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Abstract—Embedding non-vectorial data into a normed vec-
torial space is very common in machine learning, aiming to
perform tasks such classification, regression, clustering and so
on. Fuzzy datasets or datasets whose observations are fuzzy sets,
are an example of non-vectorial data and, many of fuzzy pattern
recognition algorithms analyze them in the space formed by the
set of fuzzy sets. However, the analysis of fuzzy data in such space
has the limitation of not being a vectorial space. To overcome such
limitation, in this work, we propose the embedding of fuzzy data
into a proper Hilbert space of functions called the Reproducing
Kernel Hilbert Space or RKHS. This embedding is possible using
a positive definite kernel function defined on fuzzy sets. As a
result, we present a formulation of a real-valued kernels on fuzzy
sets, particularly, we define the intersection kernel and the cross
product kernel on fuzzy sets giving some examples of them using
T-norm operators. Also, we analyze the nonsingleton TSK fuzzy
kernel and, finally, we gave several examples of kernels on fuzzy
sets, that can be easily constructed from the previous ones.

Index Terms—Kernel on fuzzy sets, Reproducing Kernel
Hilbert Space, positive definite kernel

I. INTRODUCTION

Several world applications contain datasets whose observa-

tions are fuzzy sets, i.e., datasets of the form {Xi}
N
i=1, where

each Xi is a fuzzy set [1], [2]. Those datasets are a result of

modeling impreciseness and vagueness in observations of real

problems with fuzzy sets. For example, because of the uncer-

tainty added by noise and impreciseness due to measurement

instruments, data from biological and astronomical problems

could be modeled by fuzzy sets. Also, it is widely know that

datasets with features given in the form of linguistic terms,

words and intervals could be modeled by fuzzy sets [3]–[9].

In Machine Learning community, datasets are used to au-

tomatically construct algorithms that give some useful infor-

mation to the user, for instance, to make future predictions

from the actual data, to perform selection of the most relevant

features of the dataset or another important tasks as clustering,

regression, inference, density estimation and so on [10], [11].

A methodology commonly used by machine learning com-

munity is to perform the analysis of the embedding of the data

in a proper subspace of a Hilbert space of functions called the

Reproducing Kernel Hilbert Space or RKHS [12]–[15]. To do

this embedding possible, it is only necessary to have a real-

valued positive definite function called reproducing kernel1 of

1The word kernel comes from the theory of integral operators and it should
not be confused with the concept of kernel of a fuzzy set.

the RHKS. Methods working in this way are called kernel

methods [13], [14], for instance, the Support Vector Machine

[16], Support Vector Data Description [17], Kernel PCA [13],

Gaussian Process [18] an so on.

Kernel methods are attractive for data analysis because: 1)

the domain of definition has not additionally requirements,

allowing the analysis of non-vectorial data, such as graphs,

sets, strings. 2) a RKHS has a structure such that the closeness

of two functions in the norm implies closeness in their values,

allowing to perform, clustering, classification and another

important tasks. 3) to construct a RKHS it is only necessary

to have a positive definite kernel k : E × E → R. 4)

computations in the RKHS are performed by knowing that

kernel evaluations are equal to the inner product of functions

in the RKHS: k(x, y) = 〈k(x, .), k(y, .)〉H, where x ∈ E 7→
k(x, .) ∈ H is the embedding of the data into the RHKS H,

and k(x, .), k(y, .) ∈ H are the representers of x, y ∈ E in the

RKHS. 5) k(x, y) is a similarity measure between the objects

x, y ∈ E and, because the mapping x ∈ E 7→ k(x, .) ∈ H is

nonlinear, simple functions in the RKHS are useful to analyze

complex input data. 6) kernel methods are modular, algorithms

working in the RKHS are independent of the kernel k that

generates such space, that is, we can choose many kernels

without changing the algorithm. 7) Many classical algorithms

can be kernelized applying the kernel trick [13].

Fig. 1. Supervised classification of fuzzy data using support vector machines.
A1,A2, . . . ,A5 are fuzzy sets [19]

In this paper, we give the theoretical basis to construct

positive definite kernel on fuzzy sets, that is, we are going

to consider the set E as the set of all the fuzzy sets. This

will allow us to use all the stuff of kernel methods in datasets



whose observations are given by fuzzy sets. As an example,

Figure 1 shows a nonlinear classifier obtained from a support

vector machine using a dataset whose observations are fuzzy

sets, using a positive definite kernel on fuzzy sets [19].

A. Previous Work using Positive Definite Kernels and Fuzzy

Sets

The literature reports some work using jointly fuzzy theory

techniques and positive definite kernels to solve machine learn-

ing problems, particularly, in clustering [20]–[22], classifica-

tion problems with outliers or noises [23], feature extraction

[24] and discriminant analysis [25], without implying positive

definite kernels on fuzzy sets, i.e., all the kernels are real

valued functions defined on R
D × R

D (R is the set of real

number and D is a positive integer) and fuzzy techniques and

kernels are used in some step of the algorithms.

A relationship between some fuzzy concepts and positive

definite kernels, as for example, Takagi-Sugeno-Kang fuzzy

systems, under some criteria, can be viewed as kernel eval-

uations [26]–[33]; some fuzzy basis functions can be used

to construct positive definite kernels [34] and some positive

definite kernels are fuzzy equivalence relations [35]–[37]. But,

all the positive definite kernels on those works are functions

defined only on R
D × R

D.

To the best of our knowledge, the first attempt to fill this

gap, is the work [19] giving a formulation to construct positive

definite kernels on fuzzy sets and experimenting with those

kernels using fuzzy and interval datasets.

B. Contributions

To the best of our knowledge, there is no general formula-

tion to define kernels on fuzzy sets, all previous works only

consider kernels on R
D × R

D relating fuzzy concepts in the

design of the kernel or as a step of some algorithm. This work

has the following contributions:

• We give a general formulation of kernels on fuzzy sets.

in particular we define the intersection kernel on fuzzy

sets and the cross product kernel on fuzzy sets. Also, we

provide some examples of such kernels using different

T-norm operators.

• We show that the kernel presented in [19] satisfy our

definition of kernel on fuzzy sets and we proof that such

kernel is a fuzzy equivalence relation and is a fuzzy logic

formula for fuzzy rules.

• We give several examples to construct new positive defi-

nite kernels on fuzzy sets from all the previous kernels on

fuzzy sets, we present the Fuzzy Polynomial Kernel, the

Fuzzy Gaussian Kernel and the Fuzzy Rational Quadratic

Kernel and also, we present some conditionally positive

kernels on fuzzy sets, such as: the Fuzzy Multiquadric

Kernel and the Fuzzy Inverse Multiquadric Kernel.

II. THEORETICAL BACKGROUND

A. Reproducing Kernel Hilbert Spaces

A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert

space of functions with the nice property that the closeness of

two functions in the norm implies closeness of their values.

Such Hilbert spaces are widely used in machine learning for

data analysis. Algorithms like support vector machines [38],

support vector data description [17] and kernel PCA [13]

work with the embedding of the input data into some RKHS

generated by a reproducing kernel.

In the sequel, E denotes a non empty set, H is the real

RKHS of real valued functions on E. Notation k(., y) means

the mapping x → k(x, y) with fixed y where k is a function

on E × E.

Definition II.1 (Reproducing kernel). A function2

k : E × E → R

(x, y) 7→ k(x, t) (1)

is called reproducing kernel of the Hilbert space H if and only

if

1) ∀x ∈ E, k(., x) ∈ H
2) ∀x ∈ E, ∀f ∈ H 〈f, k(., x)〉H = f(x)

Condition 2) is called the reproducing property. From the

definition above follows:

∀(x, y) ∈ E × E, k(x, y) = 〈k(., x), k(., y)〉H

Definition II.2 (Real RKHS). A Hilbert Space of real valued

functions on E, denoted by H, with reproducing kernel is

called a real Reproducing Kernel Hilbert Space or real RKHS.

In the sequel, we are going to use the term RKHS to design a

real RKHS. A main characterization of RKHS is that a RKHS

is a Hilbert space of real valued functions on E where all the

evaluation functionals

ex : H → R (2)

f 7→ ex(f) = f(x) (3)

are continuous on H. By Riez representation theorem [39] and

the reproducing property (see Definition II.1) follows

ex(f) = f(x) = 〈f, k(., x)〉H, ∀x ∈ E, ∀f ∈ H,

As a result, in RKHS a sequence converging in the norm

also converges pointwise.

The following result shows the equivalence between repro-

ducing kernels and positive functions

Lemma 1. Any reproducing kernel k : E × E → R is a

symmetric positive definite function, that is, satisfy

N
∑

i=1

N
∑

j=1

cicjk(xi, xj) ≥ 0 (4)

∀N ∈ N, ∀ci, cj ∈ R and k(x, y) = k(y, x), ∀x, y ∈ E, the

converse is true.

2We will consider only real valued kernels, because are the functions of
more practical interest



To proof that k is positive definite it is enough to proof that

for some Hilbert space H and mapping φ : E → H, function

k could be written as

k(x, y) = 〈φ(x), φ(y)〉H (5)

An important result is the Moore-Aronszajn Theorem [40], it

claims that a RKHS, H, defines a corresponding reproducing

kernel k and, conversely, a reproducing kernel k defines a

unique RKHS, H. Another important result from probability

theory is that if k(., .) is positive definite, then exists a

family of zero-mean Gaussian random variables with k(., .)
as covariance function [12].

Examples of reproducing kernels or positive definite kernels

on R
D×R

D widely used in machine learning community are

Linear kernel k(x, y) = 〈x, y〉
Polynomial kernel k(x, y) = exp(−‖x− y‖2/σ2)
Gaussian kernel k(x, y) = (〈x, y〉+ 1)D

More sophisticated examples are kernels on probability mea-

sures [41] kernels on measures [42] kernels on strings [43]

and another kernels for non-vectorial data, such graphs, sets

and logic terms [44].

Summarizing, a RKHS is a Hilbert space of functions

possessing the additional structure that all the evaluation

functionals are continuous. A RKHS has a reproducing kernel

k(x, y), x, y ∈ E, with the property that for fixed x ∈ E,

k(x, .) is a function that belongs to the RKHS H. The kernel

function k(x, y) is a positive definite function. The space

spanned by the functions k(x, .) generates a RKHS or a Hilbert

space with reproducing kernel k. Note that positive definite

kernels are reproducing kernels of some RKHS.

As a comment, the space of square integrable functions L2

is a Hilbert space and is isometric to the space of sequences

ℓ2 but is not a RKHS because it is a space of a equivalence

class of functions rather than a function space. Then, L2 does

not have a reproducing kernel, note that the delta function has

a reproducing property but does not belong to this space.

Reference [15] gives more details about the theory of

RKHS and references [13], [14] give more details about kernel

methods in machine learning.

Next, to introduce the concept of kernels on fuzzy sets

we will review the concepts of fuzzy set, semi-ring of sets,

measure and T-norm operator.

B. Fuzzy Set

Let Ω be the universal set, A fuzzy set on Ω, is the set

X ⊂ Ω with membership function

µX : Ω → [0, 1] (6)

x 7→ µX(x). (7)

Definition II.3 (α-cut of a fuzzy set). The α-cut of a fuzzy

set X ⊂ Ω is the set

Xα = {x ∈ Ω|µX(x) ≥ α, α ∈ [0, 1]}.

Definition II.4 (support of a fuzzy set). The support of a fuzzy

set is the set

X>0 = {x ∈ Ω|µX(x) > 0}.

A complete review of the theory of fuzzy sets and applica-

tions can be found in [45].

C. T-Norm

A triangular norm or T-norm is the function T : [0, 1]2 →
[0, 1], that for all x, y, z ∈ [0, 1] satisfy:

T1 commutativity: T (x, y) = T (y, x);
T2 associativity: T (x, T (y, z)) = T (T (x, y), z);
T3 monotonicity: y ≤ z ⇒ T (x, y) ≤ T (x, z);
T4 boundary condition T (x, 1) = x.

Using n ∈ N and associativity, a multiple-valued extension

Tn : [0, 1]n → [0, 1] of a T-norm T is given by

Tn(x1, x2, . . . , xn) = T (x1, Tn−1(x2, x3, . . . , xn)). (8)

We will use T to denote T or Tn.

D. Semi-ring of Sets

Let Ω be a set, A semi-ring of sets S on Ω is a subset of

the power set P(Ω), that is, a set of sets satisfying:

1 φ ∈ S;

2 A,B ∈ S, =⇒ A ∩B ∈ S;

3 for all A,A1 ∈ S and A1 ⊆ A, exist a sequence of

pairwise disjoint sets A2, A3, . . . AN , such

A =

N
⋃

i=1

Ai.

Condition 3 is called finite decomposition of A.

E. Measure

Definition II.5 (Measure). Let S be a semi-ring and let ρ :
S → [0,∞] be a pre-measure, i.e., ρ satisfy:

1 ρ(φ) = 0;

2 for a finite decomposition of A ∈ S , ρ(A) =
∑N

i=1 ρ(Ai);

by Carathodory’s extension theorem, ρ is a measure on σ(S),
where σ(S) is the smallest σ-algebra containing S.

Finally, capital letters A,B,C will denote sets and capital

letters X,Y, Z will be denote fuzzy sets. Notation F(S ⊂
Ω) stands for the set of all fuzzy sets over Ω whose support

belongs to S , i.e.,

F(S ⊂ Ω) = {X ⊂ Ω|X>0 ∈ S}.

III. KERNELS ON FUZZY SETS

We define kernel functions on fuzzy sets as the mapping

k : F(S ⊂ Ω)×F(S ⊂ Ω) → R

( X , Y ) 7→ k(X,Y ), (9)

where S is a semi-ring of sets on Ω and F(S ⊂ Ω) is the set

of all fuzzy sets over Ω whose support belongs to S . This is

a kernel for non-vectorial input.

Because each fuzzy set X belongs to F(S ⊂ Ω), then the

support X>0 of X admits finite decomposition, that is,

X>0 =
⋃

i∈I

Ai ∈ S,



where A = {A1, A2, . . . , AN} are pairwise disjoint sets and

I stand for an arbitrary index set.

In the following, we will derive some kernels on fuzzy sets,

based on the intersection of fuzzy sets and the cross product

between its elements.

A. Intersection kernel on Fuzzy Sets

The intersection of two fuzzy sets X,Y ∈ F(S ⊂ Ω) is the

fuzzy set X ∩ Y ∈ F(S ⊂ Ω) with membership function

µX∩Y : Ω → [0, 1] (10)

x 7→ µX∩Y = T (µX(x), µY (x)) (11)

where T is a T-norm operator. Using this fact, we define the

intersection kernel on fuzzy sets as follows:

Definition III.1 (Intersection Kernel on Fuzzy Sets). Let X,Y
be two fuzzy sets in F(S ⊂ Ω), the intersection kernel on

fuzzy sets is the function

k : F(S ⊂ Ω)×F(S ⊂ Ω) → R

( X , Y ) 7→ k(X,Y ) = g(X ∩ Y ),

where g is the mapping

g : F(S ⊂ Ω) → [0,∞]

X 7→ g(X)

The mapping g plays an important role assigning real values

to the intersection fuzzy set X ∩ Y . We can think about this

function as a similarity measure between two fuzzy sets and

its design will be highly dependent of the problem and the

data.

For instance, our first choice for g uses the fact that the

support of X ∩ Y , has finite decomposition, that is,

(X ∩ Y )>0 =
⋃

i∈I

Ai ∈ S,

of pairwise disjoint sets {A1, A2, . . . , AN}. We can measure

its support using the measure ρ : S → [0,∞] as follows:

ρ((X ∩ Y )>0) = ρ(
⋃

i∈I

Ai) =
∑

i∈I

ρ(Ai),

The idea to include fuzziness is to weight each ρ(Ai) by

a value given by the contribution of the membership function

on all the elements of the set Ai.

Next, we give a definition of a intersection kernel on fuzzy

sets using the concept of measure and membership function.

Definition III.2 (Intersection Kernel on Fuzzy Sets with

measure ρ). Let
⋃

i∈I Ai ∈ S , a finite decomposition of the

support of the intersection fuzzy set X ∩ Y ∈ F(S ⊂ Ω) as

defined before. Let g be the function

g : F(S ⊂ Ω) → [0,∞]

X ∩ Y 7→ g(X ∩ Y ) =
∑

i∈I

µX∩Y (Ai)ρ(Ai)

where

µX∩Y (Ai) =
∑

x∈Ai

µX∩Y (x)

and ρ is a measure according to Definition (II.5). We define

the Intersection Kernel on Fuzzy Sets with measure ρ as

k(X,Y ) = g(X ∩ Y )

=
∑

i∈I

µX∩Y (Ai)ρ(Ai) (12)

Using the T-norm operator, the intersection kernel on fuzzy

sets with measure ρ given by (12) can be written as

k(X,Y ) =
∑

i∈I

µX∩Y (Ai)ρ(Ai)

=
∑

i∈I

∑

x∈Ai

µX∩Y (x)ρ(Ai)

=
∑

i∈I

∑

x∈Ai

T (µX(x), µY (x))ρ(Ai)

Table I shows several kernels examples for different T-norm

operators. Function Z in Table I is defined as

Z(µX(x), µY (x)) =







µX(x), µy(x) = 1
µY (x), µX(x) = 1

0, otherwise

Intersection kernels on fuzzy sets with measure ρ

kmin(X,Y )
∑

i∈I

∑
x∈Ai

min(µX(x), µY (x))ρ(Ai)

kP (X,Y )
∑

i∈I

∑
x∈Ai

µX(x)µY (x)ρ(Ai)

kmax(X,Y )
∑

i∈I

∑
x∈Ai

max(µX(x) + µY (x)− 1, 0)ρ(Ai)

kZ(X,Y )
∑

i∈I

∑
x∈Ai

Z(µX(x), µY (x))ρ(Ai)

TABLE I
KERNELS ON FUZZY SETS.

More examples can be obtained by setting specific mea-

sures, for example, kmin with the probability measure P gives

the kernel

kmin(X,Y ) =
∑

i∈I

∑

x∈Ai

min(µX(x), µY (x))P(Ai),

or kP with the Dirac measure δx(Ai) gives

kP (X,Y ) =
∑

i∈I

∑

x∈Ai

µX(x)µY (x)δx(Ai).

The next step is to determine which intersection kernels on

fuzzy sets with measure ρ are positive definite, that is, which

intersection kernels are reproducing kernels of some RKHS.

Lemma 2. kmin(X,Y ) is positive definite

Proof: We first, define a function

1[0,a] : R → {0, 1} (13)

t 7→ 1[0,a](t) =

{

1, t ∈ [0, a]
0, otherwise

(14)



then function min could be written as

min(a, b) =

∫

R

1[0,a](t)1[0,b](t)dλ(t)

=
〈

1[0,a](.),1[0,b](.)
〉

H

By Lemma (1) and Equation (5), it follows that min is positive

definite. That is, for a fixed x ∈ Ω,

N
∑

i=1

N
∑

j=1

cicj min(µXi
(x), µXj

(x)) ≥ 0,

∀N ∈ N, ∀ci, cj ∈ R, ∀Xi, Xj ∈ F(S ⊂ Ω).

Next, we show that kmin is positive definite, that is:

N
∑

i=1

N
∑

j=1

cicj
∑

l∈I

∑

x∈Al

min(µXi
(x), µXj

(x))ρ(Al) ≥ 0,

∀N ∈ N, ∀ci, cj ∈ R, ∀Xi, Xj ∈ F(S ⊂ Ω), ∀x ∈ Ω, and I
stands for an arbitrary index set.

Note that

N
∑

i=1

N
∑

j=1

cicj
∑

l∈I

∑

x∈Al

min(µXi
(x), µXj

(x))ρ(Al)

=
∑

l∈I

∑

x∈Al

(

N
∑

i=1

N
∑

j=1

cicj min(µXi
(x), µXj

(x)))ρ(Al)

≥ 0

Lemma 3. kP (X,Y ) is positive definite

Proof: Note that for a fixed x ∈ Ω,

N
∑

i=1

N
∑

j=1

cicjµXi
(x)µXj

(x)

=

(

N
∑

i=1

ciµXi
(x)

)2

≥ 0

Next, we show that kP is positive definite, that is

N
∑

i=1

N
∑

j=1

cicj
∑

l∈I

∑

x∈Al

µXi
(x)µXj

(x)ρ(Al) ≥ 0,

∀N ∈ N, ∀ci, cj ∈ R, ∀Xi, Xj ∈ F(S ⊂ Ω), ∀x ∈ Ω, and L
stands for an arbitrary index set. Note that:

N
∑

i=1

N
∑

j=1

cicj
∑

l∈I

∑

x∈Al

µXi
(x)µXj

(x)ρ(Al)

=
∑

l∈I

∑

x∈Al

(

N
∑

i=1

N
∑

j=1

cicjµXi
(x), µXj

(x))ρ(Al)

≥ 0

It is worth to note that, if the σ-algebra is a Borel algebra

of subsets of RD, then the intersection kernel with measure ρ
can be written as

k(X,Y ) =

∫

RD

T (µX(x), µY (x))dρ(x)

as for example kmin and kP can be written as

kmin(X,Y ) =

∫

RD

min(µX(x), µY (x))dρ(x) (15)

kP =

∫

RD

µX(x)µY (x)dρ(x) (16)

(17)

Another type of intersection kernel is the nonsingleton TSK

fuzzy kernel presented in [19]. We will see that this kernel

satisfy our definition of intersection kernel and we will review

their properties and study the link with fuzzy equivalence

relations in Section (IV)

B. Cross product kernel between fuzzy sets

Definition III.3. Let k : Ω × Ω → R be a positive definite

kernel. The cross product kernel between fuzzy sets X,Y ∈
F(S ⊂ Ω) is the real valued function k× defined on F(S ⊂
Ω)×F(S ⊂ Ω) as

k×(X,Y ) =
∑

x∈X

∑

y∈Y

k(x, y)µX(x)µY (y) (18)

Lemma 4. kernel k× is positive definite

Proof: By Definition (III.3)

k×(X,Y ) =
∑

x∈X

∑

y∈Y

k(x, y)µX(x)µY (y)

= 〈
∑

x∈X

k(., x)µX(x),
∑

y∈Y

k(., y)µY (y)〉

IV. NONSINGLETON TSK FUZZY KERNEL

The Nonsingleton TSK fuzzy kernel, was presented in [19].

We are going to show that this kernel is an instance of the

fuzzy intersection kernel from Definition (III.1)

Definition IV.1 (Nonsingleton TSK Fuzzy Kernel). Let X∩Y
be a fuzzy set given by Definition (III.1) and let g be the

function:

g : F(S ⊂ Ω) → [0,∞]

X ∩ Y 7→ g(X ∩ Y ) = sup
x∈Ω

µX∩Y (x)

then the Nonsingleton TSK Fuzzy Kernel is given by

k(X,Y ) = sup
x∈Ω

µX∩Y (x) (19)

Using T-norm operators, this kernel could be written as

k(X,Y ) = sup
x∈Ω

µX∩Y (x)

= sup
x∈Ω

T (µX(x), µY (x))



Note that the definition of the nonsingleton TSK Fuzzy

kernel satisfy the definition of intersection kernel on fuzzy

sets (Definition III.1) for the particular setting of g(X ∩Y ) =
supx∈Ω µX∩Y (x).

Lemma 5. The Nonsingleton TSK Fuzzy Kernel is positive

definite that is:

N
∑

i=1

N
∑

j=1

cicjk(Xi, Xj) ≥ 0,

∀N ∈ N, ∀ci, cj ∈ R, ∀Xi, Xj ∈ F(S ⊂ Ω).

Proof: Let I an arbitrary index set. By commutativity

property of T-norms, k is symmetric. Note that:
∑

i,j∈I

cicjk(Xi, Xj) =
∑

i∈I

c2i k(Xi, Xi)+2
∑

i>j,i,j∈I

cicjk(Xi, Xj)

and supx∈Ω T (µXi
(x), µXi

(x)) = 1, ∀i ∈ I then,
∑

i,j∈I

cicjk(Xi, Xj) =
∑

i∈I

c2i + 2
∑

i>j,i,j∈I

cicjk(Xi, Xj)

Using that (
∑

i∈I ci)
2 =

∑

i∈I c
2
i +2

∑

i>j,i,j∈I cicj ≥ 0 and

by the fact that k(Xi, Xj) ∈ [0, 1], we have

a) If k(Xi, Xj) = 0, ∀i, j ∈ I : i > j, then
∑

i,j∈I

cicjk(Xi, Xj) =
∑

i∈I

c2i ≥ 0

b) If k(Xi, Xj) = 1, ∀i, j ∈ I : i > j, then
∑

i,j∈I

cicjk(Xi, Xj) =
∑

i∈I

c2i + 2
∑

i,j∈I,i6=j.i>j

cicj

= (
∑

i∈I

ci)
2 ≥ 0

Some examples of this kernel are given in [19]

A. Relation with Fuzzy Equivalence Relations

We now review two results from [35] (Corollary 6) and [36]

(Theorem 9). The first one shows that every positive definite

kernel mapping to the unit interval with constant one in the

diagonal is a fuzzy equivalence relation with respect to a given

T-norm. The second one shows that such kernels can be viewed

as a fuzzy logic formula used to represent fuzzy rule bases.

Then we show that the Nonsingleton TSK Fuzzy Kernel satisfy

such results.

Definition IV.2 (Fuzzy Equivalence Relation). A function E :
X × X → [0, 1] is called a fuzzy equivalence relation with

respect to the T-norm T if

1) ∀x ∈ X , E(x, x) = 1;

2) ∀x, y ∈ X , E(x, y) = E(y, x);
3) ∀x, y, z ∈ X , T (E(x, y), E(y, z)) ≤ E(x, z).

The value E(x, y) can be interpreted as “x is equal to y.

Condition 3 is called T-transitivity and can be regarded as the

statement “If x and y are similar, and y and z are similar

then x and z are also similar.” [35].

Lemma 6 (kernels are at least Tcos transitive [35]). Let the

nonempty set X . Let k : X × X → [0, 1] a positive definite

kernel such that ∀x ∈ X : k(x, x) = 1; then ∀x, y, z ∈ X ,

kernel k satisfy Tcos-transitivity:

Tcos(k(x, y), k(y, z)) ≤ k(x, z) (20)

where

Tcos(a, b) = max(ab−
√

1− a2
√

1− b2, 0) (21)

is a Archimedean T-norm and it is the greatest T-norm with

this property [35].

Lemma 7 (kernels as fuzzy logic formula for fuzzy rules [36]).

Let the nonempty set X . Let k : X × X → [0, 1] a positive

definite kernel such that ∀x ∈ X : k(x, x) = 1; then ∀x, y, z ∈
X , there is a family of membership functions µi∈I : X →
[0, 1], where I is a nonempty index set such that

∀x, y ∈ X : k(x, y) = inf
i∈I

←→
TM (µi(x), µi(y)) (22)

where
←→
TM = min(

−→
T (x, y),

−→
T (y, x)) is its induced bi-

implication operator. and
−→
T (x, y) = sup{t ∈ [0, 1]|T (x, t) ≤

y} is a implication function generated from a T-norm T [36].

Lemma 8. The Nonsingleton TSK Fuzzy Kernel is Tcos

transitive (Lemma (6)) and admits the representation given

by Lemma (7)

Proof: By construction, the Nonsingleton TSK Fuzzy

Kernel is a positive definite kernel such ∀X ∈ F(S ⊂ Ω) :
k(X,X) = 1 and also k has values in the interval [0, 1]. By

Lemma (6) k is Tcos transitive and by Lemma (7), k admits

representation given by Lema (7).

V. MORE KERNELS ON FUZZY SETS

It is easily to construct new kernels on fuzzy sets from the

previously defined kernels. For example, if k1(., .) and k2(., .)
are positive definite kernels on fuzzy sets, by closure properties

of kernels [14], also are positive definite kernels on fuzzy sets:

1) k1(X,Y ) + k2(X,Y );
2) αk1(X,Y ), α ∈ R

+;

3) k1(X,Y )k2(X,Y );
4) f(X)f(Y ), f : F(S ⊂ Ω)→ R;

5) k1(f(X), f(Y )), f : F(S ⊂ Ω)→ F(S ⊂ Ω);
6) exp(k1(X,Y ));
7) p(k1(X,Y )), p is a polynomial with positive coeffi-

cients.

More kernels on fuzzy sets could be obtained using the

nonlinear mapping

φ : F(S ⊂ Ω) → H

X 7→ φ(X),

and using the fact that k(X,Y ) = 〈φ(X), φ(Y )〉H and

D(X,Y )
def

= ‖φ(X)− φ(Y )‖2H

= k(X,Y )− 2k(X,Y ) + k(Y, Y ),



we have the following positive definite kernels on fuzzy sets.

• Fuzzy Polynomial kernel α ≥ 0, β ∈ N

kpol(X,Y ) = (〈φ(X), φ(Y )〉H + α)β

= (k(X,Y ) + α)β .

• Fuzzy Gaussian kernel γ > 0

kgauss(X,Y ) = exp(−γ‖φ(X)− φ(Y )‖2H)

= exp(−γD(X,Y )).

• Fuzzy Rational Quadratic kernel α, β > 0

kratio(X,Y ) = (1 +
‖φ(X)− φ(Y )‖2H

αβ2
)−α

= (1 +
D(X,Y )

αβ2
)−α.

A. Conditionally Positive Definite Kernels on Fuzzy Sets

We can construct another class of fuzzy kernels using the

concept of conditionally positive definite kernels, which are

kernels satisfying Lemma 1 but, additionally it is required

that
∑N

i=1 ci = 0. Examples of Conditionally Positive Definite

Fuzzy Kernels with this property are:

• Fuzzy Multiquadric kernel

kmulti(X,Y ) = −
√

‖φ(X)− φ(Y )‖2H + α2

= −
√

D(X,Y ) + α2.

• Fuzzy Inverse Multiquadric kernel

kinvmult(X,Y ) = (
√

‖φ(X)− φ(Y )‖2H + α2)−1

= (
√

D(X,Y ) + α2)−1.

It is easy to construct positive definite kernels from CPD ker-

nels by doing exp(tkmulti(X,Y )) and exp(tkinvmult(X,Y ))
for t > 0, because a kernel k is conditionally positive definite

if and only if exp(tk) is positive definite for all t > 0 [13]. See

Proposition 2.22 of [13] for more details on how to construct

positive definite kernels from conditionally positive definite

kernels.

VI. CONCLUSIONS AND FURTHER RESEARCH

As a next step of our research, we are going experiment with

the proposed kernels on several machine learning problems,

specifically, in supervised classification problems. Besides

the applications mentioned in the introductory part of this

paper, we are particularly interested in apply those kernels in

datasets whose observations are clusters, prototypes or groups

of samples, as for example, some scholars had modeling this

kind of observations with probability measures with important

applications such as group anomaly identification in galaxies

and physical particles [46], [47].

Another important applications to be explored are in the

areas of big data and large scale machine learning. Because

hardware and software requirements, large datasets are difficult

to analyze and one possible solution is to construct a summary

of data or transform the large dataset into a smaller one (data

squashing [48]), where all the information of the features are

preserved but the size of the dataset is decreased with the hope

that the analysis of the smaller dataset gives approximately the

same information that the large dataset. Modeling groups of

samples as fuzzy sets jointly with the kernels on fuzzy sets in

supervised classification problems is an interesting topic to be

investigated.

Another important topic to be investigated is the perfor-

mance of another formulations for kernels on fuzzy sets such

as the multiple kernel learning approach [49] and non positive

kernels [50] on fuzzy sets and study the performance in real

datasets.

It is possible to work with kernel methods for datasets

whose observations are fuzzy sets. The set of all fuzzy sets is

a example of non-vectorial data, we can embed this data into a

vectorial space as the RKHS, using a positive definite kernel

defined on the set of all the fuzzy sets. Using some basic

concepts of set theory such as semi-ring of sets, we presented

a novel formulation for kernels on fuzzy sets. As instances of

our general definition, we gave a definition of the intersection

kernel on fuzzy sets and the cross product kernel on fuzzy sets.

Also we gave some examples of positive definite functions for

those kernels. Moreover, we showed that the kernel on fuzzy

sets presented in [19] is a fuzzy equivalence relation, admits

some special representation as fuzzy logic formula for fuzzy

rules and is a special case of the intersection kernel on fuzzy

sets. Furthermore, we gave some examples of positive definite

kernels on fuzzy sets and conditionally positive definite kernels

on fuzzy sets.
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