
HAL Id: hal-00920724
https://hal.science/hal-00920724

Submitted on 28 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliability analysis of bonded joints with variations in
adhesive thickness

Jean-Denis Mathias, M. Lemaire

To cite this version:
Jean-Denis Mathias, M. Lemaire. Reliability analysis of bonded joints with variations in adhe-
sive thickness. Journal of Adhesion Science and Technology, 2013, 27 (10), p. 1069 - p. 1079.
�10.1080/01694243.2012.727176�. �hal-00920724�

https://hal.science/hal-00920724
https://hal.archives-ouvertes.fr


Author produced version of the paper published in Journal of Adhesion Science and technology, vol. 27 (10) , p. 
1069-1079., 2013 Original publication available at http://www.tandfonline.com, 
 DOI : 10.1080/01694243.2012.727176 
 

- 1 - 

 
 
 
 
 
 

Reliability Analysis of Bonded Joints with Variations in Adhesive Thickness 
 
 

Jean-Denis MATHIAS* 
IRSTEA, 

Laboratoire d’Ingénierie pour les Systèmes Complexes,  

Campus des Cézeaux, 24 Avenue des Landais – BP 50085, 63172 Aubière Cedex, France 

 
 

Maurice LEMAIRE 
Clermont Université, Institut Français de Mécanique Avancée,  

EA 3867,Laboratoire de Mécanique et Ingénieries,  

Campus de Clermont-Ferrand les Cézeaux - BP265, 63175 AUBIERE Cedex, France 

 
 

 
 
 
 
 
 
 
Short Title: Reliability analysis of bonded joint 
 
 
 
 
 
 
 
 
 
*Corresponding author: email:jean-denis.mathias@irstea.fr, tel: +33(0)473440680, fax : 
33.(0)4.73.44.06.96 



Author produced version of the paper published in Journal of Adhesion Science and technology, vol. 27 (10) , p. 
1069-1079., 2013 Original publication available at http://www.tandfonline.com, 
 DOI : 10.1080/01694243.2012.727176 
 

- 2 - 

 
 
 
 

 
ABSTRACT 

 
 

Bonded joints are used in several industrial applications as a surrogate of more 
expensive repairs, but their reliability must be ascertained. Failure in a bonded joint mainly 
occurs in the adhesive due to stress concentrations that directly depend on the adhesive 
thickness. In practice, it is difficult to ensure a good accuracy of the final adhesive thickness, 
leading to uncertainty to its spatial variability. This uncertainty greatly influences the strength 
of the bonded joint. This work deals with one of the main key-issues in bonded joints: the 
influence of the spatial variations in the adhesive thickness on the reliability of the joint; an 
excessive shear stress level caused by the adhesive thickness variations may lead to failure. 
This paper provides reliability analysis by considering the adhesive thickness as a stochastic 
field. The experimental thickness field is obtained so as to identify the stochastic parameters. 
These parameters are then introduced in a structural reliability model to evaluate the failure 
probability. Results show the influence of adhesive thickness uncertainty on bonded joint 
failure. 
 
 
 
 
 
 
KEYWORDS: bonded joint, failure, shear stress, adhesive thickness, stochastic field, 
reliability. 
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1 Introduction 
 

Bonded composite patches are used as structural repairs in several fields such as civil 
engineering for damaged concrete structures [1] or aeronautics for components which exhibit 
damages, defects or impacts [2]. Another industrial application consists in using patches for 
the prevention of damage appearance. The service life of such reinforced structures is 
expected to be increased and expensive repairs or replacements are also expected to be 
avoided. However, it is well known that shear stress peaks near the free edges of the 
composite patches may cause failure of the joint. Indeed, some studies have shown that 53% 
of significant defects on bonded structures proceed from adhesive bond failures [3]. 

The shear-lag model was the first model which enabled the calculation of stress 
distribution in the adhesive, and consequently the prediction of bonded joint failure [4]. This 
model was then refined to account for some additional factors such as spew fillet [5], large 
deflections [6] or possible elastic–plastic response of the adhesive [7,8]. Some other non-
linear models have been developed, for instance to take into account the viscoelasticity of the 
adhesive [9] or the influence of the load level on the parameters of the Burgers model [10]. It 
is well known that the adhesive thickness greatly influences the shear stress distribution. 
Several studies have shown the influence of this parameter. For example, cohesive zone 
models have been used to analyze the influence of the adhesive thickness [11]. A comparative 
numerical and experimental study has also been done for aluminum single-lap joints bonded 
with aluminum powder filled epoxy adhesive [12]. The type of failure according to the 
adhesive thickness has been also studied [13]. 

It is commonly admitted that adhesive thickness presents some uncertain variations 
owing to the joint fabrication process. These variations can significantly increase the shear 
stress peak near the free edge of the joint. Reliability methods [14] can take into account this 
variability by considering the adhesive thickness as a stochastic field. Therefore, it enables 
the assessment of the failure probability of the bonded joint. Linear or quadratic 
approximations of the limit state (characterizing the bonded joint failure) or response surface 
approximations can be used for the calculation of this failure probability avoiding a too high 
number of simulations such as classical Monte Carlo simulations [14] [15]. It has been 
successfully applied in several studies, especially in mechanical applications [16] [17]. 

An experimental investigation of adhesive thickness variations is first addressed in 
this paper. For this purpose, a three-dimensional measuring machine is used in order to obtain 
the adhesive thickness field of bonded joint. The stochastic parameters of the adhesive 
thickness field are then identified by a stochastic decomposition. Afterwards, these 
parameters are introduced in a structural reliability model to calculate failure probabilities and 
normalized sensitivities with respect to the mean [14]. Finally, the reliability model is used to 
calculate the safety coefficient for a target failure probability. 
 
2. Experimental assessment of the adhesive  
 
2.1 Experimental set-up 
 

Single-lap specimens have been prepared by the industrial partner, “AIA of Clermont-
Ferrand” (French Ministry of Defence). Composite patches were bonded to aluminium (see 
Figure 1). The substrate was made of aluminium 2024 T3 with a thickness 4 mm. The 
composite patch was made of Hexcel carbon prepreg system 914 T300 (epoxy/carbon). Four 
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unidirectional plies were used. The total thickness of the patch was 0.5 mm. The dimensions 
of the composite patch were equal to LxL with L=70 mm. The adhesive used was a Redux 312 
adhesive. The initial setting of the adhesive thickness during the joint fabrication process was 
0.15 mm. Mechanical properties of each material are reported in Table 1. 
 

As mentioned above, the adhesive thickness may present some uncertain variations 
owing to the joint fabrication process. Before identifying the stochastic parameters, the 
adhesive thickness field has to be measured. For this purpose, a three-dimensional measuring 
machine (MMT TEMPO MCA 10 from TRI-MESURES, France) was used here to obtain the 
thickness field of the adhesive with respect to the x- and y-directions. The resolution was 5 
µm. Measurements were made on both faces of the specimen. The pitch u (the distance 
between two measures) here was 1.1 mm which corresponds to 64 pitches for the specimen 
length in the x-direction. 37 pitches were used for the specimen width in the y-direction. The 
path of the feeler of the three-dimensional measuring machine is represented in Figure 1. The 
total thickness ttot(x,y) was then obtained. The composite thickness tcomp(x,y) and the 
aluminium thickness talu(x,y) were assumed to be constant. The adhesive thickness tadh(x,y) 
can be determined as follows: 
 

),(),(),(),( yxt-yxt-yxtyxt compalutotadh      (1) 
 
Note that variations in thicknesses of the aluminium plate talu(x,y) and of the composite 
tcomp(x,y) were negligible in comparison with the adhesive thickness variations. 
 
2.2 Field decomposition 
 

The adhesive thickness tadh(x,y) is now considered as a stochastic field tadh(x,y,ω ) in 
which are random points in space . In the following, we consider a one-dimensional 
mechanical model based on the Volkersen’s model [4] (see Section 4.1) in the x-direction. 
This model has some limitations and more complex and accurate models could be used. 
However, this model is commonly used in the bonded joint community. Therefore, for the 
sake of simplicity and to show the feasibility of the current approach, this model is chosen 
here. The x-direction corresponds to the fiber direction of the composite patch and to the 
direction of the loading (see section 4.1). This leads to consider the stochastic properties of 
the stochastic field only along the x-direction. In this case, we consider the stochastic 
adhesive thickness field along the y-direction tadh(x,y,ω ) as 37 experimental realizations 
named “replicas” (37 pitches were used for the specimen width in the y-direction) with 64 
points per replica (in the x-direction). Each adhesive thickness replica i depends only on the x-
direction and is denoted as 37i1)(  i

a
i ωx,t  . We consider these experimental replicas 

37i1)(  i
a
i ωx,t   as realizations of the stochastic field )( ωx,t a  that we want to characterize. 

The thickness field of the adhesive )( ωx,t a  presents two types of variations. The first 

variation is global and can be represented by a mean deterministic field tmean(x) which can be 
modelled by a polynomial function. The second variation is modelled with a stochastic field 

)( ω x,Y , which leads to: 

 
)()()( ω x,Yxtωx,t meana       (2) 
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For the identification procedure of tmean(x) and )( ω x,Y , we use the experimental 

replicas i. For each replica i, we have the same decomposition: 

 
)()()( ii

mean
ii

a
i ω x,Yxtωx,t       (3) 

 
For each replica i, the aim is to extract a trajectory )( ii ω x,Y   that has a mean equal to 0 

(see Figure 2).  
Decomposition of the adhesive thickness is represented in Figure 3. Each replica 

)( i
a
i ωx,t   is smoothed leading to the mean deterministic field )(xt mean

i . Residuals are then 

obtained by subtracting the mean deterministic field from the full thickness field and are 
considered as the trajectory )( ii  x,Y   , with a mean equal to 0. We can see that the mean 

deterministic field )(xt mean
i  decreases near the free edge of the patch. This is due to the joint 

fabrication process in this case. This deterministic decrease in the adhesive thickness leads to 
a stress concentration within the adhesive near the free edge. Uncertain variations may 
increase this stress concentration. The aim then is to determine the stochastic parameters of 
the stochastic field )( ω x,Y  from replica trajectories )( ii  x,Y    and to introduce them in a 

reliability model. 
 
3. Identification of the )( ω x,Y  stochastic field parameters 

 

3.1 Assumptions 

 

Before beginning the identification, some assumptions regarding )( ω x,Y  must be 
made. )( ω x,Y  is supposed to be a stationary second-order process. As explained above, 
experimental data are considered as realizations of )( ω x,Y . For each replica i, stochastic 
parameters have to be identified. The pitch between two abscissae xj , xj+1 is denoted as uj. The 

parameters Yim , 2
Yiσ , )( kYi uR  and )( kYi uC  can be calculated as: 
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Using Equations (4), the stochastic parameters can be identified from the experimental 
measurements (see Section 2). Based on the assumptions described above, the trajectory 
process is totally defined by the mean mYi, the standard deviation Yi and the autocorrelation 
function CYi )( ku . The mean mYi and the standard deviation Yi are calculated from (4). The 
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autocorrelation function CYi )( ku  has to be modelled. For this purpose, a negative exponential 

function fcor is commonly used: 

 

i

u

cor
kYi eufuC 



 )()(       (5) 

 

where u is the distance between two measurement points of the bond and i is a length 
parameter.  

 

3.2 Identification of )( ω x,Y  parameters 

 

The experimental field is developed first following (3) leading to trajectory fields 
)( ii ω x,Y   with a mean equal to 0. The decomposition is represented in Figure 3. The 

identification procedure is applied to trajectory fields )( ii ω x,Y   in order to identify the 

mean mY, the standard deviation Y and λ . For the identification of the iλ -value, a least 

squares-based method is used. As explained above, we consider the stochastic field as 37 
replicas. The stochastic parameters of )( ω x,Y  are calculated as follows: 
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     (6) 

 

The ratio between the standard deviation and the mean value of the identified parameters 
characterizes the variability of the results. This ratio, the coefficient of variation (c.o.v.), is 
chosen to control the result quality. C.o.v. of the standard deviation (respectively of ) is 
equal to 0.2 (respectively 0.3). Note that we have found similar results in the y-direction. This 
signifies that the stochastic field Y(x,y,) has isotropic properties. The identification of the 
mean mY and the standard deviation Y is very well known. However, the identification 
stability of the value has to be validated. Especially, we have to check that a c.o.v. equal to 
0.3 does not lead to a significant error in the -estimate. In order to check the -identification 
process stability, a sensitivity analysis is done. 

 

-identification process stability 

 

To validate the -identification process stability, we build first a synthetic sample data set 
generated from )( ω x,Y  as it is identified: 64x37 points (leading to 37 replicas of 64 points), a 

pitch equal to 1.1 mm, L=70 mm. The identified stochastic parameters are also used in the 
sample data: m 0Ym  and m10  7.4 6Yσ . However, for the -value, we generate sample 
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data with 20 different values of uniformly distributed in the range from 0.3 mm to 6 mm. As 
explained above, for a given -value, c.o.v. of the identified parameter  characterizes the 
variability in the results and the result quality. The c.o.v. directly depends on 3 parameters: 
the length L, the pitch u and the -estimate. Therefore, a sensitivity analysis of the c.o.v. is 

done with respect to the ratio 

L

 and the ratio 
L

u
. The calculated c.o.v. of the -estimate is 

plotted according to these ratios in Figure 4. An “acceptable” zone is defined in the figure. It 
corresponds to an error less than 15% in the  value. This constraint corresponds to a c.o.v. 
less than 0.6. Point A represents the experimental characteristics of our problem (u=1.1 mm, 
L=70 mm, =1.39 mm). The c.o.v. of the -estimate calculated from Equation (6) is equal to 
0.3 which satisfies the criterion.  

 

Now the stochastic parameters of the adhesive thickness field have been identified and 
validated by the stability of the -identification process. They are now integrated in a 
reliability model. 

 
4. A combined mechanical and reliability model 
 

4.1 Mechanical model 

 

Some classical models have been developed under some simple assumptions by 
Volkersen [4] or Hart-Smith [7] for instance. More complex models can be used in order to 
model non-linear behavior. In this first approach, it has been decided to choose a commonly 
used model developed by Volkersen [4] in order to highlight the feasibility of the proposed 
approach. The differential equations which govern the bonded joint behaviour read as 
follows: 
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with: 
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)(xσ p
xx , ep and Ex are, respectively, the longiditudinal stress component, the thickness and 

the Young’s modulus of the bonded composite. )(xσ a
xz , ea and Ga are, respectively, the shear 

stress component, the thickness and the shear modulus of the adhesive. es and Es are, 
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respectively, the thickness and the Young’s modulus of the substrate. The substrate is 
subjected to a tensile stress 

xxσ  in the x-direction. This differential equation may be solved 

analytically [14] when the thickness is constant. However, as explained above, the adhesive 
thickness variations are modelled leading to a non-uniform adhesive thickness distribution. 
We have, therefore, used a finite difference model to solve this differential equation.  

 

4.2 Stochastic model 

 

A stochastic model is developed here to take into account the uncertain spatial variations in 
the adhesive thickness. For this purpose, the adhesive thickness is modelled by a spline curve 
with nine interpolation points. The abscissae of these points are distributed according to a 
geometric distribution (see Figure 5). The mean value of the adhesive thickness is determined 
by the decomposition of the stochastic field (see Section 2.2), and it corresponds to )(xt mean . 

These nine thicknesses Xi represent the variables of the problem that constitute the vector X 
with the stochastic characteristics identified in section 3. These variables follow a lognormal 
distribution. The value of shear stress peak in the adhesive a

xz (0) enables us to evaluate the 

bonded joint failure through a limit state which is defined in the next section. 

 

4.3 Reliability model 

 

The stochastic parameters defined in equation (6) are integrated in a reliability model. 
The limit state G(X)=0 characterizes the bonded joint failure. It is written as follows: 

 

)0()( a
xz

aSXG       (9) 

 

The shear strength aS  of the adhesive here is equal to 40 MPa. The shear stress in the 
adhesive is calculated with (7). There is failure of the bonded joint when 0)( XG . The 
problem is then to calculate the probability to have 0)( XG . The First Order Reliability 
Method (FORM) here is used [14-15]. It consists in an isoprobabilistic transformation, which 
transforms the random vector X in the physical space to a random vector U in the standard 
Gaussian space where the image of limit state is denoted as H(U)=0. The minimal distance 
between the origin and the limit state H(U)=0 represents the reliability index . The closest 
point on the limit state represents the design point U*. A failure probability Pf is then 
approximated from the index : 
 

)Φ( βPf        (10) 

 

  represents the standard normal distribution. Determination of the index poses the 
constrained optimization problem: 

 

0)( subject to ,min
22  UHU      (11) 
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The optimization gives the reliability index  and the failure probability Pf  through Equation 
(10). For this purpose, the reliability software FERUM v4.0 toolbox is used [18]. Note that 
the Second Order Reliability Method (SORM) has been used too and results are very close to 
results calculated with the FORM. 

 
5 Application 
 
5.1 Determination of the failure probability 
 

Simulations are done with the stochastic parameters calculated in Section 3. We 
consider that the substrate is subjected to a tensile test with a stress equal to 110 MPa. We 
consider two types of models in order to highlight the influence of uncertain variations in 
adhesive thickness: the deterministic model and the stochastic model. The deterministic 
model takes into account the variability of the adhesive thickness without uncertain 
variations. In this case, the adhesive thickness is equal to )(xt mean . The stochastic model takes 

into account uncertain variations. In this case, the adhesive thickness is equal to )( ωx,t a . Using 

the deterministic model, the shear stress peak can be calculated and is equal to 31.3 MPa, 
which corresponds to 78% of the strength aS  of the adhesive. Using the stochastic model, the 
failure probability is equal to 83%. We have a significant failure probability although a 
deterministic calculation equal only to 78% of the adhesive strength aS . This important result 
clearly shows that the failure probability of the bonded joint is very high (83%) when we 
consider the uncertain variations in the adhesive thickness despite good results in the 
deterministic case (78% of the strength aS ). Figure 6 represents the importance factors 
defined as follows: 
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      (12) 

 

     

xUJ ,  represents the Jacobian of the isoprobabilistic transformation. D represents the 

diagonal matrix of T
xUxU JJ ,, . The  –vector is defined as: 
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        (13) 

 

For the calculation of the importance factors, the reliability software FERUM is used 
[18]. The importance factors do not have a symmetric distribution. Indeed, they are very 
important near the right free edge. This is due to the fact that the adhesive works essentially 
near the free edge of the composite patch. So the adhesive thickness has no influence far away 
from the free edge. Moreover, the mean adhesive thickness is lower near the right free edge of 
the joint. So the uncertain variations in the adhesive thickness have more influence on this 
part of the joint. 
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5.2 Determination of safety coefficient 

 

The aim of this section is to determine a safety coefficient in order to have a failure 
probability lower than 0.01%. Safety coefficient is expressed as a multiplication factor of the 
adhesive thickness. The idea is to change the initial setting of the adhesive thickness during 
the joint fabrication process to account for uncertain variations in the adhesive thickness. 
Calculations are done with safety coefficient Cs integrated in the mechanical model. For this 
purpose, simulations are done with a safe adhesive thickness )(xe SC

a  equal to: 

 

)()( xeCxe as
C
a

S       (14) 

 

Figure 7 represents the failure probability according to Cs. This figure enables us to 
analyze the evolution of the failure probability as a function of Cs. value. The failure 
probability is very high when Cs is lower than 1 and decreases significantly to reach 1.2. 
Afterwards, this coefficient is determined so as to have a failure probability less than 0.01%. 
In this case, Cs is equal to 1.54. This signifies that the initial adhesive thickness setting must 
be multiplied by 1.54 i.e.,  an adhesive characteristic thickness equal to 0.23 mm instead of 
0.15 mm. 

 
6. Conclusion 
 
This work highlights the influence of adhesive thickness variability on the failure of bonded 
joint. Measurements are done using a three-dimensional measuring machine and 
experimentally show this variability. An identification procedure enables us to have access to 
the stochastic parameters of the experimental adhesive thickness field. These parameters are 
identified and the stability of the identification process  is checked. These identified 
parameters are integrated into a reliability model from which a failure probability of the 
bonded joint is calculated. Finally, the reliability model is used to determine a safety 
coefficient to decrease the failure probability to 0.01%. The future of this study lies in 
improving the mechanical models. In particular, the thickness of the composite adherend can 
be progressively reduced near the end to reduce the shear stress amplitude. Furthermore, the 
geometry of the adhesive layer at the free edge (“square end” edges, spew fillets) can be taken 
into account too. This means that the solution in this more realistic case can probably only be 
carried out with a numerical model such as a finite element model, despite the problems 
which  are generally encountered when modeling bonded joints with such a tool.. Moreover, 
surface approximation method may be used in order to increase the accuracy of the failure 
probability calculation, especially if finite element models are used. 
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Table 1 - Mechanical properties of the materials1. 
 Ex 

(GPa) 
Ey 

(GPa) 
xy 

(-) 
Gxy 

(GPa) 
S (shear strength) 

(MPa) 
Composite 141 10 0.28 7 80 
Aluminium 70 - 0.32 - - 
Adhesive 4.2 - 0.3 - 40 

 

                                                 
1 Ex (respectively Ey) corresponds to the Young’s modulus in the x-direction (respectively in the y-direction). xy 
represents the Poisson’s ratio in the plane (x,y). Gxy represents the shear modulus in the plane (x,y). 
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Fig. 1 Schematic view of the specimen and the path of the feeler. 
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Fig. 2 Scheme of the decomposition of the experimental thickness tadh(x,y).The experimental 
thickness tadh(x,y) presents two types of variations: the first is global and is represented by the 
mean deterministic field )(xt mean

i  for each measure in the x-direction; the second is modelled 

by a stochastic field )( ω x,Yi  for each measure in the x-direction. 
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a – Total adhesive thickness tadh(x,y)               b – Smoothing example of a replica 
)( ωx,t a

i  

  
 

   c – Mean fields )(xt mean
i     d – Stochastic fields Yi(x,) 

 

Fig. 3 Results of the adhesive thickness field decomposition tadh(x,y). Each measure )( ωx,t a
i  

in the x-direction is smoothed in order to obtain the mean fields )(xt mean
i . Then, the stochastic 

fields Yi(x,) are obtained by subtracting the mean fields )(xt mean
i  from the adhesive field 

tadh(x,y).  



Author produced version of the paper published in Journal of Adhesion Science and technology, vol. 27 (10) , p. 
1069-1079., 2013 Original publication available at http://www.tandfonline.com, 
 DOI : 10.1080/01694243.2012.727176 
 

- 17 - 

 

 

Fig. 4 Coefficient of variation according to 

L

 and 
L

u
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Fig. 5 Stochastic model: variables Xi are considered to model variations in the adhesive 
thickness. These variables follow a lognormal distribution and their abscissae are distributed 
according to a geometric distribution.  
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Fig. 6 Importance factors of the Xi- variables. The variables located near the free edge (X7, 
X8, X9) have significant importance factors. Therefore, their influences on the failure 
probability of the bonded joint are higher than the influences of the other variables. 
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Fig. 7 Failure probability according to the safety coefficient Cs. 


