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Abstract— We deal here with a static decisional model related to the monitoring of a
DARP (Dial and Ride) model which involves, on a closed industrial site, small electrical
autonomous vehicles. Because of technological issues, we focus on reliability, and propose
amodel which assign regueststo vehicles while minimizing L oad/Unload transactions. We
study this model through both a Branch/Price approach, which provides us with bench-
marks, and insertion based heuristics, well-fitted to dynamic contexts.
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1 I ntroduction

Current trend in mobility management is to the emergence of flexible veagt-
tems, which meet mobility demands in a dynamic way while implemerstimge
vehicle sharing and while interacting, through advanced I.T technalagithsalterra-
tive transportation modes [16Pial and Ride systemsCar-Sharing and Car-Pooling
systems (AUTOLIB...), Ride Sharing systems. Also, recent advances in artificial
perception and remote control make now arise new generations of aotmmithout
any driver) individual or collective electrical vehicles: Cycab, VIPddi{vidual Auton-
omous Vehicles of LIGIER S.A)...[14], which are involved into the design of those new
mobility services [10]. For this kind of systems, what mattersligbility, related to the
steady flow of the traffic induced by the involved vehicle fleet: monitofitag to
smooth, as much as possible, the trajectories of the vehicles and minidgére which
require complex interactions between the vehicles

The model which we handle here, which may be viewed as an exterisitterval
graph coloring models, is typical of this new kind of praide It derives from a case
study about the management of a spedfial and Ride system, which involves VIPA
automated vehicles and works in reahdias a “horizontal elevator”. Constraints are
the classical DARP constraints, but performance criterion focusé&oprMinimiza-
tion: we do in such a way thaas often as possible, vehicles follow their way while
avoiding any break (deviation toward a parkislgce, load/unload transaction,...) in
their trajectory. Though the practical problem has to be handled acctodirdynamic
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(on line) point of view, with performance evaluated through discrete eveniation,
we consider here, in order to get benchmarks together with a bettestandarg of the
problem, the related statioff line) ILP Sop Minimization decision model. We first
deal with this model through Branch/Price method (Section IIl). and experimentally
check (Section V), that optimizing reliability gets close hereehicle minimization as
well as toglobal riding time minimization. Next we prome and test (sections IV and
V) a greedy randomized insertion heuristic, specially well-fitteshtline contexts.

2 A Static Model

Automated VIPA Vehicles [10], run here along a closed ciicuivhile meetingDi-
al and Ride demands (see [1, 3, 4, 5]). The nodlesre denoted by {0..n = 0}, and the
vehicles always run in the same direction: if a demand is about theortatism of
some load L from an origin o to some destination d, thenr#jectory of the vehicle
which meets this demand is {0, o+1 Mod n, o+2 Mod n,.Qifcuit T" is made of a
common track and ofload/unload areas, according to figure 1 below:
&
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Figurel

Node 0 is @epot node, and the speed of the vehicles on the common traok-is
stant (about 15 km/h): thus overtaking is forbidden on the maak,tand, when a
vehicle gets out some load/unload area, it has no priority on the otheleseViahi-
cles meet users on load/unload areas. Running along the whole circuit éakes f
minutes: so a vehicle which services a given user may run lapsddrdoefore effe-
tively servicing this user. Still we forbid such a user to stay a fullitmide the veh
cle. Managing the vehicle fleet means, for every demand j, acceptingjeoting it,
and, in case it is accepted, assigning it both a vehicle laavaiting time h, that is
the number of laps the vehicle is going to run before servicing j.

We adopt here atatic point of view, and suppose that we are provided with K
identical vehicles with capacity C, all located at time O inBspot node. Thusa
demand j = (o(j), d(j), L(j)) is defined by amrigin o(j) and adestination d(j), both in
{0..n}, together with doad L(j). Users ask for the system only when they are ready to
move and demands do not involve time-windows. We denotethg Hrgestvaiting
time which is allowed. We suppose that K is large enough to avoid demantibrejec
Since we are concerned here with reliability, which is correlated to load/unload tra
actions, thestop-Number Problem consists in assigning vehicles anditing times to



users in such a way that vehicles minimize ti8dp Number, i.e. stay as often as
possible on the main track without moving onto the load/unload areas.

If we refer to standar®ial and Ride (see [3, 5, 7]), we see that individuading
times are almost fixed. Stillglobal riding time and individualwaiting times (see [3,
5]) remain part of the problem. As experiments will show, minimizirgStop Num+
ber also tends to minimize théehicle Number K as well as thglobal riding time.

An ILP Model: In order provide our problem with a formal framework, wéolch
the circuitl” as a linear ordered s€f") = {0..(H + 2).n}, which we call th&op Node
Set. Let DEM = {j = 1..m} be the set of all demands {o(j), d(j), L()),j=21..m. In
case d(j) < o(j), we replace d(j) by d(j) + n. By proceedingwdyg, we become able
to associate, with every demand j = 1..m, a collection of H + 1 discrete intgrvals
{0(j) + hun, ..., d§) + h.n}, h = 0..H, of the Sop Node Set. Clearly, we may suppose
that every node i = 1..n-1 &tive, that means such that there exists at least one value
jsuch thati=o(j) ori=d(). Thefpr any node ie I(I') i # (H+2).n, we set:

- A()) ={@,h),j=1..m, h = 0..H, such that o(j) + hshi <i+1 <d() + h.n}: ifa
vehiclek serviceg eA(i) after running h times arounid, that means according to
waiting time h, then k must be carrying load L(j) when moving frotm i+1;

- B(@)={G,h),j=1..m, h=0..H, such that (d(j)+ h.niFOR (o()+ h.n =i)}: if a
vehicle k serviceg €A(i) according towaiting time h then k stopati.

Then, if the number K of available vehicles is fixae get the following ILP model:

Stop-Number(K) ILP Model:

{ Compute:

o Z=(4xn]=1.m, k=1.K, h=0.H) with {0, 1} values ;& = 1 if veh-
cle k services demand j accordingaaiting time h;

o T=(Tki k =1.K,i=1n.(H+2)-1), with {0, 1} values T ;=1 ifiis a
stop node for vehicle k.

Congtraints :

o Foranyj=1.mZynZkn=1; (*D;isserviced*)

o For any vehicle k, any node i = 0..(H+2).n Xl < ag L()- Zjknh <C,
(* Capacity Constraints*)

o For any vehicle k, any stop node i = 0..(H+2).n - 1, any )(jehB(i):
Z;kn < Tki. (*Coupling Constraints*).

Minimize: £ ; Ty}

Let V-Stop-Number(K) be the optimal value ditop-Number(K). Then we get the
Stop Number model: {Compute K which minimizeg-Sop-Number (K)}

Stop Number and Graph Coloring, Remarks about Complexity: IfH=0and C
= 1, any feasible solution (Z, T) of th&op-Number problem defines a vertex colo
ing of the intersection graph induced by the collectjgofldiscrete intervals of the



Sop Node set. Still, though interval graph coloring is known to be time pmtyial
[17], weconjecture that even in this case, tB®op-Number problem is NP-Hard.

If H =0, and no hypothesis is done about C and the loads KGjl.jm, we check
that Sop-Number is NP-Hard, since, if K = 2, and o(j) = 0 and d(j) = n-1 foerg\j =
1..m, then we see th&top-Number(K) contains the ZRartition Problem.

If K and C are fixed, and the number H is part of the problem, $mmNumber
may be solved in polynomial time through dynamic programnitngan be checked
by following the guidelines of the proof of Proposition 2, Section Il

Extensions and Variants: Introducing time windows in th&op-Number model,
means setting lower and upper bound Min(j), Max(j), j= 1..m ghvalues means
imposing: Zx, = 0 for any h ¢ {Min(j), .., Max(j)}. Also, since we also want to
commpare thetop-Number criterion with some standard criteria, we provide here
variants of the abov&op-Number model, which allow dealing with those criteria:

Vehicle-Number Minimization: { Compute the smallest value K =, such that
Sop-Number (K) has a feasible solution}

Global-Riding Minimization: { Compute K = Kgop Such thatop-Number(K) has
a feasible solution and such that the quamityRide, is minimal, whereRide, is an
additional integral variable, submitted to the contraints: for any h,jx hsZRide}

Waiting-Times Minimization: { Compute K = Ky,;; such thastop-Number (K) has
a feasible solution and such that the quaitit> y h h.Zjx, = is the minimal}.

Remark: The waiting times criterion is antagonistic to theshicle number one: Kyait
will be such that h(j) = 0 for any j = 1..m.

3 A Branch/Price Method for Stop-Number.

The Sop-Number (K) ILP model is difficult to handle as soon as parameters n, m,
H and K do not take small values. Worse, as it also happe@ &ph Coloring: [6,
8, 12], abovetop-Number model is not a true ILP one. So, following [1, 9], vee r
formulate it as a column generation oriented ILP modd&asible service is any pair
s = (J, h), where & {1..m}, and h some function from {1..m} to {0..H}, such that, for
any i = 0..(H+2).n - 1¥ jc b such that ,h()e A L(G) < C. Clearly, a feasible service iden-
tifies the demands j which are serviced by a same vehicle as well as wéiied
times h(j). We denote by S the set of all feasible services. For any s =4JShye
setSop(s) = {i € 1..(2+H).n— 1, such that B(i)» {j, h(j), j = 1..m) # Nil}, and N-
Sop(s) = Card@op(s)). Then we reformulat&top-Number problem as follows:

Stop-Number Refor mulation:
{Compute: (Xs, se S) with {0, 1} values: X = 1 if some vehicle performs tliea-

sible servicess.
Constraints: For any  1..m X ssuchthatg s Xs = 1; (*every demand is met*)



Minimize : £ ¢ N-Stop(s). Xs}

Then we may also rewrite théehicle-Number problem {Compute K = minimal
number of vehicles and (Xs € S) with {0, 1} values such that:
- Forany g 1.mZX ssuchtarg s Xs = 1; (*Every demand is serviced once*)
- X X2 K (*Vehicle number no more than K *)}
By the same way, we notice that, with any service s = (J, h) wassagiate:
- its Waiting Number N-Wait(s) =X ; c ; h(j)
- Its Global Ride Number N-Glob(s) = Sup < ; h(j)

So, we may also rewrite th@lobal-Riding andWaiting-Times variants by reple
ing, inside thetop-Number reformulation, the “Minimize : ¥ ¢ N-Sop(s).Xs* criterion
by, respectively, “Minimize: X ¢ N-Glob(s).Xs” and “Minimize: ¥ ¢ N-Wait(s).Xs".
Methods for thestop-Number Problem will also work for those problems.

We are now going to describe the Branch/Price procedure, close to cluatgoing
rithms of [1] and [13], which will be implemented with the helpttod SCIIP library
([24]). In order to do it, we first specify the way tree searcluniding, branching, and
constraint propagation are performed. Next we shall addre8sitieg issue.

Tree Search: A nodein the search tree induced by Biep-Number process will
be defined by a collection of additional constraints EX§), IN(j1, j2), WAIT'(j, h),
WAIT (j, h), whose meaning comes as follows: (E1)
- EX(j1, jo) : demandsjj j, are handled by the same vehicle;

- IN(j1, Jo) : j» and p cannot belong to the same service s;
- WAIT(j, h) (WAIT(j, h)): thewaiting time of | must not be smaller (larger) than
h; WAIT constraints restrict the set H(j) of possible h(j) values

L ower Bound/Branching: We insert (E1) into th&op-Number ILP by setting:
In case of a EX(j j,) constraint: X= 0 for any s containing both@nd j; (E2)

In case of a INgj j,) constraint: X= 0 for any s which containg and not j, and

for any s which containg and not j; (E3)
- In case of a WAIT(j, h) (WAIT(j, h)) constraint: X= 0 for any s which contairns
with a waiting time less (more) than h; (E4, ED)

Let us denote bytop-Number-Aux(EX, IN, WAIT) the resulting ILP. The optimal
value of its integral relaxatioftop-Number-Aux(EX, IN, WAIT)* provides us with a
lower bound for V. X being some related solutiongwet, as in [13]:

Proposition 1. If X is not integral, then there must:

- either existj and j in {1..m} such that (E6)
there exist s, such thatz0 and not integral, which contains both jand ;
e there exist s’, such that X%~ 0 and not integral, which contains;jand not
orj, 5 and g such that: (E7)
both X;;and X, are non null and not integral;



¢ the waiting times {{(j) and h(j) of j in s, and s are different.

Proof: as in [13]: for any pair {j j»), j1# j2, such that there is no constraint EX(j
j2), we denote byi(j,, j2) the sumojy, jo) =Z j1, 2 s Xs IN case some valug(j,, j,) is
non integral, we are done. Else, the pairsjf) such thatu(ji, j,) = 1 define a non
oriented graph whose connected components are complete sub-graphsuaadaind
partition D, u..u Dp of the set {1..m}. If any je D, always appear in related services
with the samewaiting times, then only one service s = s(p) such thattX) may be
considered as associated with, nd X is a feasible integral solution &fop-
Number-Aux(EX, IN, WAIT). Else we get the (E7) pattern. END-PROOF.

Then we pick up ¢ j») which satisfies (E6) antdranch between EX(, j,) and
IN(j1, j2), and, in case of failure, pick up j, &d s such that (E7) holds, and such that
h(j) < hy(j), andbranch between WAIT(j, hy(j)) and WAIT'(j, h). In case (E6) pga
tern may be used, we chooggjj, in such a way the sum of their degrees in the union
of IN and EX graphs is the largest possibi®gt constrained variable principle). In
case only (E7) may be used, we choose j which maxinaraas(L(j).(d(j) — o(j)).

Constraint Propagation: Given a nodev of the Search Tree induced by tBep-
Number process. We derive constraint propagation inference rules by noticing that:
any connected component of the IN graph should define a completeagpi-the
EX relation should be extended to those connected componentsjsfsBme co-
nected component of the IN graph and if no insertion of j intis@ossible without
violating either the WAIT constraints or the Capacity constraint, thesheeld have
EX(j1, Gy); if only 1 value h exists in H(j), then h(j) should be eqadl.

A. Handling the integral relaxation of Stop-Number-Aux(EX, IN, WAIT).

We do it through column generation. Givep S S, the restrictior&top-Number-
Aux(EX, IN, WAIT) s to § of the integral relaxation ditop-Number-Aux(EX, IN,
WAIT) and ¢ = (A, j = 1..m)) a related dual solution. Then, Pricing comes as follows:

ILP Stop-Number-Price M odd!:

{ Compute:

o Z=(4nj=1.m, h=0.H)with {0, 1} values ;;£=1if (j h) isin s,

o T=(Tji=1..(2+H)n-1, with {0, 1} values :{F 1ifi € Stop(s).
Congtraints :

o Vi=0.(2+H).nl1: 2 ; nye ag LG). Zjn<C;
Vij=1.mXh-0nZn<1; (*No Redundancy Constraint*)
Vi=1.(2+H).n1,(,h) in B(): Z, <T;; (*Coupling Constraints*)
V (ju ) INEX, Z1+Z,<1;V (j1.j2) inIN, Z; = Z ;
V (j, h) in WAIT* (WAIT"), for any h’ <h (h’ > h), Z;;, = 0;

o O O O



Maximize: X 4;.Zjn - Z; T;, which should > 0}.
We conjecture that this problem is NP-Complete. Still, we may notice that:

Proposition 2: If C is fixed, thenStop-Number-Price is time-polynomial.

Proof. It can be solved as a largest path problem set on an acyclic digveigha
number of vertices which depends in a polynomial way on n and Hir§Vdefine a
state as being any integer valued vector V =,(MV¢), such that n > V> V,> > V¢
> -1: the vehicle is loaded with L > ¢ when arriving to any i; such that ;i< i+ V. and
this L is less than ¢ when the vehicle leaves node 4;+W = -1 means that the veh
cle is empty when it arrives to i. Clearly, V tells us whether the vehidizads or
loads at i, and, so, whether i is currently a stop node for s. Weéedep&V the set of
all possible states. Then nodes in the digraph F are 3-uples (i ,jeML)i j = 1..m,
such that o(j) = i modulo n, ¥ SV, augmented with fictitious nod&sart and End.
An arc ((b, jo, Vo), (i1, j1, V1)) exists in F if one of the following conditions holds:

- ip=ig+ 1, jp = (smallest value j, such that o(j) #modulo n), \{ = Vo — 1;

- ip =g j1 = (smallest value¥ jo, such that o(j) =jimodulo n), \{ = Vg;

- i1 =g j1 = (smallest value j > such that o(j) =;imodulo n), \{ derives from
Vg by adding load L¢) betweengand j + d(jo) — 0(jo).

In the first 2 cases, the arco((jo, Vo), (i1, j1, V1)) has a null length. In the third
case, it is provided with a length which expresses the impact daidh&lumber of
the insertion ofj into s, taking into account current statg @Wne easily checks that
solving Stop-Number-Price means computing a largest path in F. END-PROOF.

Still, proposition 2 is hardly suitable for application, since Card(SV) incresses
n°. So, in order to deal with th&op-Number-Price issue in an efficient way, we
adopt a double trigger approach: we first try a fast GRASP insertion/aé process,
and, in case of failure, we try an exact method involving a floormaflation.

The Initialization of the GRASPprocess works by successive insertions af-co
nected components G of the IN graph into a current feasible servidd &, una; -
N-Sop(s)) > 0 or no additional insertion is possible, while considering tldiatigest
are); and Card(H(j)), and the smallest are L(j), é(jp(j) and the number of induced
additional stop nodes, the most relevant is inserting j into &;0¢al Search loop
works as a descent process involving operaeraove(G): demands g G are e-
moved from sjnsert(G): demands g G, are inserted into €xchange(Gy, G,): pa-
forms Remove(G,) and next hsert(G,); Move(j, h): the waiting time of g s demand |
is re-assigned to h, where G, &d G are connected components of the IN graph.

B. Handling Stop-Number-Price through a Max Flow and Lagrangean Relaxation.

Let us introduce theDemand Network D-NET, whose node set is the set
{0..(2+H).n-1} and whose arcs are:



o demand arcs g, = (0(j)+h, d(j)+h), j =1..m, h = 0..H, provided with a nulieo
er capacity Min(g, an upper capacity Maxfa= L(j), and a cost Qg= A;;

o chainarcsg = (i, i+1), i = 0..(2+H).n2; Min(e) = 0, Max(g = + «, Q(g) = 0;

o abackward arcbk = ((2+H).n-1, 0); Minpk) = Max(k) = C, Qpk) = 0.

This allows us to reformulat&op-Number-Price as the following flow problem:

Flow Stop-Number-Price Formulation.
{Compute on the network D-NET an integral flow vector F, together with 2 {0,
1}-valued vector T = (iTi = L.(2+H).n-1) and U = (Y, j = 1..m), such that:

o Fis consistent with Min/Max capacities (E8)
o Forany demand arg@F,n= 0 or L(j) ; (E9 Non Load Preemption)

o Foranyhin {0.m}-H(), En= 0 (E10)
o Foranyj=1.m,L(@).Y=ZFyn (E11:No Redundancy)

o Foranypair @ j,) € EX:Up+ Up<1; (E12)
o Forany pair @, j,) € IN:Uj;— U, =0; (E13)
o Foranyi=1L1(2+H)n-1, je B(i): U;< T; (E14)
o MaximizeX j, A;.Fn— 1.T, which should be > 0}.

We relax (E9) and consider the Lagrangean relaxation of (E11). Givitipliews
p=(j=1.mywesetL(F, T, U p) =A.F-1.T -3 u.(L().U;j - =  Fyn). Maxim-
izing L(F, T, U,u) may be done by solving 2 independent sub-problems:

- A Max Flow problem about F: {Compute an integral flow vector F, consistent
with capacity and (E10) constraints, and maximizi&gy (A + 1y). Fajn} -

- A problem P-Aux about Uand T: {Compute T = (T, i = L.(2+H)n-1) and U =
(U, j = 1..m), with {0, 1} values, which satisfy (E12, E13, E:)d which -
imize 1.T +%; p;.L(j).U;. If C-IN is the set of connected components of the IN
graph, then we may extend to C-IN the EX exclusion in a natural avelye-
place U by a C-IN indexed vector U*, subject to: Requced-P-Aux)

o V¢, 6 e C-IN such that EX(g ¢), U*  + U*, < 1; (E15)
o VceC-IN,i=1..(2+H).n- 1, such that B(in ¢ #Nil, U*. < T;; (E16)
o The quantityl. T € ¢ (Zjcc 1. L()) .U*c is minimal.
We see that (E15) impose U* to define an independent subset gfehh (C-
IN, EX) defined on C-IN by the EX relation. This graph usually lesgpto be a
sparse graph, with few edges, whose cliques and odd cyclesonitiords may
easily be enumerated. So constraints (E15) may be replaced by stconger
straints, which are usually facets of tindependent Set polytope (see [2, 9, 15]):
o Forany clique Q in the graph (C-IN, EX)c.qU*.< I;  (E154)
o For any odd cycleA with no chord in the graph (C-IN, EXY, ¢ c » U*.<
Lcard()/2.. (E152)



This makes possible, in most cases, solNReduced-P-Aux, through a simple
relaxation of the integrality constraint followed by a simple roungiogess.

Proposition 3: The Non Load Preemption Constraint (E9) contains the integrality
constraints on F, U and T. That means that if F, U, T are rational vedimis satisfy
(E8..E14) then they are integral.

Proof: left to the reader. END-PROOF.

As a consequence, we han&ep-Number-Price throughBranch and Bound:
- Bounding derives from computing thieagrangean value Min, Max g 1, u saiisty (s,
E10, E15-1, E15-2, E1éh-(F, T, U, ). This process yields some triple F, T, U.
- Branching is performed according to a 3 trigger mechanism:
o If F resulting from bounding does not satisfy (E9), then we pielq, such
that Faj,h #0and Faj,h #0 L(]), and try both Faj,h = 0 and Ej,h = L(J)
o IncaseF, U satisfy (E9) and j, h, h’ exist such that Fy, = F4n = L(j), then we
pick up j, h such thatfy = L(j) and try both r= 0 and gn= L(j);
o Else we pick up j such tha ¥ 1 and> , K, = 0, and branch between €0,
and the h+1 options,fr=1, h = 0..H.

4 An Insertion Method

Since our ultimate goal is the real time VIPA management, we alsoga @yan-
sertion algorithmStop-Number-Insert: demands are successively inserted into the
vehicles. Such an algorithm links in a well-fitted waff/line andon line paradigms:
when dealing with arn line instances, we insert, in real time, recent demands into
the currently working vehicles. Those usually non deterministic ithges may be
cast into Monte-Carlo schemes. We do not detail here theSispyNumber-Insert
works, and restrict ourselves to a brief description of its general sguctur

Stop-Number-Insert Algorithmic Scheme:
J <-{1..m}; K; Service(1) <- Nil; (*Service(k), k = 1..K, is the current service
of vehicle k; K denotes Rictitious Vehicle, and K-1 is thé/ehicle Number*)

While J # Nil do
Randomly pick upge J, according to som@iority rules; (1)
Compute kin 1..K, iy = 0..H, such that the insertion @fifto Service(ko)
with waiting time value h{) = hy is feasible and itQuality level is the
highest possible; Inserty(jhy) into Service(ko) and removegjfrom J; (12)
If ko = K then increase K by 1;

Stop-Number-Insert <- (Vehicle Number K — 1, Service(k), k = 1..K-1).



Since Slop-Number-Insert is non deterministic, it may be cast into the following
Monte-Carlo scheme, which involvesraplication parameter R:
For i =1..R do Apply&top-Number-Insert;
Keep the best solutiorsgrvice, K-1) ever obtained.

Priority Rules (Instruction (11)) lead to deal with those among the remainieg d
mands which appear to be the most difficult to inseQuality criteria lead us to
choose k and hin such a way the fewest possilaldditional stop nodes are created
and current stop nodes may be reused as often as possible.

5 Numerical Tests

We present here tests, which are performed biNUX server CentOS 5.4, Qda
ripro Quadcore, 3 Ghz. In order to deal with ILP models, we use @k Sree-
access software (see [14]), combined with CPLEX12 LP Librahjch efficiently
implements the branch/cut/price generic framework. Since no test-istd fex the
Sop-Number problem, we randomly generate instances, whose characteristics are:
- n= number of stop nodes of the circuit; m = number of demands;

- n-act = number of active nodes; w = mean load value;
- C = capacity of the vehiet t = mean distance between o(j) and d(j), j = 1..m;
- H= maximum authorized waiting time.

For every such an instance, we try t&ep-Number ILP model of Section II,
solved by CPLEX12the column generation oriented reformulationSadp-Number
of Section Ill, and th&op-Number-Insert algorithm of Section IV.

While performing this experiment, we want to evaluate the algorithmscane
pare theVehicle Number andGlobal Riding Time values which derive from th&op-
Number process with their optimal values. So, for every instance, wateley:

- Kwi the optimaNehicle Number, and Sop, the relatedstop Number;

- Stuin the optimalStop Number, K,, Ride;, the related/ehicle andGlobal Riding
numbers CPU is the running time of th&op-Number program whileCol and
Nd are respectively the numiseof columns and nodes generated by the process;
- Ride the optimalGlobal Riding Time, and kg the related/ehicle Numbers.
- LB the lower bound induced of Section Il
- Kjs and Sopys the Vehicle and Sop Numbers which are computed b$op-
Number-Insert: R is the replication number, and CR\the related CPU time (s).
We provide here results for a 7 instance set, generated as told above:

Id = Instance n m n-act H w t C
1 10 40 10 0 1 5 6
2 5 40 5 1 1 25 6
4 10 40 10 1 1 5 6




6 30 120 | 30 3 3 15 10
7 30 70 28 4 5 15 10
8 40 150 | 40 2 1 20 6

10 100 | 100 | 89 4 5 50 10

Table 1: Description of theinstances.

Id Ky Stwin | CPU Nd Col LB
1 4 26 37 24 352 25
2 4 13 72 9 751 13
4 2 17 3 1 84 17
6 30 120 | 30 3 3 15
7 6 86 186 14 356 79
8 4 181 | 954 16 965 178
10 10 146 | 11986 | 24 9896 | 139

Table 2: Behaviour of the Stop-Number Process of Section I11.

Id Kins Sopins CPUys Kins Sopins
R=1 R=1 R=1 R= 20 R =20

1 4 29 0.1 4 26

2 4 15 0.1 4 14

4 2 20 0.2 2 18

6 30 120 30 3 3

7 5 94 0.6 6 90

8 4 208 1.0 4 193

10 9 8.2 0.6 10 3.4

Table 3: Behavior of MC-Stop-Number-I nsert.

Instance K CPU (9
1 4 3

2 4 74

4 2 561

6 No Result *

Table4: CPLEX12 Resolution of the Stop-Number(K) model of Section |1

Id K mi Stopo Ride Kg Ride,
1 4 26 0 4 0

2 4 13 3 4 4

4 2 17 2 2 2

6 30 120 30 3 3

7 5 89 18 5 20




8 4 181 7 4 7

10 8 158 30 9 33

Table5: Feature Analysis.

Comments: The lower bound provided by the linear relaxation of the coluemA g
eration oriented reformulation &op-Number is very good. Still, running timese+
main high, since even when this lower bound happens to be equaldptitmal value
of the problem, the linear relaxation of the linear prog&op-Number-Aux may not
yield an integral optimal solution. Also, we notice ti8bp-Number-Insert, which
should efficiently perform in a dynamic context, tends to require fewkicles than
the exact method, and that optimizing ¥ehicle Number also tend to minimize the
Vehicle Number, as well as th&lobal Riding Time. Finally we may also notice that
unit load instances are easier to handle than instances whidorthead Preemption
Constraint plays an important role, and, by the same way, that forbiddatjng
times, which means assuming H = 0, also tends to make the problem easiedl®. h
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