N

N

Hydra: Automatic algorithm exploration from linear
algebra equations
Alexandre Duchateau, David A. Padua, Denis Barthou

» To cite this version:

Alexandre Duchateau, David A. Padua, Denis Barthou. Hydra: Automatic algorithm exploration from
linear algebra equations. Code Generation and Optimization, Feb 2013, Shenzhen, China. pp.1-10.
hal-00920869

HAL Id: hal-00920869
https://hal.science/hal-00920869
Submitted on 19 Dec 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00920869
https://hal.archives-ouvertes.fr

Hydra : Automatic Algorithm Exploration
from Linear Algebra Equations

Alexandre X. Duchateau David Padua Denis Barthou
Department of Computer Science Department of Computer Science Labri
University of lllinois University of Illinois Université de Bordeaux
axdn@illinois.edu padua@illinois.edu denis.barthou@inria.fr
Abstract towards parallel solutions to a problem since some of the se-

Hydra accepts an equation written in terms of operations on lections made to obtain efficient sequential codes may have

matrices and automatically produces highly efficient codet 10 P€ changed in order to obtain as good parallel version.
solve these equations. Processing of the equation starts by L0SS of information. Typically, a program is developed
tiling the matrices. This transforms the equation intoeith starting with an examination of the p_roblem_. Then, an al-
single new equation containing terms involving tiles opint gorithm to solve it is devised and refined with certain ob-

multiple equations some of which can be solved in parallel jectives in mmgl. We_can assume that the gof';ll was to min-
with each other. imize complexity while ensuring good numerical behavior.

Hydra continues transforming the equations using tiling AA"d while minimizing the complexity of an algorithm usu-
and seeking terms that Hydra knows how to compute or ally translates into less computation and thus faster seque

equations it knows how to solve. The end result is that tial programs, this is not always the most important consid-
by transforming the equations Hydra can produce multi- eration for modern machines where locality and parallelism

ple solvers with different locality behavior and/or diféet ~ @re Of crucial importance. For parallel systems in paréicul
parallel execution profiles. Next, Hydra applies empirical ©N€ Should focus on minimizing execution time, reducing

search over this space of possible solvers to identify thetmo POWer consumption or a combination of these. Thus finding
efficient version. In this way, Hydra enables the automatic @nd €xposing the independence of the computation becomes

production of efficient solvers requiring very little or noct an important factor which is sometimes more important than

ing at all and delivering performance approximating that of minimizing the quantity of computation.

the highly tuned library routines such as Intel's MKL. The next step is the implementation of the algorithm.
Given that compilers often fail to generate optimal proggam

Categories and Subject Descriptors D.3.4 [Programming programmers that aim at maximum performance will often

Languagef Processors—Compilers, Optimization apply transformations on their code to help the compiler in

General Terms Performance, Algorithms, Parallelism its optimization process to the point where it can become
) o) difficult to recognize what the code is doing. For example,

Keywords ~ Automatic Derivation, Linear Algebra Figure 1 presents a simple triply nested loop that performs a

. matrix multiplication. Figure 2 is the same code, after &ppl
1. Introduction cation of a set of source optimization: tili
ptimization: tiling, scalar premo
Years of research have led to very powerful algorithms to tion, loop unrolling and loop interchange. The code now has
solve linear algebra on all classes of machines. The algo-3 additional loops with larger strides, the innermost loap h
rithms and implementation strategies used for sequentialtwo statements operating on scalars and single dimension ar
systems differ from those used for parallel systems. Far thi rays instead of three double dimension arrays. While these
reason, implementations that were developed for sequientiatransformations may optimize sequential performance on a
machines may not be the ideal place to start when looking specific machine, they may hide parallelism to a paralleliz-
ing or vectorizing compiler or even from the programmer.
We thus make the argument that, when possible, parallel
Permission to make digital or hard copies of all or part of thork for personal or pro_grams should be, written Start,lng_ at the prObl_em SpECIfI-
classroom use is granted without fee provided that coptesiairmade or distributed cation rather than with a sequential implementation or-algo

for profit or commercial advantage and that copies bear titiseand the full citation rithm

on the first page. To copy otherwise, to republish, to posteswess or to redistribute) . .

to lists, requires prior specific permission and/or a fee. Tuned parallel code generation.In this paper, we de-
CGO’13 February 2013, Shenshen, China. scribe a system that automatically derive parallel codss fr

Copyright(© 2013 ACM [to be supplied]. .. $10.00

the initial problem. This crucial step is presented in the fo
lowing section. As a result, multiple formulations are gene
ated, they differ in terms of parallelism, computation grai

for(int i = 0 ; i < N ; i++)

for(int j =0 ; j < N ; j++)
for(int k = 0 ; k < N ; k++)
c[il[j]1 += alil[k] * b[k][j];

and data locality.

To identify the fastest version produced by the generator,
each one is executed on the actual target multi-core machine
This requires the target system to be available and some

Figure 1. Matrix multiplication baseline

input data sets for the problem to solve. An alternative to
this auto-tuning approach would be to rely on performance
prediction [10] and keep for testing only the versions with
the best performance prediction, or even remove the need

for(int ii = 0 ; ii < N ; ii+=B){
for(int jj = 0 ; jj < N ; jj+=B){
for(int kk = 0 ; kk < N ; kk+=B){
for(int i = ii ; i < ii + B ; i++){
for(int k = kk ; k < kk + B ; k++){
c_i = cl[il;

a_ik = alil [k];

b_k = blk];

for(int j = jj ; j < jj+B ; j*+=2){
c_i[j] += a_ik * b_k[jl;

c_i[j+1] += a_ik * b_k[j+1];

for any execution. This possibility is not addressed in this
paper. For input data sets, we assume that the user provides
sample data sets or data generators. For dense linearalgebr
the determining factor of performance is the size of theinpu

} data. It is thus important that the data provided matches the
Y size or size range of the data with which the program would
3 be used afterwards. The rest of this section describes the
4 different components and their roles in more details.

Figure 2. Optimized Matrix Multiplication

| Descriptionl—>| Generatori—)l Version I—>| Predictorl
high level descriptions of linear equations. This desuaipt
includes the expressions in the mathematical equation, and

Driver |<_/—| Executionl
information on the operands. Working from this equation, /
the system defines parameters to characterize a class of par-
allel solutions using a divide and conquer approach, then
explores this space of solutions to determine the best. Our
system’s output is a collection of equations connected by a

dependence graph that describes a solution to the Original Our mathematicadescription |anguagecan represent

equatiqn. _)) matrix equations to solve. The only required information
Outline. The rest of this paper is organized as follows. peyond the actual equation is the shapes of the matrices
Section 2 describes the system. and Section 3 elaborates ofhyolved (e.g. triangular, symmetric matrices).

the generator component that is at the core of our contri- For a class of problems which can be said nagively

bution. Section 4 presents results obtained on some matrixsypportegl no additional information is required. In other

pr0b|ems. Section 5 discusses related work and f|na”y SeC'WordS, it is not necessary to provide an algorithm to solve

tion 6 describes our conclusions. these problem. Figure 4 presents a full example with the de-

scription of a discrete triangular Sylvester equation (¥T.S
The input consists in:

Figure 3. System graph

2. Overview of Hydra

Hydra is a code generator that starts from a mathematical
description of matrix linear equations to solve, and gener-
ates parallel codes for multi-core architectures. Thessitep
volved in this generation are described in Figure 3. Thetinpu
is the description of the equation to solve and a collection o
routines with their associated signatures. The signatiene i
tifies the form of the equation to be solved and the nature of
the terms. For example, the signature

e An equation on matrices. Basic matrix operations can
be handled. So far, only addition, substraction, multi-
plication are supported in our current implementation.
The matrices used in the equation are each described
by their shapes, using the keywordguare, Upper
Triangular, Lower Triangular and by their nature
with the keywordUnknown. Matrices are assumed to be
known by default, i.e. part of the input.

LT -UNK=MT e The optional description of a library function, a kernel,
that can be executed to solve this problem. Hydra can use

represents an equation of the fotlmX = M with X an un- this function for the base case of the recursion.

known (denoted) NK) andL a lower triangular matrix (de- _ _ _ _

notedLT). Relying on algebraic properties and on the shape *® Anoptional list of equations corresponding to other prob-
of the matriceS, Hydra app”es a divide-and-conquergmte lems with the kernels to solve them, This list can be used
to automatically generate different recurrent formulasiof by Hydra to solve subproblems of the initial problem.

%% Operands

X: Unknown Square Matrix
A: Upper Triangular Square Matrix
B: Lower Triangular Square Matrix
C: Square Matrix

%% Equation

A-X-B-X=C

%% Parameters
Oname sylvester
Qcodelet sylsolv
Qoperands A B C

Figure 4. Discrete Triangular Sylvester Equation descrip-
tion

The main component is th&enerator. The generator
has a set of native transformation rules that it applies on
equations. In particular, it transforms a single equatiga i

a set of equations, in order to generate divide-and-conque
solutions to the problem. The results are task graphs that

represent different possible implementations. The géoera
is further described in section 3.

In the future, &redictor filter could be inserted between
the generator and the empirical evaluation step. This cempo
nent could increase the number of valid algorithms and im-

plementation that can be evaluated in a fixed amount of time.

Performance prediction is a difficult problem, but analysis

r

3. Generator

The generator is Hydra’s main component. It accepts the
high level description of an equation, breaks it into multi-
ple equations operating on smaller matrices, and possibly
repeats this process by further breaking the generated equa
tions. Along the way, the generators builds a task depen-
dence graph specifying the necessary order in which these
equations must be solved.

The generator operates on one equation at a time and
on the dependence graph. At the beginning, the dependence
graph has a single node representing the initial equation.
At each step, the generator expands an equation by tiling
its operands and then adjusting the dependence graph to
incorporate the new equations and remove the one that was
expanded.

Example 1: Consider the equatiokl = L - X with M a
known matrix,L a known lower triangular matrix an3
an unknown matrix. A way to expand this equation, is to
convert each operand into a tiled array with two tiles along
each dimension. Therefore, from

(s s)=

Moo Moz
Mio M1z

Loy O
Lio Lz

Xoo Xo1
X0 X1

of the generated task dependence graph can be performed to We obtain the following four equations.

build bounds on achievable performance. The graphs width

and the length of the critical path are examples of metrics Moo = Loo- Xoo (1)
that can be used to such end. Moy = Loo - Xo1 ()

The Code Generator / Executioncomponent performs Mio = L1o- Xoo+La1-X10 (3)
empirical evaluation of the different versions. It first eon Mi1=Lio-Xo1+La1- X1 (4)

verts the task graph into code, using the StarPU[1] runtime The dependence graph associated with the iniak
scheduler API, compiles it and runs it on sample data to L- X equation is a single node. For the equations resulting
measure appropriate metrics (e.g. execution time, memoryfrom the expansion the dependence graph has four nodes,
usage, power consumption, ...). Performance data are senbtne per equation. We label the nodes with the numbers given
forth to the driver component. Sample data or data genera-to each equation above. The graph has two arcs. One from
tors must be provided. Although in the current version, the node (1) to node (3) becaus&y must be computed by
output is selected based on a single data set, it is easy tesolving equation (1) before equation (3) can be solved for
extend the system so that it could generate input dependeniX;o and another from node (2) to node (4) becakseis
libraries, that select a version as a function of charasties needed to solve equation (4).
of the input data, which in the case of dense linear algebra Example 2: Figure 5 illustrates the behavior of the gen-
would be the size of the matrices and vectors. erator for equatioh - X -U — X = C. The first column of the

If a codelet implementation is missing to translate a the flow diagram, illustrates the initial steps followed hg t
graph, a message is generated, presenting both the equagenerator. At the beginning, the original equation is avail
tion and its signature. Hydra can be used as an interactiveable and the associated dependence graph is empty. Next,
development tool. in a process we calllerivation the equation is expanded

Finally, theDriver manages the process. In the simplest into four new equations while the dependence graph stays
case, which is the one currently implemented, it restrises t unchanged (i.e. empty). Finally, a process that weidath-
search to a subset of all possible tilings of the equation, tification generates a dependence graph linking the newly
keeping track of the fastest version, applying successive generated equations.
recursive decompositions and stopping the generator once The last column of the figure, illustrates a step further
all cases have been tested. But it can also implement machinalown the road. An equation, the one labeled (4), has been se-
learning techniques to reduce the search space and improvéected for expansion. It is expanded into four new equations
filtering poor versions out. and the identification step generates a dependence graph for

L11*X11*U11-X11=C11
Equation L*X*U-X=C .
Dependence Graph @

Derivation (s. 4.1)

1: LOD*X00*U00 - X00 = CO0
: 2:L10*X00°U00+ L11*X10°U00-X10 = C10
Set Equatlons 3:L00*X00*U01 +LOO*X01*U11-X01 = €01
Dependence Graph 4; L10*X00*U01 + ... + L11*X11*U11-X11=C11
@

Selection

|dentification (s. 4.2)

2
Dependence Graph 1 ?O\@
3

Termination

Final Graph Vi

Figure 5. Generator overview with example

those new equations as well as integrates it into the larger Instead of generating all possible tilings and then check-

dependence graph that represents the problem. ing their validity, we ensure that only useful tilings arenge
Termination of the generator can be decided by charac- erated. To do so, we use the matrix operation properties to

teristics of the dependence graph, or by a recursion depthbuild a set of relations between the operand dimensions and

when all the operators have been tiled to the same granularonly generate tilings satisfying those relations. Blockl an

ity. In Example 2 we assume that termination happens after matrix sizes are at this point completely symbolic.

all equations have been expanded twice (recursion depth of The shapes of the operands may also guide how block-

two). ing is applied to generate new equations with recognizable
shapes. For example, we may want to block a triangular ma-
3.1 Equation Expansion or Derivation trix so that it contains triangular matrices on the diagonal

Equation expansion is the process by which different al- Figures?? to ?? illustrate the first step of the process.
gorithms are generated by the system. Different ways of Where we propagate the operands’ dimensions. For this ex-
tiling and different depths of recursion produce different @mple, we look at equatiof-X-B—X =C. _
algorithms. The first step of expansion, described in sec- First (figure ??) the system creates the operation tree
tion 3.1.1, is to make sure that tiling is done in the right 2ssigning a tuple (x,y) to each operand where x and y are
way. There would typically be numerous ways of tiling the the number of blocks per column and row respectively (see
operands and this defines the exploration space from wherdigure 7). Real operands correspond to the leaves and the root
the final version of the solver will be selected. Section®.1. Of the tree, they are named in the original equation. Virtual
describes how a solution is generated for one point in the OP€rands are inner nodes of the tree and have no name in the
original equation.

We then look at the virtual operands to assign them a tuple
3.1.1 Validity of tiling of dimensions. Knowing the dimensions of two operands of
a matrix operation, we can deduce the dimensions of the
result. i.e. the product of aaxxn-matrix by anx|-matrix
will produce amx|-matrix. For example (figur@?) we can
assign the tupléxa, yx) to the node that is the result of the
product of A by X.

Now that all operands (real and virtual) have been as-
signed a set of dimensions, the system will examine each op-
erational node in the tree and create the set of equations (1)
For example, when looking at the node that represents the

exploration space.

The first step in the process of deriving an equation is to par-
tition the operands of this equation into tiles. When consid
ering matrix operations, one cannot arbitrarily partittoe
operands. Since we partition the operands in order to per-
form symbolic execution of the operation, a few basic rules
must hold. e.g. when multiplying two matrices A and B, the
number of columns of A must be equal to the number of
rows of B. A blocking that does not conserve those rules is
considered invalid and shouldn’t be considered.

-© -(©) 3.1.2 Tiling
/ \ To derive the equation the system first partitions (tiles) it

operands. It relies on the properties of matrix operations.
: : Once the operands have been partitioned, we use symbolic
() (% Yx) () (% .Yx) execution of tiled operations to generate new sets of equa-

tions.
/ \ i / \ An important aspect of our system is how the operands’

(B) P (B) shapes are used to identify the unnecessary computation.
/\ ’ 0-blocks (a matrix block that only contains O values) are

absorbing elements for the matrix multiplication (i.eX0=
0) and identity elements for matrix addition (i.e+X = X),
(Xa.Ya) (%Yx) (Xa.Ya) O%Yx) thus computation involving 0-blocks can be simplified.

/N ool

: 5)
io(xaye) i [(x¥x) A X T

/ \ Figure 8. Original equation with operand shapes

/ \ A(0,0) A(01) X(0,0) X(01) T(0,0 T(01)

(A X) [] I T o T T T
(Xa,ya) (%x.,Yx) 1 .I I. I|*|I |I I| I|_|‘ |‘ ‘I ‘I

D D I I I I I I — I‘ I‘ ‘I ‘I
Figure 6. Operation Tree 0|0 J[0 J[J[

A(1,0) A(1,1) X(1,0) X(1,1) T(1,0) T(1,1)

y Figure 9. Tiling operands

K_M

T(0,0) = A(0,0)*%(0,0) + A(0,1)*x(1,0)
T(0,1) = A(0,0)*X(0,1) + A(0,1)*x(1,1)
T(1,0) = A(1,0)*X(0,0) + A(L,1)*x(1,0)
T(1,1) = A(1,0)*X(0,1) + A(L,1)*X(1,1)

Figure 7. An operand’s tiling dimensions Figure 10. Expansion generates new equations

T(0,0) = A(0,0)*X(0,0) + A(0,1)*X(1,0)
product of A.X by B. The number of columns of the left gggé; = 20,000, 1) + ;Egi;:;&é;
hand operand has to be equal to the number of lines of the T (1' 1 _ A(l' 1)*x (1' 1)
right operand. That leads to equatign= xx. - - -
From equationg/a = Xx, Yx = Xg, Xa = Xx, YB = Yx, Figure 11. Removing 0 operands
Xc = Xx, andyc = yx we get two sets of constraints on the
number of tiles per dimension. Figures 8 to 11 illustrates an example of such block par-

titioning. In 11 the bottom two equations have been simpli-
B o fied since it is known from the shape information that block
(xa=ya =x=x} 1) A(1,0) is all zeros.

XB=YB =Yx=Yc
{ J 3.2 lIdentification and Dependence Graph

Exploring all possible tilings of the problem is now re- Computation

duced to finding two values and assigning them to their re- Once a collection of new equations is created by tiling the
spective sets of variables. operands (section 3.1), the generator proceeds to identify

the tasks described by those equations, and generate th

a dependence edge is added between equatird every

dependence graph between those tasks. In this section, wequation that uses matrices from its output set. Sectiag 3.2

describe how to achieve this.

3.2.1 Building Dependences

The crucial step in building the dependence graph is deter-
mining what is the input and output of each one of the equa-
tions. The input to Hydra identifies matrices whose values

discusses the details of this process of selection.
OnceE is empty, every equation has been identified and
added to the dependence graph. The process is then over.
Example 4:Let us consider one more time the equation

M=L-X,

that are known at the outset. As discussed in Section 2, thes&yvhereM is a known matrixL is a known lower triangular

are the matrices not annotated with th&nown keyword in

matrix andX is an unknown matrix. Each matrix is parti-

the input to the system. These matrices are placed by Hydrationed once along each dimension. The following equations

in theinput setto the equations where they appear. Also all

are generated and added to Eewith their associated input

tiles of these known matrices and vectors are assumed to beynd output sets.

input to the equations where they appear. All other operands
are initially placed in th@utput sebf the equations.

Example 3: Let us consider again the equatigh= L - X
from Example 1.

Because matriceldl andL are known, we have that ma-
tricesL;; andM;; for i, j € {0,1} are also known, and be-
cause matrixX is unknown we have that matrice§; for
i,j € {0,1} are unknown.

And here are a couple of input/output set examples :

Equation Input set Output set
Moo = Loo- Xoo {Moo, Loo} {Xoo}
M1o=L10-Xoo+L11-X10 {Mio,L10,L11} {Xo0, X10}

Algorithm 1 describes the process used to build the de-

pendence graph for a newly created set of equations. The

algorithm first (line 2) selects amidentified equatiofrom

E. Then (line 3) it removes from E converting in this way

e into anidentified equationAn equatione is selected if
the system contains a kernel capable of solving the equation
This means that there is a kernel that accepts as input all ma
trices in the input set of the equation, solves the equation,
and returns values for each of the matrices in the output set
of the equation.

Algorithm 1 Building the dependence tree
1: while E #0do
2. Selectein E % See section 3.2.2
E+ E\{e}
for all o € e.outputdo
forall d € E do
if 0 € d.outputthen
T+ Tu{(ed)}
d.out put+ d.output\ {o}
d.input + d.inputu {o}

All the matrices in the output set @fcan, after identifi-
cation, be considered as inputs to any of the equatiofs in
To reflect that fact, the loop on line 4 finds every equation in
E that hase's output matrices in their own output set (until
this point, those variables were unknown to every equation
using them) and transfers it to their input set. In addition,

Equation Input set Output set
(1) Moo= Loo* Xoo {Moo, Loo} {Xoo}
(2 Mo1=Loo-Xo1 {Moz,Loo} {Xo1}
(3) Mo =Lio-Xoo+La1-Xi0 {Muo,L10,L11} {Xoo, X10}
4 Mu=Lio-Xor+Llir-Xin {Mig, (1o, Lua} {Xoa, Xaa}

Equation (1) can clearly be solved using a triangular
solver, but equation (3) cannot be solved until (1) has been
solved because the value ¥ is needed for its solution.
Also, equation (2) can be solved, but equation (4) must
wait for the solution to equation (2). When equation (1) is
selected, the matriXpg becomes a known variable. Since
equation (3) ha¥qg in its output set, a dependence edge is
created between (1) and (B)=T U{((1) — (3))}. And the
input and output sets are updated. In addition, (1) is remhove
from E.

Other arcs in the dependence graph (those corresponding
to incoming and outgoing arcs from the equation before ex-
pansion) can be trivially added since all that is needed is to
connect elements in the output set in one equation to ele-
ments in the input set of other equations. The reason is that,

except for newly expanded equations (which as mentioned
above may have an incorrect number of matrices in the out-
put set), the input and output set of all equations are ptpper
defined.

Equation Input set Output set
(2 Mo1=Loo- Xo1 {Moz1,Loo} {Xo1}
(3) Mio=Lio-Xoo+L11-X10 {Mio,L10,L11,%00} {X10}
(4) Mg = Lo Xor+La1-Xna {Mu3,L10,L11} {Xo1, Xa1}

3.2.2 Selection

The selection of an equation to add to the dependence tree
is performed following algorithm 2.

This process consists in identifying which equations are
solvable and thus can be added to the dependence graph.

First (line 1), we look for an equation that matches the
original problem. This is done by direct comparison of the
equation’s signature to the signature of the original probl
Signatures are explained in detail in section 3.2.3.

If no such equation is found (line 4), we examine the
equations looking for one that can be massaged into a match
of the original problem. This is achieved by simplification
of the equations signature, if an equation’s signature can
be made to match the main equation’s signature then they

Algorithm 2 Equation Selection The signature is used to identify the nodes. In particular

Require: SetE of equations to identify when the new generated equations are instances
1: forall ec E do of the original problem on smaller data sets.
2. if esignature= mainsignaturethen For the purpose of identification, simplification rules are
3 return e defined on an equation’s signature.
4: forall ec E do A few examples are :
5 if |_e.0_utpqﬂ_: |_main01_1tpu11 then o e MT4+MT = MT
6: if simplification(e.signature,main.signatutiegn o MT-MT = MT
7 e+ expande)
8 return e e .MT=MT=..=MT-MT
o: forall ec E do The rules presented have variants for each combination
10: if eoutput = 1and solvablge) then of shapes for the matrices. e.g.
11: return e
o LT -LT = MT

12: print Error

o LT+LT =LT

_ _ _ o Example: Consider the equatioln- X + X -U = M with
are equivalent if some pre-processing computation is per- M a known matrix,L a known lower triangular matrix) a

formed. For example, the equatien X + B = M with L known upper triangular matrix and and unknown matrix.
lower triangular and unknown does not match the signa- Each operand is blocked twice in each dimension.
tureLT -UNK = MT, but if we expand that into two equa- The signature of the original problem IST - UNK +
tions: (1)R=M —-Band (2)L-X =M where (1) isapre- UNK-UT =MT
processing step, we would get a match. Consider the derivated equation

On line 7, the equation is replaced by a subgraph that
contains the pre-processing steps and the new equation that Loo- Xo1+ Xo0- Uo1 + Xo1-U11 = Moz

matches the original. Simplification rules are explained in , , .
section 3.2.3 and the expansion step is explained in sectiont @ Stage whero, is the only output. The equation signa-

3.2.4. ture is thus
Finally, if no equation is found that matches the original LT -UNK+MT-MT +UNK-UT = MT
or can be made to match the original, we look for simple
equations that produce a single output and are directly solv and does not match the signature of the original problem.

able (e.g. a matrix multiplication of the form Unknown = LT .UNK+MT . MT +UNK-UT = MT
Known*Known) . . & LT -UNK+MT +UNK-UT =MT

Example 5: In the first selection step in Example 4, both o LT -UNK-+UNK-UT = MT —MT
Moo = Loo- Xpo @andMp1 = Lgg- Xp1 are possible candidates. o LT -UNK+UNK-UT = MT

Both equations match the original problem : i.e. the product

of a lower triangular matrix by an unknown equaled to a
known matrix. After simplification, the signature matches the original

problem.

3.2.3 Signatures and Simplification 3.2.4 Expansion

We define an equation’s signature as the combination of the
operations it contains and the shapes of its operands.
Let the following abbreviations stand:

The expansion function allows to translate the simplifica-
tions applied on an equation’s signature into tasks. Every
simplification step applied on the signature is applied @n th
¢ LT : Known Lower Triangular Matrix actual operands of the equation, generating a graph ofsimpl
solvable equations that lead to the new equation matching

e UT : Known Upper Triangular Matrix e
the original problem.

* MT : Known Matrix of Unspecified shape Example: Consider the equation and the simplification
e UNK : Unknown matrix process described in the example in section 3.2.3.
e UNK_LT : Unknown Lower Triangular matrix LT -UNK+MT-MT Lo Xo1+Xoo-Uo1
. . +UNK-UT =MT +Xo1-U11 = Moy
e UNK_UT : Unknown Upper Triangular matrix = [T UNKEMT+UNKUT=MT | T9=%X0-Us
. . Loo-Xo1+To+ Xo1 -U11 = Moy
For example, for LU decompositioh (U = A) the sig- & LT-UNK+UNK-UT =MT —MT
nature is : & LT-UNK+UNK-UT =MT %z)l\jloool»g%)
Loo-Xo1+Xo1-U11=Th

UNK_LT -UNK.UT =MT

For each simplification step that reduces the number of 16 ‘
operands, the corresponding operation is added to the nodesz *
equation set. 2

The set of operations corresponding to BLAS functions
are built-in Hydra, that is able to match them automatically
In the previous exampld@gy = Xgo- Up1 thus matches a matrix
multiply kernel.

10

Speedup over MKL Sequen
(==}

o N A o

4 . Res u |ts 5,000 10,000 12,000 14,000 16,000 18,000 20,000
Starting from different linear problems on matrices and Problem size
sequential kernels, Hydra generates automatically phrall Figure 13. Triangular Solver : L*X =C

codes solving these problems and resorting to these kernels
The task graph generated by Hydra is scheduled dynamically
with StarPU runtime system [1].

In the following experiments, all sequential kernels used
are from Intel MKL library [6]. In order to evaluate the
capabilities of Hydra in terms of parallel code generatiom,
compare performance between the sequential MKL version
with the best parallel version generated by Hydra for any
given problem size. Besides, we compare the performance
with the parallel MKL version. All our experiments were
conducted on a 32-core (64 threads) platform composed of 5000 10000 12000 14000 16000 18,000 20,000
four 8-core Intel L7555 CPUs with 64GB of memory. Problem size

Figure 12 presents the results for the matrix multiplica- Figure 14. Exploring blocking factors for the triangular
tion. Here the decomposition obtained through Hydra cor- solver: L*X = C.
responds to a block matrix multiplication. Note that these
block matrix multiplications are not performed in-place/-H
dra generates copies for each tile, improving here locality | Blocking factor | Tasks| Max Parallelism| Copies

14 T

Speedup over MKL Sequential

We observe that the best parallel code generated by Hydra 2 8 2 11
consistently outperforms the MKL parallel version of the 4 64 12 42
matrix multiplication, for matrix sizes over 4000. 5 125 20 65

8 512 56 164

° o 10 1000 90 255

I 1 aeal 1 16 4096 240 648

14

12

Table 1. Triangular Solver: Characteristics of the different
versions generated by Hydra, according to the blocking fac-
tor.

Speedup over MKL Sequential
o
o

are performed. The high number of copies compared to the
number of computational tasks may account for some per-
formance loss.

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8000 9,000 10,000 12,000 14

Problem size

Figure 12. Matrix Matrix Multiplication: X = A*B

45 T

For the triangular solver, Figure 13 shows performance 0
speed-ups compared to the sequential MKL and comparison
with the parallel version. Performance of Hydra remains
within roughly 10% of the parallel MKL performance. A
more detailed analysis in Figure 14 shows the influence of
the number of blocks on performance: tiling matrices in 10
by 10 blocks brings the best speed-up or large matrices.

Table 1 shows that for a blocking factor of 10, there
are 1000 tasks created, the maximum number of tasks ex- 1,000 2000 8000 000 5,000 6,000
ecutable at the same time during the course of the execution Problem see
is 90 (this is the width of the graph) and 255 copies of blocks Figure 15. Triangular SylvestetAXB— X =C

35
30
25
20
15
10

Speedup over MKL Sequential

copy_in_cl
copy_in_cl T~
copy_in_cl

ctsy . — copy_out_cl

ctsy_c —» copy_out_cl

ctsy cl —» copy_out_cl

copy_in_cl
copy_in_cl _—v
copy_in_cl

Figure 16. CTSY task graph for 2 by 2 blocking

Figure 15 show the speed-up of Hydra best code com- fact that compilers often fail to produce the best possible
pared to the sequential MKL version. On a 32-core machine, executable from a normal source code, forcing programmers
the speed-up over 40 can be explained by the fact that Hy-to manually develop codes that are only optimized for the
dra decomposes the triangular Sylvester problem into sub-specific machine it was developed for. Many projects have
problems that have a higher sequential efficiency than MKL tackled this problem in different fields, proving the vatydi
CTSY (such as matrix multiplication). Thus, the speed-up of exhaustive search to produce high performance library
results from both the parallelization of the computatiod an generators.
from the use of efficient kernels. The task graph obtained for ~ ATLAS [9] is a system that exhaustively searches a space
a 2 by 2 blocking of CTSY is shown in Figure 16. Square of code transformations to find optimal implementations of
tasks are copy tasks, darker rounded tasks are smalled inmatrix multiplications and other BLAS operations on a tar-
stances of CTSY and the others are various BLAS-3 opera-get machine.
tions. The method generated by Hydra to solve CTSY corre- The Spiral [8] project is the closest to what is proposed
sponds to the one described by Jonssboal. [7]. in this document. Spiral is a system to automatically gener-

Moreover, we observe that the parallel MKL version of ate high performance libraries for Digital Signal Procegsi
CTSY has the same performance as the sequential one. ThigDSP). It offers a language and set of operators to specify
shows here all the benefits of Hydra: from sequential kernels linear transforms for DSP, from which their automatic gen-
and the initial formulation of the problem, we are able to eration system can derive different algorithms and in thee en
generate automatically, with no efforts in manual code tun- implementations. They also use exhaustive search to evalu-
ing, a parallel version of CTSY. ate performance and select the best implementation among
all the versions generated by the system.

Our proposed system, differs from Spiral by its targeted
N domain and from ATLAS in that its main focus on exposing
] task parallelism. However, both projects offer insightthie
different techniques that can be applied to guide the psoces
of exhaustive search through empirical execution of déffér
N implementations.

The Flame [3] project advocates goal-oriented program-
ming. It offers a platform to develop algorithms in a system-

12 T T T

I Hydra best
T O MKLpar | oo I

Speedup over MKL Sequential

1,000 2,000 3,000 4000 5000 6000 7,000 8000 9,000 10,000 12,000 14 atical way to forma”y prove they achieve their goa|_ Flame
Problem size offers a framework to write iterative algorithms, while we t
Figure 17. LU Factorization: L*U = A to start from a problem and automatically derive algorithms

recursively using a divide-and-conquer approach. Besides
Finally, Figure 17 shows performance for LU factoriza- the code generation approach presented here, relying on the
tion. While the parallel MKL LU outperforms the code gen- dynamic scheduling of a parallel task graph, differs from th
erated by Hydra, we note that the performance of Hydra con- path chosen by Flame. Recent work from Fabregat-Traver

sistently grows with the problem size. and Bientinesi [4] proposes an approach close to ours for
finding algorithmic solutions to matrix equations from thei
5. Related Works mathematical expression. However, they do not explain how

The field of autotuning software generation tries to answer the code is generated nor present any performance figures.
the problem of generating high performance libraries that ~ Finally, work by Barthouet al. [2] on auto-tuning at
are portable across platforms. The necessity comes from the>0Urce code level produce good results on matrix multipli-

cation, but suffered on more complex problems. The explo-
ration space for source to source transformation has to-be de
fined by the user through pragmas. For complex transforma-
tions, such as the ones leading to the task graphs produced by
Hydra, the sequence of pragmas required would by difficult
to identify, even by an expert. Besides, multiple implemen-
tations of a same algorithm can become radically different,
advocating for looking at problems at a higher level.

6. Conclusion

Hydra is a parallel code generator for a class of linear al-
gebra problems. It starts from the high-level expression of
the equation to solve and generates multiple versions ef par
allel task graphs solving the problem, for multi-core archi
tectures. The essential idea of Hydra is to use a divide-and-
conquer approach to find an algorithmic solution to the ini-
tial description of the problem. While the recursive decom-
position could lead to scalar problems, we choose to rely
on existing highly optimized sequential libraries for tles+
olution of small enough problems. Moreover, we resort to
dynamic scheduling techniques in order to avoid load bal-
ancing issues.

[2

[3

[4

5

—_—

—_—

—_—

]

Heterogeneous Multicore ArchitecturéSoncurrency and
Computation: Practice and Experience, Special Issue:
Euro-Par 2009 23:187-198, Feb. 2011. doi:
10.1002/cpe.1631. URL
http://hal.inria.fr/inria-00550877.

D. Barthou, S. Donadio, P. Carribault, A. X. Duchateand
W. Jalby. Loop optimization using hierarchical compilatio
and kernel decomposition. RGO, pages 170-184, 2007.

P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S.
Quintana-Orti, and R. A. van de Geijn. The Science of
Deriving Dense Linear Algebra Algorithm&CM Trans.
Math. Softw. 31(1):1-26, Mar. 2005.

D. Fabregat-Traver and P. Bientinesi. Knowledge-based
automatic generation of partitioned matrix expressions. |
Proceedings of the 13th international conference on
Computer algebra in scientific computingASC’11, pages
144-157, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN
978-3-642-23567-2. URL
http://dl.acm.org/citation.cfm?id=2040148.2040160.

U. o. T. Innovative Computing Laboratory. Plasma, 2012.
http://icl.cs.utk.edu/plasma/pubs/index.html.

[6] Intel®. Intel Math Kernel Library, 2011.

http://software.intel.com/en-us/articles/intel-mkl/

We have shown that this approach is able to generate par- [7] 1. Jonsson and B. Kagstrom. Recursive blocked albonit

allel codes with no development effort: the user only needs
to specify the equation to solve and provide sequential ker-
nels. Moreover, following an auto-tuning approach, the-mul
tiple versions generated by Hydra are combined into a code
with performance comparable to those of Intel parallel MKL
functions, even outperforming for matrix multiplicationch
Sylvester triangular system resolution the parallel fiomst
of Intel MKL library.

For future works, we plan to generalize Hydra for the
generation of parallel codes for heterogeneous architestu
Indeed, one advantage of using a dynamic scheduler such

8

]

as StarPU [1] is its capacity to handle systems with both [l

CPUs and GPUs. The decision of whether to run the kernel
on a CPU or an accelerator is made by the runtime system.

The runtime also handles all necessary data transfers. 1t[10]

only requires to provide CPU and GPU versions for all
kernels (for instance MKL [6] and PLASMA [5] libraries).
Moreover, Hydra offers the opportunity to generate paralle
task graphs with non-uniform granularity, through diffetre
blocking sizes. Such graphs would then have coarser grain
execution paths biased towards GPU execution and finer
grain paths, better suited for multicore execution.

Acknowledgments

This work was funded by the lllinois-Intel Parallelism Cen-
ter at the University of lllinois at Urbana-Champaign. The
Center is sponsored by the Intel Corporation.

References

[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier
StarPU: A Unified Platform for Task Scheduling on

for solving triangular systems - Part I: one-sided and cedipl
Sylvester-type matrix equationdCM Trans. Math.

Software 28(4):392-415, Dec. 2002. ISSN 0098-3500. doi:
10.1145/592843.592845. URL
http://doi.acm.org/10.1145/592843.592845.

M. Puschel, J. M. F. Moura, J. Johnson, D. Padua, M. \e&los
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code
generation for DSP transformBroceedings of the IEEE,
special issue on "Program Generation, Optimization, and
Adaptation”, 93(2):232— 275, 2005.

R. Whaley, A. Petitet, and J. Dongarra. Automated Enoplri
Optimizations of Sofware and the ATLAS Proje&arallel
Computing 27(1-2):3—-35, 2001.

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali
and P. Stodghill. Is search really necessary to generate
high-performance blasProceedings of the IEEB3(2):358
—386, feb. 2005. ISSN 0018-9219. doi:
10.1109/JPROC.2004.840444.

