besides,
the code generation approach presented here, relying on the
dynamic scheduling of a parallel task graph, differs from the
path chosen by Flame. Recent work from Fabregat-Traver
and Bientinesi [4] proposes an approach close to ours for
finding algorithmic solutions to matrix equations from their
mathematical expression. However, they do not explain how
the code is generated nor present any performance figures.

Finally, work by Barthouet al. [2] on auto-tuning at
source code level produce good results on matrix multipli-



cation, but suffered on more complex problems. The explo-
ration space for source to source transformation has to be de-
fined by the user through pragmas. For complex transforma-
tions, such as the ones leading to the task graphs produced by
Hydra, the sequence of pragmas required would by difficult
to identify, even by an expert. Besides, multiple implemen-
tations of a same algorithm can become radically different,
advocating for looking at problems at a higher level.

6. Conclusion
Hydra is a parallel code generator for a class of linear al-
gebra problems. It starts from the high-level expression of
the equation to solve and generates multiple versions of par-
allel task graphs solving the problem, for multi-core archi-
tectures. The essential idea of Hydra is to use a divide-and-
conquer approach to find an algorithmic solution to the ini-
tial description of the problem. While the recursive decom-
position could lead to scalar problems, we choose to rely
on existing highly optimized sequential libraries for the res-
olution of small enough problems. Moreover, we resort to
dynamic scheduling techniques in order to avoid load bal-
ancing issues.

We have shown that this approach is able to generate par-
allel codes with no development effort: the user only needs
to specify the equation to solve and provide sequential ker-
nels. Moreover, following an auto-tuning approach, the mul-
tiple versions generated by Hydra are combined into a code
with performance comparable to those of Intel parallel MKL
functions, even outperforming for matrix multiplication and
Sylvester triangular system resolution the parallel functions
of Intel MKL library.

For future works, we plan to generalize Hydra for the
generation of parallel codes for heterogeneous architectures.
Indeed, one advantage of using a dynamic scheduler such
as StarPU [1] is its capacity to handle systems with both
CPUs and GPUs. The decision of whether to run the kernel
on a CPU or an accelerator is made by the runtime system.
The runtime also handles all necessary data transfers. It
only requires to provide CPU and GPU versions for all
kernels (for instance MKL [6] and PLASMA [5] libraries).
Moreover, Hydra offers the opportunity to generate parallel
task graphs with non-uniform granularity, through different
blocking sizes. Such graphs would then have coarser grain
execution paths biased towards GPU execution and finer
grain paths, better suited for multicore execution.
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