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Explicit Nonlinear M odel Predictive Control of the Air Path of a
Turbocharged Spark-Ignited Engine

Jamil El Hadef, Sorin Olaru, Pedro Rodriguez-Ayerbe, Guillaume Colin, Yann Chamaillard, a
Vincent Talon

Abstract— Pollutant emissions and fuel economy objectives
have led car manufacturers to develop innovative and more
sophisticated engine layouts. In order to reduce time-to-market
and development costs, recent research hasinvestigated the idea
of a quasi-systematic engine control development approach.
Model based approaches might not be the only possibility but
they are clearly predetermined to considerably reduce test

The paper is organized as follows. Secfibpresents the
system and the control objectives. Section Il presents insights
into the physics-based model of the system. The NMPC law
is presented in sectiotvV while the algorithm used to
compute the explicit control law is detailed in section V
Finally, comparative simulation results are presented in the
last section.

bench tuning work requirements. In this paper, we present the
synthesis of a physics-based nonlinear model predictive control Il.
law especially designed for powertrain control. A binary search
tree is used to ensure real-time implementation of the explicit
form of the control law, computed by solving the associated
multi-parametric nonlinear problem.

SYSTEM DESCRIPTION ANDCONTROL OBJECTIVES

The objective is to design a control law for the air path of
a downsized turbocharged spark-ignited (SI) engine (Fig. 1).

. INTRODUCTION

Air Filter exchang

Modern combustion engines are multi-input multi-output
nonlinear systems with saturated actuators. In this context, the
development time and cost of control algorithms have become
major issues for car manufacturers. This study is motivated by
the desire to tend toward a quasi-systematic engine control
design and calibration process. Model predictive control
(MPC) in general has become the accepted approach in
various industries for controlling multivariable processes [1]
Until now, online computation complexity considerations
have prevented it from penetrating the automotive industry
[2-4]. This drawback can be circumvented using an explicit
approach where an approximation of the solution is computed
using multi-parametric programming. This methodology has
considerably enlarged the range of possible applications [5-8]
and is applied here, to the engine air path control of a
turbocharged engine [2, 10].

Throttle

Cylinders

X

Outlet manifold

Exhaust line

Wastegate

Figure 1. Air path sketch of a turbocharged Sl engine (pdsdor
pressureT for temperature, Nandw; are respectively the engine and
turbocharger rotational speed).

In this paper, we present the synthesis of an explicit f}‘t the - intake .(Q'TT%VC)' a corr?pressor a_rlld a f;eat
nonlinear predictive controller (NMPC) which relies on gxehanger successively Increase the pressugg_(,pg an
control-oriented physics-based engine model].[ The Ccool down the fresh air flow (g, Tapd. Then, a variable flow
objective function is designed to track an inlet manifolgestriction, called throttle, controls the inlet maquld pressure
pressure set point while optimizing the engine efficiency. THgnar ALthe eXE‘_"‘“St_@pUTaV‘)’ tlklledartr)wountt())f gas wh||(ch passes
explicit approach leads to a piecewise affine control la rough a furbine is _controlled by a by-pass, known as a
which, once stored in a binary search tree, matches ty@Stédate (Fig. 1). This energy, recovered at the exhaust,

requirement for real-time implementation, i.e. provides botfi'veS the intake compressor and its outlet boost presgure p

fast and predictable computation time. The conclusigftough a shaft (o) [12]. This introduces a physical feedback

stresses the fact that NMPC combined with the explicﬁ)(ath in the engine.
approach is a major step toward a systematic engine control |n order to maximize the efficiency of the three-way

design and calibration process.
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catalytic converter, S| engines operate with an air/fuel
equivalent ratiof one. Consequently, from the control point
of view, the engine torque is directly controlled by the air
mass entering the cylinders. For a given engine speed, this
mass directly depends on the inlet manifold pressure and
temperature. A supervisor usually provides the inlet manifold

(e-mailpressure reference trajectories from the engine torque that

must be achieved. Thus, the air path controller task is to
determine which throttle and wastegate positions will allow a
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given inlet manifold set point to be reached in the minimurwhere | is the turbocharger inertia of the shaft which links the
amount of time. Pollutant emissions and drivabilitgurbine to the compressor aifig,, and T, respectively
consideration are taken into account by the supervisor. represent the turbine and compressor torques.

Il. PHYSICS-BASED OD ENGINE MODEL D. Actuator Models

When considering real-time automotive model-based The system has two inputs: the throttle and the wastegate
control, authors usually use multiple piece-wise linear guositions, respectivelyu,,, and u,,. Both actuators are

linearized models to describe the nonlinear behavior ghnsidered as variable flow restrictions. The flow is computed
combustion enginesly]. These models allow fast output Uﬁing pressures on each side:
c

prediction but their calibration requires numerous test ben

us 2 2 i
measurements. IQ(u) = ﬁAeﬁ(u)l‘[v /y%(l -1y )

In explicit approaches, the model is only used offline, in a ¥ 3)
multi-parametric program [/]. For this reason, we propose | T = max (%, (L)V*)
to use a single physics-based nonlinear model. In order to k Pus " v+l

bring the calibration effort under control, the combination of where A ¢ is the effective area of the orifice and depends
0D modeling approach and a mean value cylinder model wasnlinearly on the actuators’ position: U = Up,p OF U = Uyg.
chosen 14]. The philosophy behind the model is succinctlyrpe indices “us” and “ds” respectively stand for upstream and
described below. For the complete derivation of the model S§6wnstream.

[11,12,15). As explained in 16], the dynamics of the actuators are
A. Hypothesis and Modeling Philosophy neglected.

The air path is discretized: a control volume of the air path, symmary

SOI]?:EVY/%?U?Q 2;&0& rf(e)\:,;[rr:(z':l:?gn ’Zr)[_self followed by another The physics-based model is nonlinear and has four states:

CONTROL VOLUME Papc: Pman» Pavt anq Wy. Thgre grg twc.) control variables:
Heat exchanger + Pipes Upap @nduy,g. In continuous time, it is written as below:

~. .- . _r
\_/p\/ s pape - Vape (QcompTapc - chr (upap)Tape)
Q E> ape E> . -
comp Tapc chr Pman = Vman Tman(chr (upap) - Qeng)
— ¢ Compressol Throttle X yr

(4)
RESTRICTION RESTRICTION Pave =3 — Tovt (Qeng + Qfuel — Qeurb — ng(uwg))
Figure 2. Example of a succession of control volumes and restrictibas: k‘” _1 (F T )
heat exchanger and its pipes are surrounded by twadsirictions: the t = 7 \turb comp
compressor and the throttle. where Vipe Vman and Vi, respectively represent the volume

between the compressor and the throttle, the volume of the

In (_aach control volume, the pressure and the temperaty fake manifold and the exhaust manifold volume (Fig. 1).
describe the complete thermodynamic state of the volume. g iS the engine mass air flow af,e the injected fuel

each of them, the pressure dynamics is described by )
differential equation deded from Euler’s mass, energy and quantity. G an_d Qg _Stand for the throttle and wastegate
momentum equationd {]. The temperature dynamics can bdlOWs, both obtained with (3). o
neglected and computed through algebraic relatibfs7]. For control design purposes, the model is discretized at a
Altogether, the model contains three control volumes: tH&@mpling time of 1 ms, usiriguler’s backward differentiation

inlet and outlet manifolds and the heat exchanger (Fig. 1).method. Results concerning steady-state and transient
respectively corresponds to three statgss [P and Rpe A Validation of the discrete-time model are given 18][ The

fourth state describes the turbocharger rotational speed . model validation stage shows that the prediction error remains
well below 10% for steady-state operating points as well as
B. Pressures in the Three Control Volume transients.

In a given control volume/ (Fig. 2), the pressure time
derivativep is given by: _ _
p= % (Quny, Tin = Qg Tout) (1) A- NMPC Formulation for Reference Tracking

wherey is the ratio of specific heat, r is the fluid gas constant, MPC !Jsua"y uses an |ter§t|ve finite-time C_’Pe” loop
T the flow temperature and.Qthe mass flow rate. Indices optimization to compute the optimal actuator position vector

“in” and “out” respectively stand for inlet and outlet of the u* with respect to an objective functi@n At each time step,

IV. NONLINEAR MODEL PREDICTIVE CONTROL

considered control voluen only the first c_ommand is applied to the reql process. A new
open-loop optimal problem is solved following the receding
C. Turbocharger Model horizon principle [12, 18].
The turbocharger rotational speedis given by: Given the current system statg, and the vector of
o = ;(Fturb _ Fcomp) (2) exogenous inputs (principally the set points) at time instant

k, the discrete-time NMPC problem can be written as below:



. . _ N o oo . . _
$* = S(u’) = min y(, [S =n p](X(l),y(l),u(l),O')] (5) opt|m|zat|o'n. problem inc WhICh makes. the Qeflnmon' of
¢ K+ 1) = fx(k). uk 6 such additional terms impractical in this nonlinear
S x( K 2_ ()1((( ), 111(( ),0) (7) framework. However, the closed-loop stability (in the sense
y(k) = g(x(k), u(k), o) (7) " of boundedness of state space trajectories) is ensured by the

x <x(k) <X (8) i i .
= - intrinsic dissipative properties of the system as well as the
usuk)<u (9) bounds on the control variables.

x(k) = xo (10)  The only thing left is a proper choice of the control
wherex(i) denotes the system states arfé) stands for the sampling time: in order to control the fast dynamics of the
vector of piecewise constant control inpytds called cost engine as well as allow fast response to set point changes a
function andH, = [k,k + N, | is the so-called prediction new control is applied every 10 ms.
honzqn at t'm.e Kf andg are nonll_near functm_ns descrlglngc_ Prediction Horizon and Control Variable Partition
the discrete-time system dynamics. Finalty,x, u andu ) o )
respectively stand for lower and upper bounds on the statedn this study, a prediction and control horizon of 100 ms

and the control variables. combined with a constant control value over these horizons
o ] proved to be flexible enough to track realistic vehicle
B. Application to a Turbocharged Sl Engine transients 16]. The optimization problem is addressed in a

The air path control problem fits into the aboveclassical single shooting framework using the trust-region
formulation of an NMPC optimal control problem if wereflective method implemented in Matlab®. This algorithm,

consider: initialized in the middle of the control variable space
X 1= (pape'pman' Pavts wt) (11) u= E_;O%, converges W|th_|n 10_|terat|(_3ns to a cldseglobal
— 12) solution. Results are depicted in section VI andLB}. [
Y = (Pman, Pavt) 12) e :
U= (u u ) (13) The characteristics of the problem (&B), i.e. the small
— (N s P ng ) 14y humber of model states and set points, as well as its short
0 = Ne, Pman, Pamb, lamb (14) convergence time match the requirements for computing an

. . P
where Ty, IS '_[he am;nent telr(n aerztur_e Zm’an_f"i’dthe exr%Iicit solution. In particular, (5)10) can be considered as
pressure set point, used to track the desired manifold pressyn ulti-parametric nonlinear program (mp-NLP) since it is a

set.point and i§ assumed tp be consta}nt over the predim%ﬁlinear program im parameterized by and o. The next
horizon. The right hand side of (6) is derived from thgection provides insights in the synthesis of the pieewis

discrete-time version of the set of equations (4), while trbﬂ'fine (PWA) solution to this mp-NLP and its real-time
output vectoty consistsof the second and third states of th mplementation

same model. No explicit state constraints are imposed. The
manipulated variables are bounded in order to take intoV. EXPLICIT NONLINEAR MODEL PREDICTIVE CONTROL

account actual actuator saturations: The PWA approximation of the solution of (5) is
) ] _0 _5,‘1 < 100% ) ,(15) computed using mp-NLP [20]. The constituent functions
Since there is an infinite number of combinations afijj he defined on hyper-rectangles, which enables the
actuator p03|t_|ons to achieve a given inlet mgmfold Pressunesrameter partition to be represented as a binary search tree
one would like to select the most efficient one. They1) oOpjine, the time-consuming MPC optimization is then
efficiency on an engine cycle can be computed from theaced by positioning via a simple search tree. This
integral of the cylinder pressure-volume (p-V) diagram fqsitioning mechanism fulfils all the criteria for a real-time
four-stroke engines1p]. In particular, the pumping 10SSesynjementation: i.e. both fast and predictable calculation
are directly linked to the difference between the exhaugf,e. During the synthesis, the accuracy of approximation is

manifold pressur@,,: and the inlet manifold pressupgian-  quantified by the difference between the clesgtobal and
In order to reduce the pumping losses, i.e. increase tE’ﬁb—optimaI objective function values.

engine efficiency, this thermodynamic consideration is | the sub-sections below, we successively detail the
directly taken into account in the objective functid®][ A jifferent steps to build the PWA law from the NMPC
first term ensures set point tracking while a second Ongqqrithm presented in sectidi. The complete algorithm
minimizes the pressure ratio between exhaust and inigkjydes: generating a set of points, computing the affine

manifold: , _ approximation and then, its validation on another set of
S = Z::(Np [Ol(prslfan _ pman(i)) + BPLt(‘)] (16) points. Finally, if needed, the hyper-rectangle is split in order

h th ighting fact q dp"t‘a“(i) | dto refine the affine approximation, based on a direct
where the weighting factors and p are used to scale an evaluation based rule as presented below.

penalize each term of the cost functionalfis chosen too

small compared t, the inlet manifold pressure will not A. Splitting Rule (Procedure 1)

reach its desired value. SupposeX to be the complete parameter space to be
The NMPC formulation (5-10) avoids the use of a terminaxplored. The split of a given hyper-rectangjec X < R™

penalty term and terminal constraintd9] This design s obtained by splitting the hyper-rectangle on all parameter
choice is principally due to the parameterization of the



space axes by hyper-planes through its Cqﬂ)teAs a result whereS is the sub-optimal objective function value, obg¢ain
of the splitting step2™ new hyper-rectangles are generatetVith the approximated affine control law.

(Fig. 3. E. Algorithm
B. Set of Points Generation (Procedure 2) For a given hyper-rectanghg < X < R", we noteA, the

For a given hyper-rectangle&X; € X € R"* we note vector of lengths of the hyper-rectangle alang\ssume that

o = {6'16‘2 e]N } its Ng = 2" vertices (Fig. 3). This set the mgxmgl toIeran.cez0.> 0 of the objective function
\ i 0 ) approximation error is given as well as the vector of the
of points is used to compute the approximated control layiimal hyper-rectangle alloweda, > 0. The explicit

i j ; ; . ; .
We noted’ = {‘Pl"Pz' ---"PN(,,} the union of all the vertices 5pnroximate PWA control law is computed using the
of the hyper-rectangles that would be created by using thigorithm below:
splitting rule above (Fig. 3). This setMf, vertices is used to  Input: The first hyper-rectangl¥, which represents the

validate the approximated control law. It can be seen themtire states space to be explored. The maximum
0 c ¢, approximation tolerance and the vector of minimal allowed
lengths of the hyper-rectanglg. We assum@, > A,.

Output: Partition I = {X;,X,, ..., Xn,} and associated

PWA control lawii; = {ﬁxl,ﬁxz, ...,ﬁXNX}.

1. Initialize the partition to the first hyper-rectangle, ile=
X,. Move the hyper-rectangl®, to List 1: the list of
hyper-rectangles to be explored.

2. Compute @° the set of vertices oK, as defined in
Procedure 2.

3. Compute a closé&s-global solutionuio(ef) to problem

(5)-(10) for each verticese {1,2, ..., Ng} of X, i.e. every

point of@°.

while List 1 is not emptydo

Select the first unexplored hyper-rectangjen List 1.
Thanks to previous calculations, its set of vertidés
and the associated clogeglobal solutionuy, () to

(5)-(10) are available. This is also the case for the

corresponding clost-global objective function value:

C. Computing the Affine Approximated Control Law S*
axj = K;x + h; (Procedure 3)

Figure 3. lllustration of the splitting rules (Procedure Lyir= 2
dimension parameter spadg:is split on both parameter space axes through

its centere{). It generate@™ new hyper-rectangles. The sets of points 4,
generated using Procedure 2 are also displa§dths2™ verticesd’ = 5.
{ejl, o,.., e’;\,e} (black circles) which are used to compute the appratéd
control law. The control law is then validated on $keé of pointsb) =
{cpjl,(pjz, cij(p}, displayed using green diamonds. They correspotiteto
vertices of the™ new hyper-rectangles.

ol
6. Compute the approximated affine control law in the

Consider any hyper-rectangie € X € R" and its vertices hyper-rectanglex;, i.e. ﬁx,- _ K]_TX +h; as detailed in

0= {9’1,9'2,...,9’Ne} as defined above. The parametéss
and h; of the closee-global solution approximation are 7.
obtained by linear regression analysis on the vectaf,dahe
closeto-global solutions at theNy vertices of X;. The
advantage of this method compared to approximating tife
closeto-global solutionS*of the mp-NLP, as presented in [7
20, is that it requires less computational time by avoiding
running the model iteratively. However, as in PO], the 9.
error between the optimal and sub-optimal objective function
values remains the ultimate criterion to validate the
approximated control law.

D. Error Bounds Approximation (Procedure 4)
Consider a hyper-rectangte < X < R" and its associated
validation set of pointsb). The estimated error bourggl of

the error bound; is taken as the maximum estimated error
bound obtained on the,, validation pointsbi:

A S . S*
€0 = MAXie(12, Ny} | O ~ )
1 i

10.

(17) 11.

Procedure 3.

Split the hyper-rectanglg; as detailed in Procedure 1.
Store the hyper-rectanglesXy, k € {1,2, ...,2"}
obtained inList 2 : a temporary list of hyper-rectangles.
Compute the vertices of each hyper-rectangle contained
in List 2 in order to obtainb’ as defined in Procedure 2.
This list will provide the validation set of points X

Compute a closés-global solutionuy, (¢)) to problem

(2)-(10) at each vertex contained in the ®ét Store the
corresponding closts-global objective function value
S*i.
@i

EnhanceList 2 by storing the closé&s-global solution

computed at step 8%, (¢F) for each hyper-rectangle

X,. Do the same for the set of vertic®& of each
hyper-rectangle and the corresponding objective
function valuesgk .

i

Compute the approximate objective functié(r‘;j at
i



12.

each vertex contained i/, using the affine control rectangles. The logarithmic complexity in the number of
law obtainedn step 6. regions considerably reduces the computation time with
Compute the estimate of the error bo@gdn X;, using respect to direct approaches, even considering parallel

the set of pointsp as specified in Procedure 4, thelmplementation.
approximate solution computed at step 11 and the

closeto-global solution value from step 9. In this study, a binary search tree is built using the MPT

toolbox 22]. This allows embedding a table B rows and

13. Remove the hyper-rectangle from List 1 !
14, ifg, <% then n +'3 columns As for the evaluation of the PWA control
15. Save the hyper-rectangly, its vertices® and the Ilaws';;ons.'StS ofatw? step§ procedue]l:

) ] T . rching the tree: starting at the root node and then at
approximated  affine - control laWﬁXi = K x+hy each step, a hyperplane mﬁx+ d; is evaluated. The
obtained at step 6. Madk as validated w.r.t the error  hild node is chosen according to the sign of this
bound criteriore and the sensitivity level,. expression. This step is repeated until a leaf node is

16. else reached.
17. if %AX> A, then 2. PWA control evaluation: when the leaf nodghas been
18. Add the_hyper-rectangles containedliist 2 at the reached, the control is directly given by evaluating
top ofList 1. ClearList 2. Oy, = ¢fx +d,.
19. €se At each node the arithmetic operations required are
20. Save the hyper-rectanghg, its vertices®’ and the multiplications,n additions and one comparison. An estimate
approximated affine control laviy = K;"x+h; Of the search tree depthD is usually given by
obtainedin step 6. MarkX; as validated w.r.t the D= 1.7log; M.
sensitivity levelA, only. VI. CONTROL PERFORMANCESSIMULATION
21. enq it For the standard NMPC scheme (using iterative online
22. end 'f, optimization), performances on the MVEG (Motor Vehicle
23.end while

Emissions Group) driving cycle are depicted on Fig. 4. This

cycle is designed to assess the fuel consumption and
This algorithm guarantees thatPWA feedback control y g P

| ith fini mal b fh | rpoIIutants emissions of car engines in Europe and as such
aw wit a Inite _optlma number o yper-rectangula represent relevant engine operating conditions. It can Ime see
regions will be obtained. The maximum number of elemen

. " ) o L ) [Rat the pressure set point tracking performances are
in the partitions is a quantitative criterion of the eXplorat'orhcceptable: inlet manifold pressure tracking error remains

controlledby the vector of maximum Iengths alomgof the under 50 mbar. 100 mbar represents a rough estimate of the
hyper-rectanglé,; at step20 of the algorithmThe effective  4yimum tracking error required to ensure good drivability.
number of elements is controlled at step 14 by the pre-

. . . Inlet Manifold Pressure p [Pa]
imposed qualitative criterion: the error bou@d In our an

X 105

T

particular case, the maximum number of hyper-rectangles is
greater than 2,000,000. The algorithm presented above leadg
to a final partition of 3917 elements, thus providing thel.5
adaptation capabilities of the proposed procedure. The
splitting operation is used only when the nonlinear

characteristics of the dynamics impose it. L

F. PWA Control Law Evaluation

T
|
|
J

'y

¥
Y

B

. 77

SP
pman

Explicit

-——Standard NMP(]

The online computation time of a PWA control law iso"'
directly linked to the complexity of the representation, i.e.
the number of polyhedronll. Strategies for reducing the o0
number of regions exist [7]. Joining convex unions of
polyhedrons which share the same affine control law is one
of them.

___________

40

45

50
Time [s]

55

65

Figure 4. Inlet manifold pressure tracking performances for different

Anoth ial el f ffici d f l NMPC schemes are depicted on the first grapie standard NMPC uses
nother crucial element for an efficient and fast on N€iterative online optimization and the explicit NMP&computed using the

implementation relies on the approach that is used to read the
PWA function. It is a truism that evaluating one by one each

algorithm presented in the paper.

region is computationally unsustainable. A more efficient The mp-NLP problem has 4 constraints (15) and 6
alternative, proposed ir2] relies on a binary search treefree variables:

represen?ation of the partition. This m_ethod !s particularly eif = (pape'pman'pavt, w0 S, Ne)T
suitable in our case, where the partition relies on hyper-

(18)



This leads to a partition of 3,917 hyper-rectangles stored 5 Inlet Manifold Pressure p [Pa]

in a binary search tree that approximately requires 71 2210 — :
kilobytes of memory That represents about 2.5% of the Prman
memory available in current standard Engine Control Units 4 5 4 Explicit
(ECV). In this particular example, the table that must be —Explicit plus integra]
embedded contains 35,253 elements. This is in agreement
with current 16 or 32 bits ECU that can respectively handle 1 | “T/\M
tablesof 216 — 1 and23? — 1 elements. I
0.5 ERTETEEE R
The performances of the explicit controller are presented / =
on Fig. 4 and Fig. 5. These performances are obtained by
directly applying the actuator affine control laws stored in 38 40 42 44 46 48
the binary search tre®n a Core™ i7 CPU x8 cores, without ¥ 10 Time [s]
any specific Matlab® code optimization, the averageﬁ *\
computation time of the control law is reduced by a factor qf 50 mm
10,000 with respect to the online optimization used in the J | N—
standard NMPC. The average computation time of tie ° 38 40 42 44 46 48
control inputs is 0.09 ms with a standard deviation of aboy$ Time [s]
0.05 ms, i.e. far below the engine control sampling :tibfe O;» 10
ms. With such a low computation time, the implementatiom M
of the control law on an actual ECU becomes Wort% i
considering. In fact, in this particular example, the number & |
arithmetic operations required to compute the control is i 38 40 ‘T‘ﬁne [s] 44 46 48

perfect agreement with current ECU performances: 72

S L. . igure 5. Inlet manifold pressure tracking performances for two eitplic
multiplications, 72 additions and 12 comparisons at eadll: NMPC schemes : with and without anti-windup integetion on the

time step. throttle. Comparative actuators position graphs aepéctied.

However, since no integral actions have yet been VII. CONCLUSION
cqnsidered, the tracking performances depicted on Fig. 4 andrpe results shown in this paper confirm the fact that
Fig. 5 are not acceptable. For example between 41 and 4gipc is predetermined to handle complex constrained
seconds, a steady-state error of more than 100 mbarpi§yjinear systems. It also demonstrates that the explicit
encountered. One way to eliminate this offset is to '”tmd“%proach is suitable to bring a NMPC control law to a real
an iptegral .action directly in the parametric co_ntrol desig_n B¥me implementation while matching automotive industry
adding an integral stat@4]. A drawback of this method is ¢ynstraints in terms of computation time. The price to pay is
that it increases the number of states of the model, i.e. 198 increase in memory requirements due to the PWA control
number of parameters of the mp-NLP. The controllgg,y, storage. In this approach, the use of a physics-based
complexity could then become impractical. model will ensure a robust exploration of the parameter

In order to circumvent this problem we propose to enhan_g%ace of the mp-NLP. This approach is currently being
the control scheme based on the explicit approach by addiggended to more complex technical definitions where more
an integral action at the end of the synthesis. Because of g?&nificant performance enhancement can be achieved. In
efficient feed forward action achieved by the explicit NMPCPact, since efficiency criteria can directly be added to the
a single integral action, acting on the throttle, is required.  gpiective function, one can guarantee to maximize the use of

i a given engine layout.

The E?ntrol actions are then computed as below: Another major issue relies on the step that has been
(Lilzap> _ KjT)H_hj + (Kintegral)f(prsnpan — Pran) (19) accpmplished _towa_rd a quasi—systematip approach for

wg 0 designing engine air path control strategies. In fact, the
whereKi,iegral iS CcOnstant through the entire operating rangeombination of a physics-based model with the explicit
and calibrated using trial-and-error calibration method. In NMPC scheme leads to an extreme redudtiotuning work.
order to compensate with typical integral-windup effect, ahhe nonlinear, constrained and coupled nature of the system
anti-windup integral controller was implementedhe is implicitly taken into account.
integral action must be sufficiently slow not to interfere Further extensions are under way in order to validate
significantly with the explicit control law during transients.experimentally the controller performances as well as assess
[16] the overall tradeoff between memory and online

computational requirements.
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