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Nouveau procédé de séparation des espèces d'un fluide binaire par convection mixte
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Lorsqu'on soumet une solution initialement homogène, constituée d'au moins deux espèces chimiques, à un gradient thermique, celui-ci induit un transfert des constituants au sein du mélange : ce phénomène est appelé thermodiffusion ou effet Soret. Le couplage entre la convection et la thermodiffusion, appelé diffusion thermogravitationnelle conduit, sous certaines conditions, à une séparation des espèces plus importante qu'en thermodiffusion. Dans les colonnes thermogravitationnelles verticales le gradient thermique imposé induit non seulement la thermodiffusion mais également le mouvement convectif. Nous proposons dans ce travail une nouvelle technique permettant d'améliorer le procédé de séparation en découplant le gradient thermique de la vitesse convective. On considère pour cela, une cavité rectangulaire, horizontale, remplie d'un fluide binaire et soumise à un flux de chaleur vertical. La paroi supérieure est animée d'une vitesse uniforme, ce qui permet de disposer de deux paramètres de contrôle indépendants. Les résultats analytiques et numériques obtenus sont en parfait accord

Introduction

Le couplage de la thermodiffusion, appelé effet Soret, et de la convection naturelle est appelée diffusion thermogravitationnelle. Ce couplage conduit à une séparation des constituants du mélange beaucoup plus importante que celle induite par la thermodiffusion seule. En 1938, Clusius et Dickel [1] ont considéré une colonne thermogravitationnelle (TGC), constituée de deux cylindres coaxiaux, verticaux de grande extension chauffés différentiellement. Ils ont observé une séparation importante des constituants du mélange gazeux remplissant la colonne verticale et ont suggéré l'utilisation de cette technique pour la séparation des isotopes. En 1939, Furry, Jones et Onsager (FJO) [2] ont établi les équations de bilan pour décrire le processus de diffusion thermogravitationnelle pour un mélange binaire de gaz confiné dans une cavité rectangulaire verticale, de grand rapport d'aspect, différentiellement chauffée. Dans ce travail, les auteurs ont émis une hypothèse simplificatrice intéressante consistant à ne pas prendre en compte le rôle de la concentration sur la masse volumique dans le terme de force de volume appelée depuis «l'effet oublié». En 1968, Horne et Bearman [3] ont étendu la théorie FJO aux cas des solutions binaires dans une colonne thermogravitationnelle cylindrique. Ecenarro et al. [4], et Horne and Bearman [3] ont repris la théorie de FJO sans faire l'hypothèse de l'effet oublié. En milieu poreux, en se basant sur la théorie de Furry, Jones et Onsager [2], Lorenz et Emery [START_REF] Lorenz | The packed thermodiffusion column[END_REF] ont obtenu la solution analytique du problème en milieu poreux. 

Formulation mathématique

Pour la modélisation mathématique, nous considérons que la longueur de l'enceinte est suffisamment grande par rapport aux autres dimensions pour que la présence des parois verticales ne modifie pas la structure de l'écoulement sur la plus grande partie de la cellule. On suppose que les équations du problème sont écrites dans le cadre l'approximation de Boussinesq. Cette approximation suppose que les grandeurs thermophysiques du mélange binaire sont constantes à l'exception de la masse volumique du mélange dans le terme de force volumique générateur de la convection où la masse volumique est donnée par :

ߩ ൌ ߩሾ1 െ ߚ ் ሺܶ െ ܶ ሻ െ ߚ ሺܥ െ ܥ ሻሿ (1) 
Où : Les équations de conservation de la masse, de la quantité de mouvement, de l'énergie et des espèces s'écrivent sous forme adimensionnelle :

ߚ ் ൌ െ ଵ ఘ బ ሺ డఘ డ் ሻ , ߚ ൌ െ ଵ ఘ బ ሺ డఘ డ ሻ ் sont
સ. V ሬ ሬԦ ൌ 0 (2) ∂V ሬ ሬԦ ∂t V ሬ ሬԦ . સV ሬ ሬԦ ൌ െસP Ra PrሾT െ ߰Cሿe ሬԦ Prસ ଶ V ሬ ሬԦ (3) ∂T ∂t V. ሬሬሬԦ સT ൌ સ ଶ T (4) ∂C ∂t V ሬ ሬԦ . સC ൌ 1 Le ሺસ ଶ C સ ଶ Tሻ (5)

Conditions aux limites adimensionnelles

Les conditions aux limites dynamiques, thermiques et massiques sont données par :

ܸ ሬԦ ሺ,ݔ ݖ ൌ 1ሻ ൌ ܲ݁  ݔ א ሾ0, ܣሿ ܸ ሬԦ ሺ,ݔ ݖ ൌ 0ሻ ൌ ܸ ሬԦ ሺݔ ൌ ሺ0, ܣሻ, ݖሻ ൌ 0  ݔ א ሾ0, ܣሿ (6) 
߲ܶ ݖ߲ ൌ െ1, ݎݑ ݖ ൌ 0 ݐ݁ ݖ ൌ 1  ݔ א ሾ0, ܣሿ (7) 
,ݔ‪ሺܥ߲ ݖሻ ݖ߲ ൌ 1 pour ݖ ൌ 0 ݐ݁ ݖ ൌ 1 ,ݔ‪ሺܥ߲ ݖሻ ݔ߲ ൌ ߲ܶሺ,ݔ ݖሻ ݔ߲ ൌ 0 pour ݔ ൌ 0 ݐ݁ ݔ ൌ ܣ ,  ݖ א ሾ0,1ሿ (8) 
Où les variables adimensionnelles sont données par: 

ሺ,ݔ ,ݕ ݖሻ ൌ ሺݔ כ , ݕ כ , ݖ כ ሻ ܪ , ݐ ൌ ݐ כ ݐ , ሺ,ݑ ,ݒ ݓሻ ൌ ሺݑ כ , ݒ כ , ݓ כ ሻ ܸ , ܲ ൌ ܲ כ ܲ , ܶ ൌ ܶ כ െ ܶ כ ∆ܶ כ , ܥ ൌ ܥ כ െ ܥ כ ܥ∆ כ Avec : ∆ܶ כ ൌ ܶ ଶ כ െ ܶ ଵ כ , ܥ∆ כ ൌ ∆ܶ כ ܥ כ ሺ1 െ ܥ כ ሻ ܦ ் ܦ Où : ܸ ൌ ு , ݐ ൌ ு మ , ܲ ൌ ߩ మ ு మ , ݍ ൌ ,

Solution analytique

Pour une cavité présente de grand rapport d'aspect A ب 1, les lignes de courant, au centre de la cavité, sont quasi parallèles à l'axe des x. Ceci permet de négliger la composante de la vitesse perpendiculaire aux parois horizontales (approximations de l'écoulement parallèle utilisée par El Hajjar et al. [9]), de telle sorte que :

ܸ ሬԦ ሺ,ݔ ݖሻ ൌ ݑሺݖሻ ݁ ௫ ሬሬሬሬሬԦ ,  ݔ א ሿ0, ܣሾ (9) 
Les profils de la température et de la concentration s'écrivent alors sous la forme d'une somme d'un terme définissant une variation longitudinale linéaire et d'un autre terme donnant la distribution transversale :

ܶሺ,ݔ ݖሻ ൌ ܥ ் ݔ ݂ሺݖሻ, ,ݔ‪ሺܥ ݖሻ ൌ ܥ ௌ ݔ ݃ሺݖሻ (10) 
En substituant ces profils dans le système (2-5) et en éliminant la pression de l'équation (3) nous obtenons le système d'équations aux dérivées partielles suivant :

߲ ଷ ݑሺݖሻ ݖ߲ ଷ െ ܴܽ ߲ ݔ߲ ሺܶ െ ߰ܥሻ ൌ 0  ଶ T ൌ ܥ ݑሺݖሻ ܥ ୗ ݁ܮ ݑሺݖሻ െ ሺ ߲ ଶ ܥ ݖ߲ ଶ ߲ ଶ ܶ ݖ߲ ଶ ሻ ൌ 0 (11) 
D'autres conditions sont nécessaires pour résoudre ce système d'équations, les conditions aux limites sur les parois verticales n'étant pas prises en compte, car nous nous intéressons à l'écoulement loin des parois. On traduit pour cela que le débit massique est nul à travers toute section droite verticale de la cavité et que la fraction massique d'un des constituants, ici le plus lourd, sur la totalité de la cellule soit conservée :

 ݑ ݖ݀ ൌ 0 ଵ  ݔ כ א ሾ0, ܣሿ,   ܥ ݔ݀ݖ݀ ൌ 0 ଵ
En appliquant les conditions aux limites (6-8), et les conditions mentionnées ci-dessus, on détermine alors les profils de vitesse, de température et de concentration :

ݒ ൌ ߖ ݖ2‪ሺݖ െ 1ሻሺݖ െ 1ሻ ሺ3ݖ ଶ െ 2ݖሻܲ݁ (12) T ൌ C x ଵ ଵ Ψ C z ହ െ ଵ ସ Ψ C z ସ ଵ Ψ C z ଷ െ z ଵ ଵଶ C Peሾ3z ସ െ 4z ଷ ሿ ܥ ൌ ݂ሺΨ , ܲ݁, ܥ ் , ܥ ௌ , ,݁ܮ ,ݖ ݔሻ (13) 
L'expression du champ de concentration est trop longue pour être explicitée ici. Ψ représente l'intensité de la contribution du champ de vitesse induit par la convection naturelle seulement est, donné par :

Ψ ൌ 1 12 ܴܽሺܥ ் െ ܥ߰ ௌ ሻ (14) 
Pour la détermination du gradient de concentration ܥ ௌ , nous utilisons le fait qu'à l'état stationnaire le débit d'un des constituants à travers toute section verticale est nulle:  ሺ݁ܮ ݒ ܥ െ ܥ ௌ ଵ ܥ ் ሻ݀ݖ ൌ 0 . Après intégration, nous obtenons une équation du troisième degré en ܥ ௌ dont les coefficients sont des fonctions des nombres adimensionnels du problème ሺܴܽ, ܲ݁, ,݁ܮ ߰, ܣሻ . La résolution de cette équation, conduit à l'expression de ܥ ௌ :

ܥ ௌ ൌ 105840ሺെ5ܲ݁ െ ݁ܮΨ ݁ܲ݁ܮ5 Ψ ሻ ሺΨ ଶ െ 9Ψ ܲ݁ 24ܲ݁ ଶ 2520ሻሺ24݁ܮ ଶ ܲ݁ ଶ െ 9Ψ ݁ܮ ଶ ܲ݁ Ψ ଶ ݁ܮ ଶ 2520ሻ (15) 
On utilise la même procédure pour trouver l'expression du gradient de température ܥ ் . Le flux thermique à travers toute section verticale de la cellule est nul :

නሺܶݒ െ ܥ ் ሻ݀ݖ ൌ 0 ଵ (16) 
L'expression donnant le gradient de température est donnée par:

ܥ ் ൌ 42ሺΨ െ 5ܲ݁ሻ Ψ ଶ െ 9Ψ ܲ݁ 24ܲ݁ ଶ 2520 (17) 
En combinant les équations (15, 16, 18), et après arrangement, nous obtenons une équation de cinquième degrés permettant de calculer Ψ : Ψ ൌ ݂ሺ ܲ݁, ܴܽ, ݁ܮሻ. 

Résultats et discussion

  FIG.1-Configuration géométrique.

  respectivement les coefficients d'expansion thermique et massique du fluide binaire, ܶ la température et ܥ la fraction massique du constituant le plus lourd, (ߩ , ܶ , ܥ les valeurs de ces grandeurs à l'état de référence).

  Dans le cas où la cavité est chauffée par le haut (ܴܽ ൏ 0), le fluide le plus chaud migre vers le haut de la cavité et le plus froid migre vers le bas. On est dans une situation toujours stable, par conséquent, la séparation n'est possible que pour ܲ݁ ് 0 (la paroi supérieure en mouvement induit un phénomène convectif). Sur les figures 3 et 4, on présente le champ de fractions massique pour différentes valeurs du nombre de Péclet et pour ܴܽ ൌ 2, 300 (FIG.3) et ܴܽ ൌ െ2, െ300 (FIG.4), avec ݁ܮ ൌ 230, ݎܲ ൌ 10, ߰ ൌ 0.1 ݐ݁ ܣ ൌ 10. Les lignes représentent les isoconcentrations tandis que les couleurs représentent l'intensité de la fraction massique du constituant le plus lourd. On observe que la déformation des isoconcentrations augmente quand la vitesse de la paroi supérieure augmente. De plus, la déformation des isoconcentrations est plus importante pour ܴܽ ൌ 003ט que pour ܴܽ ൌ ,2ט puisque à ܴܽ ൌ 300 la vitesse convective est plus importante que pour ܴܽ ൌ 2.

FIG. 2 - 3 - 4 -

 234 FIG.2-Variation de la fraction massique ݏܥ en fonction du nombre de Péclet ܲ݁, pour ݁ܮ ൌ 230, ߰ ൌ 0.1, et pour différents nombres de Rayleigh (a) chauffage par le bas (b) chauffage par le haut.

  

  Des simulations numériques ont été effectuées pour corroborer les résultats analytiques obtenus. À cette fin, nous avons utilisé le logiciel Comsol Multiphysics avec un maillage rectangulaire, parfaitement adapté à la géométrie d'étude. La résolution spatiale est de 120 x 20 pour ܣ ൌ 10. Sur la figure 2 on présente l'évolution de la séparation en fonction du nombre de Péclet ሺܲ݁ሻ avec ݁ܮ ൌ 230, ߰=0.1, pour une cavité chauffée par le bas ሺܴܽ 0ሻ (Fig2-a) pour différentes valeurs de nombre de Rayleigh (ܴܽ ൌ 300, ܴܽ ൌ 60 ݐ݁ ܴܽ ൌ 2ሻ, et pour une cavité chauffée par le haut ሺܴܽ ൏ 0ሻ (Fig2-b) avec (ܴܽ ൌ െ300, ܴܽ ൌ െ60 ݐ݁ ܴܽ ൌ െ2ሻ. La solution obtenue analytiquement est représentée en trait continu ou discontinu. Cette solution analytique est en bon accord avec la solution numérique représentée par des symboles (points). On peut voir que la séparation présente un maximum correspondant au couplage optimal entre la thermodiffusion et la vitesse appliquée sur la paroi supérieure. Pour une cavité chauffée par le bas ሺRa 0ሻ, et pour des faibles valeurs de Rayleigh ሺܴܽ ൌ 2ሻ la séparation est nulle à ܲ݁ ൌ 0 (le nombre de Rayleigh est inférieur à la valeur critique caractérisant le déclanchement de la convection). En appliquant une vitesse sur la paroi supérieure ሺܲ݁ 0ሻ la séparation augmente avec l'augmentation du nombre de Péclet jusqu'à une valeur optimale ܲ݁ ை௧ audelà de laquelle la séparation diminue. Ceci peut s'expliquer par le fait que, lorsque le nombre de Péclet est trop faible (i.e.la vitesse de la paroi supérieure est faible), ou lorsque le nombre de Péclet est trop élevé, le temps de diffusion thermique n'est plus en bonne adéquation avec le temps convectif ce qui entraîne une moins bonne séparation des espèces entre les deux extrémités de la cellule. Pour des valeurs plus grandes du nombre de Rayleigh ሺܴܽ ൌ 60, ܴܽ ൌ 300 , la convection se déclenche, et on remarque que la séparation est possible même pour ܲ݁ ൌ 0.

ConclusionDans cette étude, nous avons proposé une nouveau procédé permettant la séparation des espèces dans une cavité rectangulaire, remplie d'un fluide binaire. Cette méthode consiste à mettre en mouvement, avec une vitesse uniforme, la paroi supérieure de la cavité soumise au flux de chaleur uniforme. Cette technique permet de disposer de deux paramètres de contrôle que l'on peut faire varier indépendamment l'un de l'autre contrairement à ce qui est fait habituellement dans les colonnes de diffusion thermogravitationnelle où le gradient thermique imposé induit l'importance de la thermodiffusion et du mouvement convectif. Nous avons déterminé analytiquement la séparation en fonction du nombre de Péclet et du nombre de Rayleigh, qui constituent les deux paramètres de contrôle indépendants. Des simulations numériques directes ont montré un très bon accord entre résultats numériques et analytiques.