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Abstract Liquid *He is a model system for strongly correlated Fermi liquids. For
this reason, many X-ray and neutron scattering experiments have been performed
to understand the structure and dynamics of this quantum fluid. We have recently
shown that two-dimensional liquid *He sustains long-lived zero-sound excitations
at large wave-vectors (Nature 483, 576, 2012). Here we show that its static struc-
ture factor can be obtained with reasonable accuracy by integrating the experi-
mental S(Q,®) over a suitable energy range. A good agreement is found between
the static structure factor deduced from the experiment and theoretical models:
Quantum Monte Carlo simulations and Dynamical Many Body Theory (DMBT).
At high wave-vectors, the experimental values are underestimated because of the
limited accessible phase space; nevertheless, even at atomic wave-vectors a semi-
quantitative agreement is observed with the theoretical predictions.
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1 Introduction

The static structure factor S(Q) is a quantity experimentally accessible by neutron
or X-ray diffraction. It depends essentially on the atomic radial distribution func-
tion and can be determined by calculating the Fourier transform of the latter. The
static structure factor is given by the expression:

S(Q) = %<PQP—Q> (1)

where N and pg are respectively the number of atoms and the Fourier trans-
form of the microscopic density p(r).

S(Q) is usually measured by neutron or X-ray diffraction, but this simple tech-
nique cannot be used in practice in the case of two-dimensional 3He atoms ad-
sorbed on graphite: the very strong background due to the solid substrate would
dominate the signal from the *He atoms by several orders of magnitude. Using
neutron inelastic scattering, however, it is possible to separate the contribution of
the helium from that of the substrate. We present in this manuscript a first attempt
to determine the static structure factor of a submonolayer liquid *He film. The lat-
ter is adsorbed on a graphite substrate preplated with one solid layer of *He. The
experimental results for S(Q) were obtained by integrating the data of S(Q,w) [1]
over a carefully determined (wave-vector dependent) energy range, as described
below.

Our study of the two-dimensional Fermi liquid *He was motivated by several
points. Two-dimensional *He has a similar topology as bulk He. Indeed, in the
case of the 2D system, *He atoms populate the energy levels giving rise to a Fermi
disk in k-space, while in 3D, we obtain a Fermi sphere. However, the absence of
a critical point in two-dimensional *He allows the exploration of a larger density
range, going from zero (Fermi gas) to very high ones, until the system solidifies.
We can therefore study Fermi liquids with an effective mass varying from m* =
m to much higher values than those found in bulk *He [2-6]. For a 2D layer of
density p = 4.7 40.2atoms/nm?* the effective mass is about four times the bare
mass of a *He atom, this can be obtained in a bulk system by applying a pressure
of IMPa.

Present many-body theories have reached a degree of accuracy which enables
them to provide quantitative predictions for the static structure factor of such a
system. Confronting the experimental result with these theoretical predictions is
therefore of interest. In addition, a test of the accuracy of the density determined
in our previous works by indirect means, can be obtained from a comparison with
the theory, using the shift of the maximum of S(Q) with density.

‘We have shown previously a good agreement between the excitation spectrum
of the two-dimensional Fermi liquid *He calculated by DMBT and the values
of S(Q,w) obtained experimentally [1]. DMBT adopts the view that the phys-
ical mechanisms which determine the short-wavelength spectrum are the same
in He and *He. Based on this assumption, the DMBT has been developed by
generalizing the bosonic dynamic many-body theory [7-9] which describes with
good accuracy the excitation spectrum of “He. The novelty in the fermionic ver-
sion of DMBT [10] is that it takes into account the pair correlations. The DMBT
for two-dimensional systems predicts correctly all the excitations observed in the



measurement of the inelastic spectrum [1]; however, an accurate quantitative fit of
the experimental data with the theory is still not possible, due to higher order ef-
fects. However, these corrections are expected to affect only moderately the static
structure factor. DMBT direct calculations of S(Q) were performed by the Linz
group, providing us with a prediction for S(Q) at a density close to that of our
experimental system. Further details about this theory are given in reference [11].

We also compare our experimental results to diffusion Monte Carlo calcula-
tions performed for similar densities [12]. The theory allows the derivation of
effective interactions. Assuming that the dynamic susceptibility is given by the
Random Phase approximation (equation 2), the static structure factor can be de-
duced from dynamic response functions:

__ Q)
HeO =TT omic @
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where x(Q, ®) is the generalized susceptibility of the Fermi gas. V(Q) is the
Fourier transform of the potential. The expression 3 is obtained by applying the
mg sum rule [13]:

5(0) = [ dos(0.0) @

2 Two-dimensional Fermi liquid

Because of its perfectly spherical Fermi surface, its relatively simple Hamilto-
nian and its very high purity, liquid *He is a perfect candidate for studying highly
correlated Fermions. Its properties are described by Landau’s Fermi liquid the-
ory, which is valid at low momentum transfer and low temperatures. The effective
mass of quasi-particles (m*), specific heat (Cy) and magnetic susceptibility ()o)
of a Fermi liquid can be deduced from the bare mass of 3He, the specific heat (C§)
and the magnetic susceptibility (x#) of a Fermi gas, with renormalization factors,
expressed in terms of the Landau parameters which parametrize the interactions.
The formulae applicable in two dimensions [14] are similar to their 3D analogues:

m* =m(l+1/2-F/) (5)
Cy = %cé =(1+1/2-F)C (6)

20 = (1+1/2-F)( ) x8 (7

1+ F

Here m is the bare mass of a *He atom, and F, | and Fy’ are Landau’s parameters
that depend on the interactions, and hence on density.

The properties of two-dimensional *He can be deduced from the expressions
below, with numerical values calculated for p = 4.7 0.2 atoms/nm?, the density
investigated here.
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Fig. 1 In order to smooth the potential and obtain a two-dimensional homogeneous Fermi liquid,
3He is adsorbed on a graphite substrate preplated with a solid “He layer.
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3 Sample characteristics

Experimental details have been given in previous publications [1, 15, 16]; for clar-
ity, we summarize in the following the most relevant experimental parameters.
We discuss in more detail the background subtraction, essential to the object of
the present article, the determination of S(Q). Because of the large absorption of
neutrons by 3He atoms and the large background due to the substrate, the data
analysis required a special treatment. We discuss in the next section the experi-
mentally accessible region where S(Q,®) was obtained with good accuracy.

In order to obtain a homogeneous two-dimensional liquid *He film, we used
a high quality exfoliated graphite substrate (Union Carbide ZYX). The graphite
substrate has been characterized by neutron diffraction experiments at the ILL[1,
15]. In order to make the adsorption potential more homogeneous for the 3He
atoms, we preplate the substrate with a solid layer of “He atoms as shown on fig-
ure 1. The maximum density of the first layer is 11.6 atoms/nm?. All additional
atoms introduced in the cell will populate the second layer. We introduce a vol-
ume of 28.59 cm3STP (standard conditions of temperature and pressure) of “He
atoms. This corresponds to a layer’s density of 11.3 atoms/nm? (we take into ac-
count the compression due to the adsorption of atoms on the second layer). Then
we introduce in the cell a volume of 11.0 cm>STP, we thereby obtain a *He layer
of density 4.7 & 0.2 atoms/nm? (the uncertainty being due to that on the effec-
tive surface area available for adsorption). Adsorption isotherms are performed at
4.2 K, annealing of the films is done by lowering the temperature progressively
from 20 K, with steps at adequate intermediate temperatures. The neutron mea-
surements are performed at a temperature of about 50 mK.

4 Neutron set-up

Before measuring the dynamical structure factor of the two-dimensional *He sam-
ple, the signal of the bare graphite as well as that obtained with the *He solid layer
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Fig. 2 Accessible phase space (Q,w) calculated for incident neutrons of wavelength 0.512 nm.
The lines labeled by different angles indicate the positions in the [Q,®] plane covered by differ-
ent detectors. Only the part corresponding to a positive energy transfer is shown on the figure.
Thick solid lines indicate the limits of the particle-hole band, the dashed line the dispersion of
the zero-sound mode observed in two-dimensional Fermi liquid 3He [1], and the dashed frame
the region were background subtraction is possible.

have been measured in detail. All the data have been taken on the IN6 time-of-
flight instrument at the ILL. In this instrument, the wavelength of the incident
neutrons is selected by Bragg reflection on graphite crystal monochromators. An
incident beam wavelength of 0.512 nm was selected. The beam is then conditioned
in short packets of monochromatic neutrons by a Fermi chopper. After interact-
ing with the sample, the neutrons are scattered in multiple directions depending
on the momentum transfer in the process of creating excitations. They are finally
collected by a detector bank covering a wide angular range, from 10° to 115°.
The time of arrival of each neutron as well as the scattering angle are registered.
From this information we obtain the double differential cross-section, and hence
the dynamical structure factor of the system:

d’c  dEp, d’c
Q0 dt JQJEy,

No /m\3/2L3
= — = —5(0,0 11
21 E|k> (2) 4 (Q’ ) (n
where % is the double differential cross-section which yields the number

of scattered neutrons per unit of time in a solid angle d€2. N is the number of
scattering centers, L the distance between the sample and the detectors, t the time
of arrival of neutrons, m their mass, Ej;) and Ejyy are respectively the energy of
incident and scattered neutrons.
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Fig. 3 Schematic representation of the dynamical structure factor of the bare graphite substrate.
The intensity is represented in the third dimension in a logarithmic scale. The signal at low en-
ergies corresponds to very high intensities, but significant background is also present elsewhere,
seen as spots. Measurement is possible only in the central, uniform part of the [E,Q] area, where
background is comparable to the very weak >He signal.

5 Neutron measurements and background subtraction

The experimentally accessible phase space in the (Q,®) plane is determined using

the equation:
2 ho ho
0’== l————/1———cos (12)
A ( 2E\k> E\k) ((P))

where ¢ is the angle at which the detectors are located, A the wavelength
of the incident neutrons, @ and Q are respectively the energy and momentum
transfer. The lines in figure 2 represent different constant angles (i.e. detectors)
in the range from 10° to 115°. In principle all the region encompassed by the
lines corresponding to angles between 10° and 115° and energies from zero to
that of the incident neutrons, is accessible experimentally. In practice, however,
good statistics and an accurate subtraction of background is obtained in a much
smaller region of the phase space (dashed frame in figure 2). This is due to the
combination of several effects, which lead to the background depicted in figure 3:

1. The region at high energy transfers (A > 1.8 meV) is contaminated by frame-
overlap. The effect is due to simultaneous detection of slow neutrons of a
packet and fast neutrons of the following one. Exploration of S(Q,®) of *He
in this region becomes difficult.

2. At low energy transfers (iw < 0.3 meV), the graphite elastic peak at Q =
19nm~! (Bragg peak) is very intense. Moreover, the adsorption of helium
layers leads to a reduction of the finite size effects associated with the graphite
powder, i.e., the scattering planes represented by the helium adsorbed layers
can be seen as increasing the rather small number of graphite planes of each
graphite platelet, and hence leading to a better definition of the corresponding



diffraction peak, and therefore to a reduction of the width of the graphite’s
elastic signal (see [17] and references therein). Subtraction of the background
for such momentum transfers requires a delicate fitting procedure.

3. At high wave-vector transfers, a phonon branch is observed in the substrate
spectra (see figure 3). The additional neutron counts in the background in-
crease the statistical uncertainty in this region. However, this feature is useful
to check the accuracy of background subtraction after performing corrections
for neutron absorption by the *He.

4. No supplementary contributions to the background are observed when “He
atoms are introduced in the cell. The background changes slightly, in particular
due to interference effects mentioned before, but no new feature is observed.
Indeed, because of its high density, the Bragg peak of the *He layer is located
at Q = 22.6nm~! and is thus outside the experimentally accessible wave-
vector region.

For the reasons listed above, the dynamical structure factor S(Q,®) of the 3He
layer can be determined reliably only in the region delimited by the dashed frame
of figure 2. The static structure factor S(Q) is calculated here by integrating, over
energies, the dynamical structure factor. The energy range where this can be done
is clearly limited, but we shall see below that the important contributions to S(Q)
are essentially captured.

6 Results and discussions

Figure 4 shows a cut of S(Q,®) at the wave-vector Q = 17.5 nm . Note that by
integrating the dynamical structure factor in a range 0.3 < 2@ < 1.8 meV, a non-
negligible part of the signal from the particle-hole band is not taken into account.
By comparing figure 2 and 3 (see also ref [1]), it is clear that below wave-vectors
on the order of 15nm~! both the particle-hole band and the collective zero-sound
mode, which carry most of the spectral weight, will be correctly integrated, while
above this value, part of the particle-hole band will be left out of the integration
interval. Fortunately, contrarily to early RPA predictions, the particle-hole band
weight at high wave-vectors is concentrated at low energies; hence the fraction
lost in the integration is moderate, as can be seen from figure 4.

Despite the experimental difficulties, we were able to extract the static struc-
ture factor S(Q) from the experimental data with reasonable accuracy. In figure
5, we compare the experimental S(Q) with the results of DMBT and Quantum
Monte Carlo simulations. The data are essentially ‘neutron counts’ normalized to
different experimental parameters (incident flux, spectrometer geometry, sample
dimensions, etc...); they are proportional to the structure factor, but unfortunately
they cannot be normalized with sufficient accuracy to infer absolute values of this
magnitude. For this reason, the data expressed in arbitrary units have been nor-
malized to agree with theory at Q = 5.5 nm~!, a region where the precision of
experiments is good, and where they capture all the expected inelastic contribu-
tions to S(Q).

We observe a good agreement in the region of low wave-vectors, in particular
a significant shoulder is seen in the S(Q) data which corresponds well to the theo-
retical predictions. At Q ~ 12 nm™! the particle hole-band leaves the frame where
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Fig. 4 Experimental S(Q,) for the wave-vector Q = 17.5 nm~! as a function of energy. The
figure shows the range where the integral over energy can be performed reliably. The large
intensity measured at the highest energies is due to frame-overlap.

S(Q,w) is integrated, and the experimental value of S(Q) starts to diverge from the
theoretical curves. Nevertheless, because of the high intensity and the low energy
of the roton-like minimum, a maximum of S(Q) is found. Then the signal collapses
because the integration of the particle-hole band is carried over a limited region.
A reasonable semi-quantitative agreement is obtained between theory and experi-
ment. The peak in S(Q) is seen to coincide with the theoretical equivalent feature,
confirming the accuracy of the determination of the layer’s density. This magni-
tude is important, and difficult to obtain; it was determined previously by indirect
means (adsorption isotherms and neutron diffraction at higher coverages on the
solid phases, where Bragg peaks are seen) [1, 15]. Note that the wave-vector cor-
responding to the roton minimum, that of the maximum in S(Q), and 27 divided
by the interparticle distance are related (but different) quantities of similar atomic
dimensions, and that only an accurate many-body theory will be able to establish a
quantitative relation among them [10, 13]. They also have different dependencies
on density. For these reasons, comparing directly the theoretical and experimen-
tal values of S(Q) is a particularly valuable tool to infer the actual density of the
liquid layer .

7 Conclusions

We presented in this article a comparison between the static structure factor of a
two-dimensional Fermi liquid, a *He film adsorbed on a graphite substrate pre-
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Fig.5 S(Q) obtained experimentally compared to theoretical calculations: the Dynamical Many-
Body Theory and Monte Carlo simulations. The error bars on the experimental data only reflect
statistical uncertainties; the systematic deviation at large wave-vectors is due to the finite inte-
gration range, see text.

plated with a solid “He layer. The large background of such a system makes dif-
ficult the determination of S(Q) by direct methods as neutron diffraction. Using
inelastic neutron scattering data measured on the instrument IN6 at the ILL, we
were able to deduce the static structure factor by integrating S(Q,®) in an energy
range covering a large fraction of the inelastic contributions. The comparison with
theory shows important features: at low wave-vectors a good agreement with the-
ory is observed. A shoulder is seen as predicted by the Dynamical Many-Body
Theory and Quantum Monte Carlo simulations. At high wave-vectors a maximum
is obtained around Q = 16 nm~!, value where a roton-like mode has been seen in
S(Q,w) [1], in good agreement with the theoretical calculations. This feature pro-
vides an independent check of the film density determination. Deviations from the
theoretical curves observed at very high wave-vectors can be accounted for semi-
quantitatively by the limited experimental energy range. The elaborated procedure
used to separate the signal of the 3He layer from the background turns out to be
essential for extracting S(Q) with reasonable accuracy from the inelastic data.
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