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Abstract— Objectives in terms of pollutant emissions and fuel 
consumption reduction have led car manufacturers to enhance 
the technical definitions of combustion engines. The latter 
should now be considered as multiple-input multiple-output 
nonlinear systems with saturated actuators. This considerably 
increases the challenge regarding the development of optimal 
control laws under the constraints of constant cost reductions in 
the automotive industry.  

In the present paper, the use of a nonlinear model predictive 
control (NMPC) scheme is studied for the air path control of a 
turbocharged gasoline engine. Specifically, a zero dimension 
physics-based model is combined with parameterization of the 
future control trajectory. The use of Laguerre polynomials is 
shown to increase flexibility for the future control trajectory at 
no cost in computational requirements. This increase in 
flexibility leads to an improvement of the transient response of 
the closed-loop with respect to traditional approaches. This 
practical application shows that this approach makes it easier to 
fine-tune the NMPC scheme when dealing with engine air path 
control.  

I. INTRODUCTION 

Current pollutant emission standards as well as fuel 
economy objectives have led car manufacturers to enhance 
the technical definitions of gasoline engines. In particular, the 
air path is constantly the seat of major evolutions with the 
addition of numerous new actuators: turbochargers, exhaust 
gas recirculation loops, variable valve timing, etc.  As 
considered, gasoline engines have become multi-input multi-
output nonlinear systems with saturated actuators. Over the 
years, model predictive control has proven to be a very good 
alternative for controlling nonlinear multivariable processes 
such as chemical plants [1]. However, until recently, 
calculation time considerations have prevented this type of 
approach from being extended to the automotive industry. 
Increasing computational capabilities combined with the so-
called explicit model predictive control have overcome this 
limit and enlarged the range of possible applications [2-5], 
including automotive applications [6, 7] 

In discrete NMPC, one key element is modeling the future 
control trajectory, i.e. either the control signal   or its 
increment   . In the case of rapid sampling, with respect to 
the control horizon, this may require a large number of 
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parameters to be identified, thus impacting on the feasibility 
of optimization and on computational requirements. In [8] 
the computational efficiency of the control problem is 
improved by adopting an approach based on wavelet 
decomposition. Alternatively in [6], the authors overcome 
this drawback by reducing the degrees of freedom of the 
control trajectory over the prediction horizon. The same issue 
is addressed in [9], where an expansion of the control 
trajectory based on Laguerre polynomials is applied to the 
linear case. This leads to a parsimonious description of a 
smooth control trajectory that minimizes the number of 
parameters to be identified. In this paper, this approach is 
extended to the nonlinear case and applied to the control of 
the air path of a turbocharged gasoline engine. 

The paper is organized as follows. Section 2 presents 
insights into the physics-based model of the engine. Section 3 
presents the general NMPC scheme as well as the 
parameterization strategy of the control trajectory. Simulation 
results are presented in section 4. The conclusion summarizes 
the main outcome of the study and the next steps to be 
achieved. 

II. TURBOCHARGED GASOLINE ENGINE 

The purpose of the study is to control the air path of a 1.2L 
turbocharged gasoline engine as described in Fig.1. 

 
Figure 1. Overview of the gasoline engine used in this study (  stands for 

pressure,   for temperature,    and    are respectively the engine and 
turbocharger rotational speed). At the intake, the compressor and the heat 
exchanger successively increase the pressure and cool down the fresh air 

flow. Then, the throttle controls the air flow entering the inlet manifold. At 
the exhaust, the burnt air flow through the turbine is controlled by a 

wastegate. 
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A nonlinear model predictive controller requires obtaining 
an analytic representation of the system [1, 3, 10]. In 
classical NMPC approaches, where the optimization problem 
is solved online, the computational time required to evaluate 
the model outputs is crucial. For this reason, authors usually 
rely on linearized models for describing internal combustion 
engines [11]. On the other hand, when considering explicit-
type approaches, the model is only used offline and using 
nonlinear modeling approaches then becomes possible. The 
combination of the zero-dimension and the mean value 
engine modeling approaches has proven to be a good 
compromise between accuracy, calibration effort and 
computational requirements. Moreover, in [7], it is 
demonstrated that this approach is suitable for the synthesis 
of an explicit control law. 

A. Mean Value Engine Model 

In this study, the engine air path is discretized following 
the zero-dimension philosophy. Each component on the air 
path is either defined as a reservoir or as a flow source. 
Hence, the model appears as a simple succession of flow 
restrictions and control volume sub-models (Fig. 2). The 
pressures in the latter correspond to model states and are 
governed by a set of differential equations. In order to keep 
the number of states of the model under control, temperature 
dynamics are neglected [12]: in each control volume, they 
are computed using algebraic relations that are not detailed 
below. Further information is provided in [13, 14]: 

 
Figure 2. Overview of the engine model: each control volume is followed by 
a flow source, itself followed by another control volume and so forth. Each 

control volume represents a state of the system, i.e. in this particular case the 
model contains at least 3 states:     ,      and     . 

B. Reservoir model 

Euler’s mass, energy and momentum equations are applied 
in each control volume in order to determine the pressure 
dynamic in the corresponding reservoir [14]: 
  ̇      (                   (1) 

where   is the ratio of specific heats,   is the specific gas 
constant,   is the volume of the reservoir,   is the flow 
temperature and    is the mass flow rate. Indices    and     
respectively stand for inlet and outlet. 

This relationship can be applied to compute the dynamic 
of three model states: 

 {  
   ̇          (                   ̇              (          ̇              (                    

 (2) 

where     ,      and      respectively represent the volume 
between the compressor and the throttle (including the heat 
exchanger), the volume of the intake manifold and the 
exhaust manifold volume (Fig. 1 and Fig. 2).   

C. Actuator orifice models 

The throttle and the wastegate are actuators that act as 
pure flow restrictions and respectively deliver      and     
in (2). Both flows can be computed using upstream and 
downstream pressures [15]: 

 {  
          √              √      (       )                       (3) 

where      is the effective area of the orifice which depends 
on the actuator position  . The indices “  ” and “  ” 
respectively stand for upstream and downstream. 

D. Cylinder flow rate 

Let’s denote      the fresh air entering the cylinders. 
Assuming that the pressure in the inlet manifold is uniform, 
it is given by the speed-density equation [15]: 

                             (4) 

where      and      are the manifold pressure and 
temperature,      is the engine displacement,    is the engine 
rotational speed and      is the volumetric efficiency. The 
latter describes the ability of air to suck up air from the inlet 
manifold. A second order polynomial  , calibrated on steady 
state test bench measurements, can be used to represent it: 

                   (5) 

E. Compressor and turbine flow models 

Finally compressor and turbine flow rates, namely the last 
flow rates required to obtain  ̇   ,  ̇    and  ̇    from (12), 
can be computed by means of manufacturer look up tables: 

 {           (                              (6) 

where       and       are respectively the compressor and 
turbine flow rates.       and       are nonlinear data-
maps. Their inputs are the turbocharger rotational speed    
and the pressure ratios across the components, respectively       and      . 

At this stage, all the pressures in the model can be 
computed using (2). However, the dynamic of the engine 
cannot be fully described without taking into account the 
inertia of the turbocharger. In order to do this, a fourth state 
equation is added to the model in order to describe the 
dynamic of   : 
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   ̇    (            (7) 

where   is the turbocharger inertia.       and       are 
respectively the turbine and compressor torques computed 
using their respective flow rates, inlet and outlet temperatures 
and   . 

III.  CONTROLLER DESIGN 

A. Nonlinear Model Predictive Control Tracking Scheme 

An iterative finite-time open loop nonlinear optimization 
problem is solved to compute the vector of optimal future 
actuators’ positions with respect to a given objective function  . At each time step, only the first control move is applied to 
the real process before a new open-loop optimal problem is 
solved following the receding horizon principle [1, 3, 10]. 

Let    be the vector of the difference of future control.   
depends on    and any appropriate combination of the 
system states  , the system outputs   and a vector of 
exogenous inputs  . The latter contains, at least, the set 
points to be tracked. Then, given the current vectors of 
system states   , previous controls    and   at time instant k, 
the discretized NMPC problem that is addressed is given by: 

                 ∑                       (8) 
subject to 
                              (9) 
                      (10) 
                    (11) 
           (12) 
           (13) 
          (14) 
            (15) 
where         is the prediction horizon and          
is the control sampling interval . Together,    and   represent 
a nonlinear model of the system. Finally,  ,  ,   and   
respectively stand for lower and upper bounds on the states 
and the control variables. 

B. Engine Model for NMPC 

In order to fit into the NMPC formulation above, the 
engine air path control, based on the model described in 
section 2, should be considered as follows: 

   (                  
  (16) 

               (17) 
   (         (18) 
                         (19) 
where   is given by (2) and (7) which describe the dynamic 
of the four states of the model (16).  

For control design purposes, Euler’s backward 
differentiation method is used to discretize (2) and (7) of the 
engine model. A minimum sampling time of 1 millisecond is 
required to ensure model convergence. 

In this particular problem, no explicit state constraints, 
such as (12), are required. However, constraints on the 
control inputs are necessary in order to take into account 
physical saturation of the actuators.  

                (20) 

In order to track the inlet manifold pressure set point, while 
maximizing the engine efficiency, the thermodynamic cost 
function presented in [6] is used:  

   ∑                                (21) 

where   and   are used to scale and penalize each term of the 
cost function. 

C. Parameterization of the control signal trajectory 

In this study, a set of orthonormal functions            is 
used to parameterize the trajectory of the difference of future 
control   . At any given instant  , the expansion below is 
used for each actuator control trajectory: 
       ∑             (22) 
where   is the number of terms    used to describe the 
control trajectory: as   increases, the degrees of freedom of 
the control trajectory increase.    [       ]  is 
the vector of parameters to be identified. The problem of 
finding the optimal control signal over a given prediction 
horizon is then converted into finding the vector of weights   . 

1) Laguerre polynomials 
In this study the set of Laguerre polynomials      [                   ]  was chosen to describe the 

control trajectory [9]. These are defined such that the z-
transfer function    of the  -th Laguerre function    is 
given by [16]: 

        √         [       ]   
 (23) 

where   is called scaling factor and falls within [   [. 
 In the time domain, the set of discrete Laguerre functions 
satisfies a difference equation [9]: 

              (24) 

where        in 

   
[  
   

                                                        ]  
    (25) 

The initial condition is given by:  

      √ [                 ]  (26) 

 When    ,      becomes a set of pulses. In this case, the 
use of Laguerre polynomials for the parameterization of the 
control signal is equivalent to the traditional approach in 
NMPC design [9]. Conversely, for non-zero values, as   
increases, the control horizon increases in the sense of 
temporal spectrum (Fig. 3). 



 

 

 

 
Figure 3. The first two levels of expansion of the Laguerre polynomials are 
plotted for various values of the scaling factor (   ,       ,      ,        and    ). On the bottom graph, the control trajectory is plotted 
for        .As the value of the scaling factor increases, the control 

horizon increases and the trajectory becomes less aggressive. When    , it 
is evident that the Laguerre polynomials become a set of pulses, respectively 

at      and    . 

2) Computing the control increment 
Given the vector of parameters [       ] , the 

sequence of control increments over the prediction horizon    is given by the matrix equation: 

 

               (    
)          ) (27) 

where 

   ( 
                                           (      (       (    )  (28) 

3) Constraints on the control trajectory 
In this particular problem, no explicit state constraints, such 

as (12), are required. However, constraints on the control 
inputs are required to take physical saturation of the actuators 
into account:  

 
                        (29) 

 From (11) and (27), the sequence of control signals is given 
by:  
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where 

    ( 
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(31) 

 The constraints on the amplitude of the inputs are then 
given by:  
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where    is a zero matrix of appropriate dimensionality. In 
the same manner,   denotes a vector of appropriate 
length. 

IV.  SIMULATION RESULTS 

A. Calibration of the control scheme 

1) Number of terms in the expansion 
The first parameter of the control scheme is the dimension 

of the Laguerre polynomials set, i.e.  . As the number of 
terms increases, the flexibility of the trajectory increases [9]. 
However, the computational requirements to solve the 
optimization problem also increase with  . Fig. 4 and Fig. 5 
present the performances of such a controller for different 
values of  . The inlet manifold pressure set point        is 
moved from 0.6 bar (low load), respectively 0.9 bar, to 1.6 
bar (high load) while the engine speed is kept constant at 
2,000 rpm, respectively 5,000 rpm. The prediction horizon is 
chosen in agreement with the settling time of the system, i.e.          . A scaling factor       proved to be 
representative of the average controller performances.  

 
Figure 4. Influence of the number of Laguerre polynomial terms used to 

describe the future control trajectory at 2,000 rpm. From     to     the 
controllers present similar performances.           and      . 
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Figure 5. Influence of the number of Laguerre polynomial terms used to 
describe the future control trajectory at 5,000 rpm. Between     and     the controllers present similar performances.           and      . 

 Using only one Laguerre polynomial to build the control 
trajectory considerably reduces the closed-loop speed (Fig. 4 
and Fig. 5). Then from     to     increasing the 
number of terms does not improve the control performances. 
Since the objective is to minimize the computational 
requirements, a 2-level expansion was chosen for the rest of 
the study. This corresponds to determining two parameters 
for each actuator at each sampling time. This problem was 
solved using the trust-region reflective algorithm method 
implemented in Matlab®. The algorithm converges within 20 
iterations when initialized with      over the prediction 
horizon. 

2) Prediction horizon 
As suggested above, the prediction horizon of the system 

is usually selected in agreement with the settling time of the 
system. In the case of a turbocharged gasoline engine, it can 
vary from about 100 ms to 300 ms. In Fig. 6 and Fig. 7, the 
performances of the Laguerre polynomial based NMPC 
scheme are depicted for different prediction horizons: 100, 
200, 300 and 500 ms. Two engine rotational speeds : 2,000 
rpm and 5,000 rpm, are presented. The same inlet manifold 
pressure set point step as before is used. The scaling factor is 
kept at 0.5. 

The influence of the prediction horizon on the response of 
the closed-loop system depends on the engine rotation speed. 
In fact, at low rotational speeds, the settling time of the 
engine does not seem to be affected by the prediction horizon 
that is chosen (Fig. 6). However, for high rotational speeds, 
the settling time of the system depends nonlinearly on the 
prediction horizon. In particular, using a prediction horizon 
of 100 ms considerably accelerates the engine response. For 
a prediction horizon greater than 200 ms, the influence 
rapidly decreases (Fig. 7).  

 
Figure 6. Influence of the prediction horizon     on the response of the 
engine at 2,000 rpm. At this engine speed, the response of the system is 

independent of the prediction horizon.     and      . 

 

Figure 7. Influence of the prediction horizon     on the response of the 
engine at 5,000 rpm.. It can be noticed that the settling time of the system 
depends nonlinearly on the prediction horizon. In particular, it varies by 

about 40% between           and           while varying by only 
4% between           and          .     and      . 

As such, a reasoned choice of the prediction horizon 
should take into account the dynamic of the system at a high 
rotational speed. Here           appears to be a good 
compromise between computation time and stability. 

3) Scaling factor 
The scaling factor of the Laguerre polynomials makes it 

possible to control the dynamic of the closed-loop system by 
modifying the control horizon    [9] (Fig. 3). Fig. 8 and Fig. 
9 present the closed loop response of the system to an inlet 
manifold pressure set point step for different values of the 
scaling factor. Two cases are presented: at 2,000 rpm and 
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5,000 rpm. In accordance with the previous sub section,     and          . 

 
Figure 8. Influence of the scaling factor   on the response of the engine at 

2,000 rpm. It can be noticed that the scaling factor has a nonlinear effect on 
the closed-loop response. However at this rotational speed, the effect is not 

significant.     and          . 

 

Figure 9. Influence of the scaling factor   on the response of the engine at 
5,000 rpm. The scaling factor significantly modifies the shape of the 

response in a nonlinear fashion.     and          . 

At low rotational speeds, the influence of the scaling 
factor on the settling time of the system is small but still 
nonlinear: a bigger change is observed between       and       than between       and      . At high 
rotational speeds, the same nonlinear effect is observed but 
the scaling factor has much more influence on the shape of 
the closed-loop response. In both cases, as expected in Fig. 3, 
the smaller the scaling factor is the faster the controller is.  

Again a considered decision on the scaling factor must 
take into account the highest engine rotational speeds. 

B. Transient performances of the control scheme 

Based on the results presented before, the set of calibration 
parameters    ,           and       was selected.  
Fig. 10 depicts the transient performances of the nonlinear 
predictive controller on a representative part of a 65-second 
realistic driving cycle. The engine speed varies from 1,000 
rpm to 5,500 rpm while engine load varies from low to high. 
Actuator positions vary from fully closed to fully open 
(including sudden opening). 

 
Figure 10. Inlet manifold pressure tracking on a realistic driving cycle (black 
line). The controller is parameterized as follows:    ,           and      . The inlet manifold pressure reference trajectory is depicted through 

upper and lower 50 mbar tolerance intervals (red lines). The bottom plot 
displays the corresponding throttle (green line) and wastegate positions 

(black line). 

 The nonlinear model predictive controller presented in this 
paper leads to tracking performances in agreement with 
standard specifications in the automotive industry: the inlet 
manifold trajectory stays within the +/- 50 mbar tolerance 
interval and has no static error (Fig. 4 to 8). 

C. Comparison with the traditional NMPC design 

The previous section showed which considerations need to 
be taken into account regarding the dynamic of the system 
and its dependence on the engine rotational speed. 
Altogether, the calibration effort that is required to tune the 
NMPC scheme based on Laguerre polynomials is quite 
similar to the one required to calibrate a traditional NMPC 
design. In fact, only three parameters, namely  ,    and   
need to be determined. However, when comparing the 
performances of the two control schemes, great differences 
emerge.  

As detailed above, in the new approach, using     
requires solving a 4-dimension problem at each time step (2 
parameters need to be determined for each actuator). This is 
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similar to a standard NMPC scheme using a control horizon 
of 1. On Fig. 11 and 12, the performances of these two 
schemes are presented side by side. The prediction horizon is 
200 ms in both cases and both problems are solved using a 
trust-region reflective method which converges within 20 
iterations. 

At low rotational speeds, the shape of the response is quite 
similar for both NMPC schemes. On Fig. 11,  the controller 
based on Laguerre polynomials expansion leads to a smaller 
settling time without inducing any overshoot.  

 
Figure 11. Comparison of the tracking performances at 2,000 rpm of a 

standard NMPC control scheme with      (blue line) and the Laguerre 
polynomial based NMPC control scheme (green line). The parameterization 

of the control trajectory leads to better performances than the standard 
approach when considering     . 

 
Figure 12. Comparison of the tracking performances at 5,000 rpm of a 

standard NMPC control scheme with      (blue line) and the Laguerre 
polynomial based NMPC control scheme (green line). The parameterization 

of the control trajectory leads to better performances than the standard 
approach when considering     . 

At high rotational speeds, the difference is much bigger. 
On Fig. 12, the controller based on the traditional approach 
presents an overshoot of 0.5 bar which is not acceptable with 
respect to automotive standards, whereas, the greater 
flexibility of the controller based on a parameterized control 
trajectory leads to a faster settling time with an insignificant 
overshoot.  

This type of behavior is observed thoughout the entire 
engine operating range with more sensitivity at high loads 
and high rotational speeds. In fact, in these types of 
conditions, a satisfactory approximation of the future control 
law will usually require a large number of forward shift 
operators [9]. In those conditions, the Laguerre polynomials 
based parameterization has been shown to improve the 
performances of the closed-loop when considering engine air 
path control. 

V. CONCLUSION 

In this paper, the control of the air path of a turbocharged 
gasoline engine is achieved using a NMPC scheme based on 
parameterizing the future control trajectory. This 
parameterization of the control trajectory is based on 
Laguerre polynomials and is very similar to the one 
presented in [9]. The main contribution of this study is that it 
was put into practice on a nonlinear practical application and 
combined with a fully physics-based nonlinear engine model. 

In this approach, the problem of finding the optimal future 
control trajectory is converted into determining a set of 
multiplying coefficients for Laguerre polynomials. This leads 
to a parsimonious description of the control trajectory that 
improves the response of the system in terms of speed and 
stability. Moreover, both the computational requirements and 
the calibration efforts are maintained with respect to 
traditional approaches. 

Further extensions will go in the direction of 
implementing the controller in real-time using the explicit-
approach proposed in [7]. 
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