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Abstract—this paper introduces a rate distortion optimization 

(RDO) scheme with subjective quality enhancement applied to a 

still image codec called Locally Adaptive Resolution (LAR). This 

scheme depends on the study of the relation between 

compression efficiency and relative parameters, and has a low 

complexity. Linear models are proposed first to find suitable 

parameters for RDO. Next, these models are combined with an 

image segmentation method to improve the local image quality. 

This scheme not only keeps an effective control in balance 

between bitrate and distortion, but also improves the spatial 

structure of images. Experiments are done both in objective and 

subjective ways. Results show that after this optimization, LAR 

has an efficient improvement of subjective image quality of 

decoded images. This improvement is significantly visible and 

compared with other compression methods using objective and 

subjective quality metrics. 

 

    Index Terms— rate distortion optimization, visual improvement, 

quadtree, image coding 

I. INTRODUCTION 

Image compression techniques have been used in various 

image/video coding systems. To achieve an efficient com-

pression performance with a high reconstructed image quality, 

much effort has been made on different compression 

algorithms and image coding standards are proposed for 

multimedia applications. JPEG is commonly used as a still 

image format. Although its functionalities and compression 

quality are limited, it provides an acceptable computing 

complexity for practical use. With a high quality of the 

recovered image, JPEG2000 [1] [2] gains a lot in PSNR and 

supports useful functionalities such as progressive transmission 

by pixel accuracy and resolution, lossless and lossy com-

pression, etc. However, the outstanding compression efficiency 

requires a high computation complexity which impedes its 

widespread application. JPEGXR shows close results in Mean 

Square Error (MSE) to JPEG2000 [3] and has a lower 

complexity. The improvement to JPEGXR is still in progress 

[4]. 

In addition to standards, LAR offers a coding framework 

providing a number of functionalities such as lossy/lossless 

compression, resolution and quality scalability and Region of 

Interest coding [5]. The complexity of LAR is similar to that of 

JPEG XR and can keep low at high compression ratios. LAR 

adopts a multi-layer pyramidal structure to adapt to constraints 

such as variable bitrates and multi-resolution [6]. The 

drawback is that the encoding process has to set different 

parameters in the multi-layer structure. Therefore, a suitable 

method for the optimal coding configuration is required for 

LAR. 

This paper first describes a parametric model derived from 

the analysis of the compression efficiency of LAR. Based on 

the model, a rate distortion optimization (RDO) technique for 

LAR can be applied to select the parameters and achieve an 

optimal or near-optimal configuration to reduce the objective 

distortion of decoded images. Furthermore, in view of the fact 

that, although objective distortion measurements, such as 

mean square error (MSE) and peak signal-to-noise ratio 

(PSNR), can show the difference extent between reference 

and distorted image, they are not very well matched to the 

perceived visual quality [7] [8]. The changes in structure 

information are considered as important image degradations in 

subjective quality [9]. As a result, in this paper, a seg-

mentation method using a quadtree structure is combined with 

the proposed RDO model to enhance the partial image quality. 

The improvement is visible by comparison and evaluated by 

the subjective oriented quality metric: MSSIM [9]. 

The remainder of this paper is organized as follows. 

Section II gives a general introduction to the LAR codec 

framework. Section III presents key parameters and the rate-

distortion optimization model based on compression 

efficiency.  Section IV introduces the segmentation method 

and local quality enhancement. Experimental results are 

shown in section V. Conclusions are provided in section VI. 

II. COLOR LAR CODER FRAMEWORK 

Locally Adaptive Resolution (LAR) is an efficient content-

based 2D image coder for both lossless and lossy image 

compressions. It supports two coding layers: a Flat coder for 

global image information and a Texture coder for detail 

information. The Flat coding scheme is given in Fig. 1. 

 
Fig. 1.  Flat coder schemes 

 

It starts at a pyramidal partition of the original image, 

followed by pixel value predictions in the use of the Wu pre-



diction algorithm [10]. The prediction error is then sent to be 

quantized. A simple bi-linear filter is used to smooth block 

effects for the post-process at low bitrates. The texture coder 

is used to complete the scalability function in quality. 

However, this structure increases codec complexity and bit-

resource required. In this paper, only the flat coder is under 

study. Two parameters: the threshold for the quadtree de-

composition and quqp for the quantization of prediction errors, 

are studied for their effects on compression efficiency. Based 

on the global feature shown by threshold and quqp, the 

method of optimal configuration to parameters is presented in 

section III. With this method, the complexity of LAR is 

directly dependent on the number of blocks, and it is 

approximately linear with the bitrate. At low bitrates, the 

threshold selected by this method remains large and blocks 

produced by quadtree become less than in high bitrates. This 

action decreases a lot of coding processes and time consumed 

at high compression ratios.  

III. RATE DISTORTION OPTIMIZATION MODEL 

This section introduces an optimization method in para-

meters based on the performance of LAR codec. Key 

parameters are presented first, then a useful distribution of 

parameters are given and correlative factors are considered 

together to build models to keep a high coding quality for 

LAR. 

A. Quadtree Partitioning 

In the LAR codec, the quadtree structure is constructed by 

the bottom-up method and begins with the smallest block size 

(2×2). If all relevant sub-blocks can be seen as a larger block, 

then a decision is made whether to combine the larger blocks 

into a yet larger block. The decision is determined by the 

difference between the maximum and minimum luminance 

values in the block and a threshold set before coding. If the 

difference is less than the threshold, this block is judged as a 

leaf for upper level partitioning, or it stays as four separated 

sub-blocks. For color images with three components Y:Cr:Cb, 

a single threshold mainly supplied from the Y component is 

chosen. 

B. Quantization Process 

While processing pyramidal levels for different resolutions, 

prediction errors are uniformly quantized by a quantization 

factor Q which is controlled by the quantization parameter 

quqp. 

                     
, .Li LiQ quqp F for level Li= ⋅                    (1) 

As predictions are based on intra and inter-level data, 

quantization performed at a given level will impact all the 

following ones. Therefore, the FLi factors reflect the 

distribution of the quantization (distortion) among the 

pyramid levels. The relationship between two levels is about 

FLi = (FLi-1)/2, with i  ≥ 0  and i = 0 set for full resolution.  

C. Proposed RDO Model 

As a multi-layer image coder, LAR has many parameters to 

be modified if an optimal performance is to be achieved. It is 

possible to repeat some key processes to find suitable choices. 

However, the high time-consumption makes them impractical. 

To search an effective and low-complex method, global 

features on compression efficiency of LAR are presented here 

and relative factors are studied to build a model for RDO. 
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   (a) Measured distortion curve        (b) Measured optimal combination 

 

Fig. 2. Measured figures 
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Fig. 3.  Optimal combination curves of images 

 

An example of the compression distortion is shown in Fig. 2 

(a).  In each distortion curve, the threshold is fixed and quqp 

increases. So each curve reflects the distortion trend caused by 

quantization at a specific threshold. If only the objective 

distortion is considered, the optimal compression performance 

should be as low as possible in both bitrate and mean square 

error (MSE). For these optimal dots, there are corresponding 

combinations of threshold and quqp. These combinations are 

drawn in Fig. 2 (b). It can be seen that the combinations are 

not in a mass, but locate in a curve which has an inflexion 

approximately in quqp = 53. So this curve is divided into two 

regions as shown in Fig.2 (b). To describe the curve trend 

clearly, linear models are used for each region and correlative 

factors are presented as follows. 

Fig. 3 shows optimal combination curves of four different 

images as examples. The four images have different texture 

complexity from low to high. Image Sky has a simple texture 

structure with the single background, while image green crop 

has plenty of the detailed information. Fig. 3 shows that the 

distribution of optimal combinations is relevant with the 

complexity of the image: the suitable threshold is greater at a 

specific quqp for an image with more detail information. To 

express this trait, entropy of the gradient, HG is introduced. 
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An image is separated into 2×2 blocks. The difference 

between the maximum and minimum luminance values in 

each block is named the gradient in this block HG. HG is 

calculated as in (2). p(g) is the probability of gradient. 

HG reflects the extent of partial pixel variety and offers the 

information of optimal combination curves as shown in Table 

I. They generally correspond to the curves in Fig. 3.  

TABLE I 

ENTROPIES OF THE GRADIENT 

 Sky p26 crop bike crop green crop 

HG 2.335 4.495 5.498 5.892 

 

Another factor r(g) is introduced here to study the global 

complexity of an image. It is a summation of probabilities of 

gradient p(g), as given in (3). 
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Fig. 4.  r(g) curves of images 
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In an image which has large parts of the same color or 

moderate transitions, most gradients are in small values. The 

r(g) curve locates higher and reaches 1 more quickly as shown 

in Fig.4. To reflect the speed of this trend, the difference 

between r(45) and r(7)  is used to evaluate the slope of a curve. 

The indexes g for r(g) in (4) are tested on training images and 

the values are selected to reflect the trend more accurately. 

                                ( )45 (7)r r∆ = −                                (4) 

With the help of HG and r(g), two linear models are used to 

simulate the boundaries of the belt in each region as shown in 

Fig. 5 (a). The models are expressed in (5). 
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        (5) 

Thr1 is the result of model 1 and Thr2 is model 2. α and β 

are the model parameters that are obtained by learning at an 

image database which includes cropped images from ISO 

12640 and images authorized for testing on the internet. 

During the learning, α and β are optimized by curve fitting in 

the least square deviation and α = 17.93 and β = 121.07 are 

selected under the consideration of the overall performance of 

the training images. In practical use, threshold can be the 

average of model 1 and 2. Fig. 5 (b) gives one example result 

of this choice. It shows that the performance is exactly or 

close to the optimal result. 
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(a) Simulated optimal combination      (b) Simulated distortion curve 

Fig. 5. Simulated figures 

IV. LOCALLY ADAPTIVE THRESHOLD SCHEME 

The models proposed in section 3 can help the LAR codec 

reach a low distortion at a specific bitrate. However, they are 

only derived from objective measurement and may cause 

visible discomfort. As the quantization parameter increases, 

the suitable threshold also rises and makes the blocks larger in 

the quadtree. This action obscures the contour of objects and 

loses texture information even in parts with a low variety of 

pixels. To solve this problem, an image is treated as a 

combination of many local regions instead of a whole one. 

RDO models are applied to each region to find a suitable 

threshold for quadtree by a given quantization parameter. In 

this paper, the region is set to be a 64×64 block and the 

quantization parameter of each region is equal to quqp. 
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                  (a) bike_crop                                  (b) Thresholds of regions 

Fig. 6. Distribution of local threshold 

Fig. 6 shows an example of distribution of the thresholds in 

different regions. Fig. 6. (a) presents the original image for 

comparison, and Fig. 6. (b) presents the thresholds with gray 

levels. A block with a greater luminance represents a higher 

threshold and vice versa. It can be seen that in parts with less 

contours, the threshold has a small value and can keep more 

texture information. In complex parts, the threshold rises. 

Although a higher distortion is caused in these parts, human 

eyes are less sensitive to noise in strong texture areas than in 



weak texture areas [11] [12]. Thus, this scheme offers a more 

comfortable bit allocation way in consideration of human 

visual system. 

V. EXPERIMENTAL RESULTS 

The experimental results are shown in two parts. First, the 

performance of RDO models introduced in section III is 

checked. Second, subjective improvement based on the locally 

adaptive threshold scheme is presented. 

A. Results of RDO Models 

Four images, “p06” (4064×2704), “TOOLS” (1524×1200), 

“leaves” (3008×2000), and “Rokuonji” (3288×2458), which 

are not included in the training set are presented as examples 

to evaluate the performance. 
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        (a) Overall performance to p06             (b) Partial performance to p06 
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(c) Overall performance to TOOLS      (d) Partial performance to TOOLS 
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(e) Overall performance to leaves          (f) Partial performance to leaves 
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(g) Overall performance to Rokuonji     (h) Partial performance to Rokuonji 

Fig. 7. Comparison with RDO models efficiency and optimal results 

Fig. 7. shows the compression efficiency of the RDO 

models on the four images. Optimal curves are the best results 

under a full searching with possible combinations of quqp and 

threshold. The compression results are very close to the 

optimal curves. 

B. Results of Locally Adaptive Threshold Scheme 

Images “bike” and “p06” are used as two examples to 

present the visible difference in region images from decoded 

images with the same compression ratio in Fig. 9 and 10. By 

using locally adaptive thresholds, decoded images exhibit a 

visible enhancement in texture part with the reference of 

original images shown in Fig. 8.  

 

       
                  (a) bike                                                  (b) p06 

Fig. 8. Partial regions of original images 

       
         (a) without adaptive scheme                  (b) with adaptive scheme             

Fig. 9. Encoded bike image at 0.50 bpp 

       
        (a) without adaptive scheme                  (b) with adaptive scheme        

     Fig. 10. Encoded p06 image at 0.50 bpp 

Fig. 11 and 12 present PSNR results on “bike” and “p06” 

image, considering the classical LAR with RDO models only 

and the LAR with locally adaptive threshold scheme. 



Although the evident proof of visual quality improvement, the 

two curves are very close. 
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     Fig. 11. LAR PSNR performance on bike 
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Fig. 12. LAR PSNR performance on p06 

 

Fig. 13, 14, 15 and 16 present comparison in subjective 

quality by Mean Structural SIMilarity (MSSIM). The test 

code is provided by [13]. Because most MSSIM values are 

located between 0.9 and 1, for illustrating them clearly, 

MSSIM values are presented in logarithmic domain as used in 

[4]. 

              

( )10( ) 20 log 1MSSIM dB MSSIM= − ⋅ −               (6) 

It can be seen that with the proposed scheme, LAR MSSIM 

score is higher especially on image p06. It also shows in this 

context the efficiency of the MSSIM metric compared to the 

PSNR one. 
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Fig. 13. MSSIM (dB) performances on bike 
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Fig. 14. MSSIM (dB) performances on p06 
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Fig. 15. MSSIM (dB) performances on leaves 
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Fig. 16. MSSIM (dB) performances on TOOLS 

Next, PSNR performances are compared between LAR 

(with scheme), JPEG, JPEGXR and JPEG2000. The 

compression results are provided by the JPEG Online Test 

Facility [14]. As shown in Fig. 17 and 18, LAR results in 

PSNR are lower than those of JPEG 2000, but stay close at 

low bitrates. JPEG2000 is considered to be the best JPEG 

standard in PSNR. However it has a higher complexity than 

JPEGXR. LAR is roughly same as JPEGXR in terms of 

complexity and shows flexibility such as multi-resolution 

coding. Indeed for LAR, as the complexity will be directly 

dependent on the number of blocks in the quadtree, its 

complexity is approximately linear with the bitrate. 
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Fig. 17. PSNR performance on bike 
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Fig. 18. PSNR performance on p06 

 

Performances for lossless coding are also compared and 

results, including JPEG LS standard, are shown in Table II. It 

can be seen that LAR exhibits better results in lossless coding 

compared with JPEG XR and JPEG LS, and is close to JPEG 

2000 performances. 

TABLE II 

BITRATE (BPP) FOR LOSSLESS CODING 

 bike.ppm p06.ppm 

JPEG 2000 12.02792 10.28096 

JPEG XR 12.71170 11.75943 

JPEG LS 13.42404 11.58512 

LAR 12.46070 10.58485 

 

 

     (a)JPEG                            (b) JPEG XR 

 

           (c) JPEG 2000               (d) LAR 

          Fig. 19. p06 encoded at 0.25 bpp with different methods 

Finally, some decoded images at low bitrates considering 

the JPEG standards and LAR are presented in Fig. 19. It can 

be observed that LAR performances are between JPEG 2000 

and JPEG XR ones. 

VI. CONCLUSION 

In this paper, a locally adaptive scheme based on a RDO 

model is presented. This RDO model is first derived from 

global compression features of LAR coder, and enables an 

automatic efficient parameterization from the only 

quantization parameter. Then, this model is applied to local 

image regions to modify texture information human eyes are 

concern. Although objective quality is not improved from the 

experimental results, the subjective quality is enhanced visibly 

and shown by MSSIM measurement. Comparative results 

show that the proposed method is very efficient from low 

bitrates to lossless coding. Next works will focus on the 

prediction part of LAR for further improvements. 
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