
HAL Id: hal-00920572
https://hal.science/hal-00920572

Submitted on 20 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A synthetic aperture interferometric radiometer test at
X-band for potential improvements at W-band
Yassine Aouial, Stéphane Meric, Olivier Lafond, Mohamed Himdi

To cite this version:
Yassine Aouial, Stéphane Meric, Olivier Lafond, Mohamed Himdi. A synthetic aperture interferomet-
ric radiometer test at X-band for potential improvements at W-band. European Radar Conference,
EURAD’13, Oct 2013, Nuremberg, Germany. pp.1-4. �hal-00920572�

https://hal.science/hal-00920572
https://hal.archives-ouvertes.fr


A synthetic aperture interferometric radiometer test at 

X-band for potential improvements at W-band 

Yassine Aouial, Olivier Lafond, Stéphane Méric and Mohamed Himdi  

Institute of Electronic and Telecommunication of Rennes 

Rennes, France 

yassine.aouial@univ-rennes1.fr, olivier.lafond@univ-rennes1.fr,  

stephane.meric@insa-rennes.fr, mohamed.himdi@univ-rennes1.fr 

 

 
Abstract — The broad topic of the presented paper consists in 

the research on novel methods in the field of microwave imaging, 

in particular the so-called passive microwave / millimeter-wave 

imaging, which is also referred to radiometric imaging. This 

study focuses on proximity range applications such as concealed 

objects detection, human body screening, etc. The aim is to 

design a low cost and compact fully electronic passive imaging 

system suitable for short-range 2D imaging applications, and 

study the necessary devices for the implementation of a complete 

demonstrator. In this study, a new approach based on the use of a 

switch sub-matrix strategy has been adapted into a complete 

antenna system at X band. The main objective of this prototype is 

to validate this approach experimentally. Image quality is 

examined by using the interferometric aperture synthesis 

technique and G-matrix calibration imaging algorithms. The 

spatial resolution is measured using the emission from noise 

source and compared with theory. 
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I.  INTRODUCTION  

In the recent years, the application of passive imaging has 
gained increasing interest [1]. For proximity range applications 
as concealed weapons detection, millimeter wave imaging 
systems are suggested as an effective tool to detect explosives, 
hidden and other dangerous objects and contraband [2]. In the 
literature, passive imaging systems are mainly based on three 
types of radiometers: real aperture (RA) radiometer [3], 1-D 
synthetic aperture (SA) (1D-SA) radiometer [4], and 2-D SA 
(2D-SA) radiometer [5]. The first and the second rely on a 
mechanical scanning system in order to acquire a 2-D image. 
While the 2-D SA is based on an electronic scanning system. 

Selecting one of the systems mentioned earlier represents a 
trade off between hardware complexity and imaging 
performance. The 2-D SA principle could reduce the volume of 

the imaging system and improve its performances [6]. In fact, 
by eliminating focusing lenses, mirrors and mechanical 
scanners, the imaging system volume can then be reduced. In 
addition, the image quality can be enhanced by many efficient 
processing [7] which permit to achieve a high spatial resolution 
and to calibrate the errors of the system. Motivation for the 
development of 2-D SA imagers is that they have the potential 

to be constructed in a planar format and thereby be integrated 
into existing wall surfaces for security purposes. 

The most of imaging systems using aperture synthesis 
principles are based on the conventional mutli-channels 
approach, which depends mainly on the number of receivers. 
However, a new low-cost approach has been proposed [8] that 
based on the switching strategy. Therefore, the work presented 
here focuses on the development of a system based on this 
approach. The working frequency is around 11 GHz. After 
detailing the principle of the 2-D SA imaging by the switching 
strategy, we describe the various modules of the system and the 
imaging procedure and characteristics and finally we give 
possible performance of the system from measurements of the 
target.  

II. APERTURE SYNTHESIS IMAGING BY THE SWITCH SUB-

MATRIX STRATEGY 

A. Imaging principle by Aperture Synthesis 

The general theory concerning aperture synthesis for 
passive imaging is published in [9]. Its basic strength enables 
large collecting areas to be synthesised using physically much 
smaller collecting antennas and receivers to deliver high spatial 
resolution. The aperture synthesis imager measures the 
complex correlation between signals collected by two spatially 

separated antennas (k  and  l)  that have overlapping fields of 
view, yielding samples of visibility function V of the brightness 
temperature TB of the scene under observation. Fig.1 shows the 
schematic of a two dimensional geometric arrangement for the 
2D-SA imaging. In an ideal case, far field situation, the 

relationship between visibility and brightness temperature is 
given by: 
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where (ukl,vkl)=(xk-xl,yk-yl)/λ0 denotes the spatial frequency 

(Baseline) that depends on the antenna position (x,y) 

difference, )sinsin,cos(sin),( ϕθϕθηξ =  is the direction 

cosines defined with respect to the x- and y-axis, Tr is the 

physical temperature of the receivers, Ω is the solid angle of 

the antennas and F denotes the normalized antenna voltage 

patterns. The function 
kl
r
~ () is the so-called fringe-washing 



function that depends on the frequency response of the pair of 

elements whose signals being correlated. The image of the 

brightness temperature of the scene can be found then via a 

reverse process [7].  

B. The Switching Sub‐matrix Strategy 

The most of imaging systems using aperture synthesis 
principles are based on the conventional mutli-channels 
approach. However, a system that the subject of high spatial 
resolution requires a hundred of antennas and receiver channels 
and this approach might not be a low-cost concept. Therefore, a 
new approach has been proposed [8] that based on the 
switching strategy. This strategy is of interest in an imaging 
system as they sample all spatial frequencies across an aperture 
with the minimum number of receivers in order to improve the 
cost-performance ratio compared to a conventional system. The 
concept of using a 2D imaging interferometer by two-
dimensional approach sub-matrices Switch is detailed in [8]. 
The principle is based on using only two receiver channels 
associated to an antenna array through two independent sub-
matrices of switches. To implement this approach, an 
optimization process to find the optimal configuration based on 
the size of the array has also been proposed [10]. For the size 
of 7x7 elements, Fig. 2 shows the optimum array found with a 
minimum number of antennas. This optimum array provides 
full rectangular spatial frequency coverage and therefore the 
same spatial resolution in contrast to the fully filled 
configuration. This structure shows several advantages in terms 
of resolution, complexity and cost, which have satisfy the 
requirements for the considered demonstrator. 

III. SYSTEM ARCHITECTURE AND CHARACTERISTICS  

To investigate how well 2-D SA passive imager function, a 

proof of concept demonstrator at X-band has been designed, 
built and characterised. The RF center frequency is 11 GHz and 
the IF center frequency is 50 MHz with a 50 MHz system 
bandwidth. The measurement setup consists of the correlation 
between all enabling antennas. A total aperture synthesis is 
obtained by sequentially switching antenna elements in all 

possible, required pairs of positions and measuring the 
corresponding samples of the visibility function. 

A. System Block diagram 

The system is composed of three modules that provide the 
necessary system hardware and software functionalities as 
shown in Fig. 2:  antenna and front-end module, receiver 
module and signal processing module. The antenna and front-
end module is composed of a 21 patch antennas placed in a 
sparse array, 21 LNAs and 8 MMIC single-pole multiple-throw 
switches (SP4T). Consequently, using multilayer 
manufacturing technology as shown in Fig. 3 can easily 
integrate the switch sub-matrix. The top layer is used for 
antennas and the bottom layer for the front-end. The least 
spacing between antennas is 0.75λ0, and the maximum spacing 
is 3.5λ0. The antenna elements receive signals in the horizontal 
polarization mode, and the gain is over 6 dB. For the measured 
H-plane radiation pattern, the half-power beamwidth (HPBW) 
is about 75°. The measured E-plane radiation patterns show 
that the HPBW for one antenna element is about 90°. 

For the receiver module (Rx1 and Rx2), the receiver 
circuitry follows a heterodyne-circuit concept with double-
frequency down conversion. The received signal is down 
converted to the first intermediate frequency (IF), filtered and 
amplified further to provide a power level that is adequate for 
the following analog-to-digital (A/D) conversion. The final 
down conversion and demodulation to a baseband are 
performed by the digital electronic circuitry after sampling of 
the analog signal at 100-MHz sampling frequency. 

The signals are sampled and digitized by the A/D 
acquisition board and processed by a computer for image 
reconstruction. Since the amplitude mismatch, phase shift, and 
mutual coupling in the antenna array will introduce amplitude 

 

Fig. 2.   System Block diagram at X-band 

 
 Fig. 1.   Schematic of two-dimensional geometric arrangement for the 

aperture synthesis imaging. 
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Fig. 4.   (a) Farfield radiation pattern measurement setup (b) farfield 
radiation pattern at 11GHz of one antenna in azimuth and elevation axis. 

and phase errors, the calibration algorithm must be considered 
also. The complete system is driven from a PC and uses Matlab 
to process data, running the image reconstruction algorithms to 
create still images and videos. 

B. System calibration and image reconstruction 

The calibration algorithm for an aperture synthesis 
radiometer had been described in [11]. Due to system 
imperfections, such as antenna errors, channel errors, each 
antenna radiation pattern and the frequency response of each 
receiver will be influenced, and then the brightness temperature 
in the field of view (FOV) is affected by the system.  

In the most general sense this calibration can be represented 
by matrix operations on vectors. The Eq. 1 can also be written 
in terms of the response of the imager system to the scene, and 
this is given by Eq. 2, where vector Vn is the visibilities of 
length n and the vector TB is the brightness temperature from m 
pixels in the scene and Gn,m is the response matrix. Inversion of 
this equation gives the temperature at each pixel for a given 
visibilities, where G’m,n is the calibration matrix, as in Eq. 3. 
The calibration matrix, a large matrix of m x n elements, can be 
found by inversion of the response matrix. The response matrix 
is found by measuring farfield radiation pattern in the phase 
center of each antenna (i.e Fig. 4) and the frequency response 
of each receiver. This method of calibration is similar to 
passing a source through all the pixels in the field of view and 
recording the responses Vn. 
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IV. EXPERIMENTS AND RESULTS 

In order to demonstrate the possibility of using the sub-
matrices approach in a passive imaging radiometer system, a 
series of experiments was conducted. These experiments 
include a noise source measurement experiment at X-band. 
Therefore, a noise source was placed at 2 m from the system. 
The output power of the noise source is set high that the 
thermal noise from the background. Fig. 5.a shows the 
prototype of the experiment in anechoic chamber. After system 
calibration, the system response of the point source in two 
directions can be seen in Fig. 5. The estimated incident 
direction of the noise source is precise, and the background 
brightness temperature is slightly stable. 

Concerning system performances, the measured angular 
resolution is 6.5°. Theoretically, this resolution value is equal 
to 6.3°. Consequently, the measured and theoretical angular 
resolutions are in good agreement. The measurement of the 
radiometric sensitivity of the X-band aperture synthesis imager 
was calculated by using relationship [6]:                
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(a) 

 

(b) 

Fig. 3.   The 11 GHz aperture synthesis imager. (a) Antenna module (b) 
front-end module 



  

(a) 

 

(b) 

 

(c) 
Fig. 5.   (a) Measurement setup using a noise signal as point source. (b) 

and (c) reconstructed image of a noise source located at the center of the 

scene and at (x, y) = (-0.4, -0.2)  

where B is the bandwidth of the receiver, τ is the equivalent 
integration time, N is the number of antennas, Dsyn  is the 
diameter of the synthetic aperture, ΩFOV is the FOV solid angle, 
TB is the brightness temperature of the scene, TR is the effective 
receiver noise temperature. For this demonstrator, the 
equivalent integration time is about 10 ms and the bandwidth is 
about 50 MHz. The sensitivity of the system is less than 9 K, 
when TB is 300 K.  The radiometric sensitivity describes the 
capacity of the system to distinguish among small scene 
contrasts in the image. Actually, the sensitivity value of the 
system is not good to detect concealed objects with an apparent 
temperature similar to that of the background. The principal 
objectives of the project are to develop a demonstrator having a 
low-cost and real-time imaging capability. Therefore, follow on 

demonstrators require higher specifications (sensitivity and 
resolution) of the system and a choice of the optimal frequency 
(W-band) for the scenario.  

V. CONCLUSION 

In this paper, based on research on a low-cost fully 
electronic passive imaging system, the concept of using the 
switching sub-matrix strategy to develop a low cost system for 
proximity range applications has been presented. Obviously, 
this approach has important benefits in terms of cost and 
system compactness. The experiment result demonstrates the 
angular resolution and sensitivity of the system. For the further 
work, the future demonstrator will illustrate how a 2-D SA 
imaging architecture delivers real-time imagery with a 
sensitivity to detect threats of interest for security scanning 
portals. This will possibly in W-band for the optimum 
radiometric contrast [12]. 
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