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 

Abstract— Pollutant emissions and fuel economy objectives 
have led car manufacturers to develop innovative and more 
sophisticated engine layouts. In order to reduce time-to-market 
and development costs, recent research has investigated the idea 
of a quasi-systematic engine control development approach. 
Model based approaches might not be the only possibility but 
they are clearly predetermined to considerably reduce test 
bench tuning work requirements. In this paper, we present the 
synthesis of a physics-based nonlinear model predictive control 
law especially designed for powertrain control. A binary search 
tree is used to ensure real-time implementation of the explicit 
form of the control law, computed by solving the associated 
multi-parametric nonlinear problem. 

I. INTRODUCTION 

Modern combustion engines are multi-input multi-output 
nonlinear systems with saturated actuators. In this context, the 
development time and cost of control algorithms have become 
major issues for car manufacturers. This study is motivated by 
the desire to tend toward a quasi-systematic engine control 
design and calibration process. Model predictive control 
(MPC) in general has become the accepted approach in 
various industries for controlling multivariable processes [1]. 
Until now, online computation complexity considerations 
have prevented it from penetrating the automotive industry 
[2-4]. This drawback can be circumvented using an explicit 
approach where an approximation of the solution is computed 
using multi-parametric programming. This methodology has 
considerably enlarged the range of possible applications [5-8] 
and is applied here, to the engine air path control of a 
turbocharged engine [2, 9, 10]. 

In this paper, we present the synthesis of an explicit 
nonlinear predictive controller (NMPC) which relies on a 
control-oriented physics-based engine model [11]. The 
objective function is designed to track an inlet manifold 
pressure set point while optimizing the engine efficiency. The 
explicit approach leads to a piecewise affine control law 
which, once stored in a binary search tree, matches the 
requirement for real-time implementation, i.e. provides both 
fast and predictable computation time. The conclusion 
stresses the fact that NMPC combined with the explicit 
approach is a major step toward a systematic engine control 
design and calibration process.  
 

J. El Hadef is with the University of Orleans, Laboratoire PRISME, 8 rue 
Leonard de Vinci, 45000 Orleans, FRANCE and Renault SA, CTL, 1 allée 
de Cornuel, 91510 Lardy, FRANCE (e-mail: jamil.el-hadef@etu.univ-
orleans.fr). 

S. Olaru and P. Rodriguez-Ayerbe are with the E3S (Supelec System 
Science), Automatic Control Department, FRANCE (e-mail: 
sorin.olaru@supelec.fr). 

G. Colin and Y. Chamaillard are with the University of Orleans. 
V. Talon is with Renault SA (e-mail: vincent.talon@renault.com). 

The paper is organized as follows. Section II  presents the 
system and the control objectives. Section III presents insights 
into the physics-based model of the system. The NMPC law 
is presented in section IV while the algorithm used to 
compute the explicit control law is detailed in section V. 
Finally, comparative simulation results are presented in the 
last section. 

II. SYSTEM DESCRIPTION AND CONTROL OBJECTIVES 

The objective is to design a control law for the air path of 
a downsized turbocharged spark-ignited (SI) engine (Fig. 1). 

 
Figure 1.  Air path sketch of a turbocharged SI engine (p stands for 

pressure,  for temperature, Ne and t are respectively the engine and 
turbocharger rotational speed). 

At the intake (pavc,Tavc), a compressor and a heat 
exchanger successively increase the pressure (papc,Tapc) and 
cool down the fresh air flow (pape,Tape). Then, a variable flow 
restriction, called throttle, controls the inlet manifold pressure 
pman. At the exhaust (pavt,Tavt), the amount of gas which passes 
through a turbine is controlled by a by-pass, known as a 
wastegate (Fig. 1). This energy, recovered at the exhaust, 
drives the intake compressor and its outlet boost pressure papc 
through a shaft (ωt ) [12]. This introduces a physical feedback 
path in the engine. 

In order to maximize the efficiency of the three-way 
catalytic converter, SI engines operate with an air/fuel 
equivalent ratio of one. Consequently, from the control point 
of view, the engine torque is directly controlled by the air 
mass entering the cylinders. For a given engine speed, this 
mass directly depends on the inlet manifold pressure and 
temperature. A supervisor usually provides the inlet manifold 
pressure reference trajectories from the engine torque that 
must be achieved. Thus, the air path controller task is to 
determine which throttle and wastegate positions will allow a 
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given inlet manifold set point to be reached in the minimum 
amount of time. Pollutant emissions and drivability 
consideration are taken into account by the supervisor. 

III.  PHYSICS-BASED 0D ENGINE MODEL 

When considering real-time automotive model-based 
control, authors usually use multiple piece-wise linear or 
linearized models to describe the nonlinear behavior of 
combustion engines [13]. These models allow fast output 
prediction but their calibration requires numerous test bench 
measurements. 

In explicit approaches, the model is only used offline, in a 
multi-parametric program [5, 7]. For this reason, we propose 
to use a single physics-based nonlinear model. In order to 
bring the calibration effort under control, the combination of a 
0D modeling approach and a mean value cylinder model was 
chosen [14]. The philosophy behind the model is succinctly 
described below. For the complete derivation of the model see 
[11, 12, 15]. 

A.  Hypothesis and Modeling Philosophy 

The air path is discretized: a control volume of the air path 
is followed by a flow restriction, itself followed by another 
control volume and so forth (Fig. 2). 

 
Figure 2.  Example of a succession of control volumes and restrictions: the 

heat exchanger and its pipes are surrounded by two flow restrictions: the 
compressor and the throttle. 

In each control volume, the pressure and the temperature 
describe the complete thermodynamic state of the volume. In 
each of them, the pressure dynamics is described by a 
differential equation deduced from Euler’s mass, energy and 
momentum equations [11]. The temperature dynamics can be 
neglected and computed through algebraic relations [16, 17]. 
Altogether, the model contains three control volumes: the 
inlet and outlet manifolds and the heat exchanger (Fig. 1). It 
respectively corresponds to three states: pman, pavt and pape. A 
fourth state describes the turbocharger rotational speed ωt. 

B. Pressures in the Three Control Volume 

In a given control volume V (Fig. 2), the pressure time 
derivative  ̇ is given by: 
  ̇      (                 ) (1) 

where  is the ratio of specific heat, r is the fluid gas constant,   the flow temperature and Qm the mass flow rate. Indices 
“in” and “out” respectively stand for inlet and outlet of the 
considered control volume. 

C. Turbocharger Model 

The turbocharger rotational speed    is given by: 

   ̇    (           ) (2) 

where I is the turbocharger inertia of the shaft which links the 
turbine to the compressor and       and       respectively 
represent the turbine and compressor torques. 

D. Actuator Models 

The system has two inputs: the throttle and the wastegate 
positions, respectively      and    . Both actuators are 
considered as variable flow restrictions. The flow is computed 
using pressures on each side: 

  {  
          √              √      (       )      ቆ       ቀ     ቁ     ቇ   (3) 

where      is the effective area of the orifice and depends 
nonlinearly on the actuators’ position:        or      . 
The indices “us” and “ds” respectively stand for upstream and 
downstream. 

As explained in [16], the dynamics of the actuators are 
neglected. 

E. Summary 

The physics-based model is nonlinear and has four states:     ,     ,      and   . There are two control variables:      and    . In continuous time, it is written as below: 

 

{   
       ̇        (              (    )    )    ̇            (    (    )      )    ̇            ቀ                    (   )ቁ  ̇    (           )

 (4) 

where Vape, Vman and Vavt respectively represent the volume 
between the compressor and the throttle, the volume of the 
intake manifold and the exhaust manifold volume (Fig. 1).       is the engine mass air flow and       the injected fuel 
quantity. Qthr and Qwg stand for the throttle and wastegate 
flows, both obtained with (3).  

For control design purposes, the model is discretized at a 
sampling time of 1 ms, using Euler’s backward differentiation 
method. Results concerning steady-state and transient 
validation of the discrete-time model are given in [15]. The 
model validation stage shows that the prediction error remains 
well below 10% for steady-state operating points as well as 
transients. 

IV.  NONLINEAR MODEL PREDICTIVE CONTROL 

A. NMPC Formulation for Reference Tracking 

MPC usually uses an iterative finite-time open loop 
optimization to compute the optimal actuator position vector    with respect to an objective function  . At each time step, 
only the first command is applied to the real process. A new 
open-loop optimal problem is solved following the receding 
horizon principle [1, 2, 18]. 
Given the current system state    and the vector of 
exogenous inputs   (principally the set points) at time instant 
k, the discrete-time NMPC problem can be written as below: 

Qcomp Qthr
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pape apc

Throttle
RESTRICTION

Compressor
RESTRICTION



  

                  [  ∑                           ] (5) 

s.t                       (6) 
                     (7) 
          (8) 
          (9) 
         (10) 

where      denotes the system states and      stands for the 
vector of piecewise constant control inputs.   is called cost 
function and    [      ] is the so-called prediction 
horizon at time k.    and   are nonlinear functions describing 
the discrete-time system dynamics. Finally,  ,  ,   and   
respectively stand for lower and upper bounds on the states 
and the control variables. 

B. Application to a Turbocharged SI Engine 

The air path control problem fits into the above 
formulation of an NMPC optimal control problem if we 
consider: 

   (                 )  (11) 
               (12) 
   (        ) (13) 

                         (14) 
where      is the ambient temperature and        is the 
pressure set point, used to track the desired manifold pressure 
set point and is assumed to be constant over the prediction 
horizon. The right hand side of (6) is derived from the 
discrete-time version of the set of equations (4), while the 
output vector   consists of the second and third states of the 
same model. No explicit state constraints are imposed. The 
manipulated variables are bounded in order to take into 
account actual actuator saturations:  
          (15) 

Since there is an infinite number of combinations of 
actuator positions to achieve a given inlet manifold pressure, 
one would like to select the most efficient one. The 
efficiency on an engine cycle can be computed from the 
integral of the cylinder pressure-volume (p-V) diagram of 
four-stroke engines [12]. In particular, the pumping losses 
are directly linked to the difference between the exhaust 
manifold pressure      and the inlet manifold pressure     . 
In order to reduce the pumping losses, i.e. increase the 
engine efficiency, this thermodynamic consideration is 
directly taken into account in the objective function [16]. A 
first term ensures set point tracking while a second one 
minimizes the pressure ratio between exhaust and inlet 
manifold: 

   ∑ [ ቀ              ቁ                 ]        (16) 

where the weighting factors   and   are used to scale and 
penalize each term of the cost function. If   is chosen too 
small compared to  , the inlet manifold pressure will not 
reach its desired value. 

The NMPC formulation (5-10) avoids the use of a terminal 
penalty term and terminal constraints [19]. This design 
choice is principally due to the parameterization of the 

optimization problem in   which makes the definition of 
such additional terms impractical in this nonlinear 
framework. However, the closed-loop stability (in the sense 
of boundedness of state space trajectories) is ensured by the 
intrinsic dissipative properties of the system as well as the 
bounds on the control variables. 

The only thing left is a proper choice of the control 
sampling time:  in order to control the fast dynamics of the 
engine as well as allow fast response to set point changes a 
new control is applied every 10 ms. 

C. Prediction Horizon and Control Variable Partition 

In this study, a prediction and control horizon of 100 ms 
combined with a constant control value over these horizons 
proved to be flexible enough to track realistic vehicle 
transients [16]. The optimization problem is addressed in a 
classical single shooting framework using the trust-region 
reflective method implemented in Matlab®. This algorithm, 
initialized in the middle of the control variable space      , converges within 10 iterations to a close-to-global 
solution. Results are depicted in section VI and in [16]. 

The characteristics of the problem (5)-(10), i.e. the small 
number of model states and set points, as well as its short 
convergence time match the requirements for computing an 
explicit solution. In particular, (5)-(10) can be considered as 
a multi-parametric nonlinear program (mp-NLP) since it is a 
nonlinear program in   parameterized by   and   . The next 
section provides insights in the synthesis of the piecewise 
affine (PWA) solution to this mp-NLP and its real-time 
implementation. 

V. EXPLICIT NONLINEAR MODEL PREDICTIVE CONTROL 

The PWA approximation of the solution of (5) is 
computed using mp-NLP [7, 20]. The constituent functions 
will be defined on hyper-rectangles, which enables the 
parameter partition to be represented as a binary search tree 
[21]. Online, the time-consuming MPC optimization is then 
replaced by positioning via a simple search tree. This 
positioning mechanism fulfils all the criteria for a real-time 
implementation: i.e. both fast and predictable calculation 
time. During the synthesis, the accuracy of approximation is 
quantified by the difference between the close-to-global and 
sub-optimal objective function values. 

In the sub-sections below, we successively detail the 
different steps to build the PWA law from the NMPC 
algorithm presented in section IV. The complete algorithm 
includes: generating a set of points, computing the affine 
approximation and then, its validation on another set of 
points. Finally, if needed, the hyper-rectangle is split in order 
to refine the affine approximation, based on a direct 
evaluation based rule as presented below. 

A. Splitting Rule (Procedure 1) 

Suppose   to be the complete parameter space to be 
explored. The split of a given hyper-rectangle         
is obtained by splitting the hyper-rectangle on all parameter 



  

space axes by hyper-planes through its center    . As a result 
of the splitting step,    new hyper-rectangles are generated 
(Fig. 3). 

B. Set of Points Generation (Procedure 2) 

For a given hyper-rectangle         we note    {              } its       vertices (Fig. 3). This set 

of points is used to compute the approximated control law. 

We note    {              } the union of all the vertices 

of the hyper-rectangles that would be created by using the 
splitting rule above (Fig. 3). This set of    vertices is used to 
validate the approximated control law. It can be seen that      . 

 
Figure 3.  Illustration of the splitting rules (Procedure 1) in     

dimension parameter space:    is split on both parameter space axes through 

its center    . It generates    new hyper-rectangles. The sets of points 
generated using Procedure 2 are also displayed:    has    vertices    {              } (black circles) which are used to compute the approximated 

control law. The control law is then validated on the set of points    {              }, displayed using green diamonds. They correspond to the 

vertices of the    new hyper-rectangles. 

C. Computing the Affine Approximated Control Law  ̂          (Procedure 3) 

Consider any hyper-rectangle         and its vertices    {              } as defined above. The parameters    
and    of the close-to-global solution approximation are 
obtained by linear regression analysis on the vector of   , the 
close-to-global solutions at the    vertices of   . The 
advantage of this method compared to approximating the 
close-to-global solution   of the mp-NLP, as presented in [7, 
20], is that it requires less computational time by avoiding 
running the model iteratively. However, as in [7, 20], the 
error between the optimal and sub-optimal objective function 
values remains the ultimate criterion to validate the 
approximated control law. 

D. Error Bounds Approximation (Procedure 4) 

Consider a hyper-rectangle         and its associated 

validation set of points   . The estimated error bound  ̂  of 
the error bound    is taken as the maximum estimated error 

bound obtained on the    validation points   : 
  ̂       {        } ( ̂         ) (17) 

where  ̂ is the sub-optimal objective function value, obtained 
with the approximated affine control law. 

E. Algorithm 

For a given hyper-rectangle        , we note    the 
vector of lengths of the hyper-rectangle along  . Assume that 
the maximal tolerance  ̅    of the objective function 
approximation error is given as well as the vector of the 
minimal hyper-rectangle allowed:      . The explicit 

approximate PWA control law is computed using the 
algorithm below:  

Input: The first hyper-rectangle    which represents the 
entire states space to be explored. The maximum 
approximation tolerance  ̅ and the vector of minimal allowed 
lengths of the hyper-rectangle   . We assume       . 

Output: Partition   {           } and associated 

PWA control law  ̂  { ̂    ̂      ̂   }. 
1. Initialize the partition to the first hyper-rectangle, i.e.        Move the hyper-rectangle    to       : the list of 

hyper-rectangles to be explored. 
2. Compute    the set of vertices of    as defined in 

Procedure 2. 
3. Compute a close-to-global solution            to problem 

(5)-(10) for each vertices   {        } of   , i.e. every 
point of   . 

4. while        is not empty do 
5. Select the first unexplored hyper-rectangle    in       . 

Thanks to previous calculations, its set of vertices    
and the associated close-to-global solution     (   ) to 

(5)-(10) are available. This is also the case for the 
corresponding close-to-global objective function value:       . 

6. Compute the approximated affine control law in the 
hyper-rectangle   , i.e.  ̂           as detailed in 

Procedure 3. 
7. Split the hyper-rectangle    as detailed in Procedure 1. 

Store the hyper-rectangles      {        } 
obtained in        : a temporary list of hyper-rectangles. 

8. Compute the vertices of each hyper-rectangle contained 
in        in order to obtain    as defined in Procedure 2. 
This list will provide the validation set of points of   . 

9. Compute a close-to-global solution     (   ) to problem 

(2)-(10) at each vertex contained in the set   . Store the 
corresponding close-to-global objective function value      . 

10. Enhance        by storing the close-to-global solution 
computed at step 9     (   ) for each hyper-rectangle   . Do the same for the set of vertices    of each 
hyper-rectangle and the corresponding objective 
function value       . 

11. Compute the approximate objective function  ̂     at 

          

   
   
          

       

              

  

  
  



  

each vertex contained in   , using the affine control 
law obtained in step 6. 

12. Compute the estimate of the error bound  ̂  in   , using 

the set of points    as specified in Procedure 4, the 
approximate solution computed at step 11 and the 
close-to-global solution value from step 9. 

13. Remove the hyper-rectangle    from        
14. if  ̂   ̅  then 
15. Save the hyper-rectangle   , its vertices    and the 

approximated affine control law  ̂           
obtained at step 6. Mark    as validated w.r.t the error 
bound criterion  ̅ and the sensitivity level   . 

16. else 

17. if  
        then 

18. Add the hyper-rectangles contained in        at the 
top of       . Clear       . 

19. else 
20. Save the hyper-rectangle   , its vertices    and the 

approximated affine control law  ̂           
obtained in step 6. Mark    as validated w.r.t the 
sensitivity level    only. 

21. end if 
22. end if 
23. end while 

 
This algorithm guarantees that a PWA feedback control 

law with a finite optimal number of hyper-rectangular 
regions will be obtained. The maximum number of elements 
in the partitions is a quantitative criterion of the exploration, 
controlled by the vector of maximum lengths along    of the 
hyper-rectangle     at step 20 of the algorithm. The effective 

number of elements is controlled at step 14 by the pre-
imposed qualitative criterion: the error bound  ̅. In our 
particular case, the maximum number of hyper-rectangles is 
greater than 2,000,000. The algorithm presented above leads 
to a final partition of 3917 elements, thus providing the 
adaptation capabilities of the proposed procedure. The 
splitting operation is used only when the nonlinear 
characteristics of the dynamics impose it. 

F. PWA Control Law Evaluation 

The online computation time of a PWA control law is 
directly linked to the complexity of the representation, i.e. 
the number of polyhedrons  . Strategies for reducing the 
number of regions exist [7]. Joining convex unions of 
polyhedrons which share the same affine control law is one 
of them.  

Another crucial element for an efficient and fast online 
implementation relies on the approach that is used to read the 
PWA function. It is a truism that evaluating one by one each 
region is computationally unsustainable. A more efficient 
alternative, proposed in [21] relies on a binary search tree 
representation of the partition. This method is particularly 
suitable in our case, where the partition relies on hyper-

rectangles. The logarithmic complexity in the number of 
regions considerably reduces the computation time with 
respect to direct approaches, even considering parallel 
implementation. 

 
In this study, a binary search tree is built using the MPT 

toolbox [22]. This allows embedding a table of M rows and     columns. As for the evaluation of the PWA control 
law it consists of a two steps procedure [23] : 
1. Searching the tree: starting at the root node and then at 

each step, a hyperplane cut         is evaluated. The 
child node is chosen according to the sign of this 
expression. This step is repeated until a leaf node is 
reached.  

2. PWA control evaluation: when the leaf node   has been 
reached, the control is directly given by evaluating  ̂          . 

At each node the arithmetic operations required are   
multiplications,   additions and one comparison. An estimate 
of the search tree depth    is usually given by             .  

VI.  CONTROL PERFORMANCES SIMULATION  

For the standard NMPC scheme (using iterative online 
optimization), performances on the MVEG (Motor Vehicle 
Emissions Group) driving cycle are depicted on Fig. 4. This 
cycle is designed to assess the fuel consumption and 
pollutants emissions of car engines in Europe and as such 
represent relevant engine operating conditions. It can be seen 
that the pressure set point tracking performances are 
acceptable: inlet manifold pressure tracking error remains 
under 50 mbar. 100 mbar represents a rough estimate of the 
maximum tracking error required to ensure good drivability. 

 
Figure 4.  Inlet manifold pressure tracking performances for different 

NMPC schemes are depicted on the first graph. The standard NMPC uses 
iterative online optimization and the explicit NMPC is computed using the 

algorithm presented in the paper. 

The mp-NLP problem has 4 constraints (15) and     
free variables: 

      (                           )  (18)  
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This leads to a partition of 3,917 hyper-rectangles stored 
in a binary search tree that approximately requires 71 
kilobytes of memory. That represents about 2.5% of the 
memory available in current standard Engine Control Units 
(ECU). In this particular example, the table that must be 
embedded contains 35,253 elements. This is in agreement 
with current 16 or 32 bits ECU that can respectively handle 
tables of       and       elements. 

 
The performances of the explicit controller are presented 

on Fig. 4 and Fig. 5. These performances are obtained by 
directly applying the actuator affine control laws stored in 
the binary search tree. On a Core™ i7 CPU x8 cores, without 
any specific Matlab® code optimization, the average 
computation time of the control law is reduced by a factor of 
10,000 with respect to the online optimization used in the 
standard NMPC. The average computation time of the 
control inputs is 0.09 ms with a standard deviation of about 
0.05 ms, i.e. far below the engine control sampling time: 10 
ms. With such a low computation time, the implementation 
of the control law on an actual ECU becomes worth 
considering. In fact, in this particular example, the number of 
arithmetic operations required to compute the control is in 
perfect agreement with current ECU performances:  72 
multiplications, 72 additions and 12 comparisons at each 
time step. 

 
However, since no integral actions have yet been 

considered, the tracking performances depicted on Fig. 4 and 
Fig. 5 are not acceptable. For example between 41 and 42 
seconds, a steady-state error of more than 100 mbar is 
encountered. One way to eliminate this offset is to introduce 
an integral action directly in the parametric control design by 
adding an integral state [24]. A drawback of this method is 
that it increases the number of states of the model, i.e. the 
number of parameters of the mp-NLP. The controller 
complexity could then become impractical.  

In order to circumvent this problem we propose to enhance 
the control scheme based on the explicit approach by adding 
an integral action at the end of the synthesis. Because of the 
efficient feed forward action achieved by the explicit NMPC, 
a single integral action, acting on the throttle, is required.  

 
The control actions are then computed as below: 

 ቆ ̂     ̂   ቇ          (          ) ∫              (19) 

where           is constant through the entire operating range 
and calibrated using a trial-and-error calibration method. In 
order to compensate with typical integral-windup effect, an 
anti-windup integral controller was implemented. The 
integral action must be sufficiently slow not to interfere 
significantly with the explicit control law during transients. 
[16] 

 
Figure 5.  Inlet manifold pressure tracking performances for two explicit 

NMPC schemes : with and without anti-windup integral action on the 
throttle. Comparative actuators position graphs are depicted. 

VII.  CONCLUSION 

The results shown in this paper confirm the fact that 
NMPC is predetermined to handle complex constrained 
nonlinear systems. It also demonstrates that the explicit 
approach is suitable to bring a NMPC control law to a real 
time implementation while matching automotive industry 
constraints in terms of computation time. The price to pay is 
an increase in memory requirements due to the PWA control 
law storage. In this approach, the use of a physics-based 
model will ensure a robust exploration of the parameter 
space of the mp-NLP. This approach is currently being 
extended to more complex technical definitions where more 
significant performance enhancement can be achieved. In 
fact, since efficiency criteria can directly be added to the 
objective function, one can guarantee to maximize the use of 
a given engine layout.  

Another major issue relies on the step that has been 
accomplished toward a quasi-systematic approach for 
designing engine air path control strategies. In fact, the 
combination of a physics-based model with the explicit 
NMPC scheme leads to an extreme reduction in tuning work. 
The nonlinear, constrained and coupled nature of the system 
is implicitly taken into account.  

Further extensions are under way in order to validate 
experimentally the controller performances as well as assess 
the overall tradeoff between memory and online 
computational requirements. 
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