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Abstract— We deal here with a static decisional model related to the monitoring of a 
DARP (Dial and Ride) model which involves, on a closed industrial site, small electrical 
autonomous vehicles. Because of technological issues, we focus on reliability, and propose 
a model which assign requests to vehicles while minimizing Load/Unload transactions. We 
study this model through both a Branch/Price approach, which provides us with bench-
marks, and insertion based heuristics, well-fitted to dynamic contexts. 
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1 Introduction 

Current trend in mobility management is to the emergence of flexible reactive sys-
tems, which meet mobility demands in a dynamic way while implementing some 
vehicle sharing and while interacting, through advanced I.T technologies, with alterna-
tive transportation modes [16]: Dial and Ride systems, Car-Sharing and Car-Pooling 
systems (AUTOLIB…), Ride Sharing systems. Also, recent advances in artificial 
perception and remote control make now arise new generations of autonomous (without 
any driver) individual or collective electrical vehicles: Cycab, VIPA (Individual Auton-
omous Vehicles of LIGIER S.A)…[14], which are involved into the design of those new 
mobility services [10]. For this kind of systems, what matters is reliability, related to the 
steady flow of the traffic induced by the involved vehicle fleet: monitoring has to 
smooth, as much as possible, the trajectories of the vehicles and minimize orders which 
require complex interactions between the vehicles.  

The model which we handle here, which may be viewed as an extension of interval 
graph coloring models,  is typical of this new kind of problems. It derives from a case 
study about the management of a specific Dial and Ride system, which involves VIPA 
automated vehicles and works in real time as a “horizontal elevator”. Constraints are 
the classical DARP constraints, but performance criterion focuses on Stop Minimiza-
tion: we do in such a way that, as often as possible, vehicles follow their way while 
avoiding any break (deviation toward a parking place, load/unload transaction,…) in 
their trajectory. Though the practical problem has to be handled according to a dynamic 
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(on line) point of view, with performance evaluated through discrete event simulation, 
we consider here, in order to get benchmarks together with a better understanding of the 
problem, the related static (off line) ILP Stop Minimization decision model. We first 
deal with this model through a Branch/Price method (Section III). and experimentally 
check (Section V), that optimizing reliability gets close here to vehicle minimization as 
well as to global riding time minimization. Next we propose and test (sections IV and 
V) a greedy randomized insertion heuristic, specially well-fitted to on line contexts.      

2 A Static Model   

Automated VIPA Vehicles [10], run here along a closed circuit , while meeting Di-
al and Ride demands (see [1, 3, 4, 5]). The nodes  are denoted by {0..n = 0}, and the 
vehicles always run in the same direction:  if a demand is about the transportation of 
some load L from an origin o to some destination d, then the trajectory of the vehicle 
which meets this demand is {o, o+1 Mod n, o+2 Mod n,..,d). Circuit  is made of a 
common track and of load/unload areas, according to figure 1 below:  

 
Figure 1 

 
Node 0 is a Depot node, and the speed of the vehicles on the common track is con-

stant (about 15 km/h): thus overtaking is forbidden on the main track, and, when a 
vehicle gets out some load/unload area, it has no priority on the other vehicles. Vehi-
cles meet users on load/unload areas. Running along the whole circuit takes few 
minutes: so a vehicle which services a given user may run laps around before effec-
tively servicing this user. Still we forbid such a user to stay a full tour inside the vehi-
cle. Managing the vehicle fleet means, for every demand j, accepting it or rejecting it, 
and, in case it is accepted, assigning it both a vehicle k and a waiting time h, that is 
the number of laps the vehicle is going to run before servicing j.  

We adopt here a static point of view, and suppose that we are provided with K 
identical vehicles with capacity C, all located at time 0 in the Depot node. Thus, a 
demand j = (o(j), d(j), L(j)) is defined by an origin o(j) and a destination d(j), both in 
{0..n}, together with a load L(j). Users ask for the system only when they are ready to 
move and demands do not involve time-windows. We denote by H the largest waiting 
time which is allowed. We suppose that K is large enough to avoid demand rejection. 
Since we are concerned here with reliability, which is correlated to load/unload trans-
actions, the Stop-Number Problem consists in assigning vehicles and waiting times to 



users in such a way that vehicles minimize their Stop Number, i.e. stay as often as 
possible on the main track without moving onto the load/unload areas.   

If we refer to standard Dial and Ride (see [3, 5, 7]), we see that individual riding 
times are almost fixed. Still, global riding time and individual waiting times (see [3, 
5]) remain part of the problem. As experiments will show, minimizing the Stop Num-
ber also tends to minimize the Vehicle Number K as well as the global riding time.   

 
An ILP Model: In order provide our problem with a formal framework, we unfold 

the circuit  as a linear ordered set I() = {0..(H + 2).n}, which we call the Stop Node 
Set. Let DEM = {j = 1..m} be the set of all demands j = (o(j),  d(j), L(j)), j = 1..m.  In 
case d(j) < o(j), we replace d(j) by d(j) + n. By proceeding this way, we become able 
to associate, with every demand j = 1..m, a collection of H + 1 discrete intervals I j,h = 
{o(j) + h.n, …, d(j) + h.n}, h = 0..H, of the Stop Node Set. Clearly, we may suppose 
that every node i = 1..n-1 is active, that means such that  there exists at least one value 
j such that i = o(j) or i = d(j).  Then, for any node i  I() i  ≠ (H+2).n, we set:  
-   A(i) = {(j,h), j = 1..m, h = 0..H, such that  o(j) + h.n ≤ i < i+1  ≤ d(j) + h.n}: if a 

vehicle k services j A(i) after running h times around , that means according to 
waiting time h, then k must be carrying load L(j) when moving from i to i+1;  

-   B(i) = {(j,h), j = 1..m, h = 0..H, such that (d(j)+ h.n  = i) OR (o(j)+ h.n = i)}: if a 

vehicle k services j A(i) according to waiting time h then k stops at i.  
Then, if the number K of available vehicles is fixed, we get the following ILP model:   

 
Stop-Number(K)  ILP Model: 
{ Compute:   
o Z = (Zj,k,h, j = 1..m, k = 1..K, h = 0..H) with {0, 1} values : Zj,k,s = 1 if vehi-

cle k services demand j according to waiting time h;  
o T = (Tk,i, k  = 1..K, i = 1..n.(H+2)-1), with {0, 1} values : Tk,i= 1 if i is a 

stop node for vehicle k. 
Constraints : 

o For any j = 1..m,  k,h Zj,k,h = 1;  (*Dj is serviced*)  

o For any vehicle k, any node i = 0..(H+2).n - 1,  (j,h)  A(i) L(j). Zj,k,h  ≤ C, 
(*Capacity Constraints*)  

o For any vehicle k, any stop node i = 0..(H+2).n - 1, any (j, h)  B(i): 
Zj,k,h  ≤ Tk,i. (*Coupling Constraints*).   

Minimize :   k, i  Tk,i} 
 

Let V-Stop-Number(K) be the optimal value of Stop-Number(K). Then we get the 
Stop Number model: {Compute K which minimizes V-Stop-Number(K)} 

 
Stop Number and Graph Coloring, Remarks about Complexity: If H = 0 and C 

= 1, any feasible solution (Z, T) of the  Stop-Number problem defines a vertex color-
ing of  the intersection graph induced by the collection Ij,0 of discrete intervals of the 



Stop Node set. Still, though interval graph coloring is known to be time-polynomial 
[17], we conjecture that even in this case, the Stop-Number problem is NP-Hard.  

If H = 0, and no hypothesis is done about C and the loads L(j), j = 1..m, we check 
that Stop-Number is NP-Hard, since, if K = 2, and o(j) = 0 and d(j) = n-1 for every j = 
1..m,  then we see that Stop-Number(K) contains the 2-Partition Problem.  

If K and C are fixed, and the number H is part of the problem, then Stop-Number 
may be solved in polynomial time through dynamic programming. It can be checked 
by following the guidelines of the proof of Proposition 2, Section III.   

 
Extensions and Variants: Introducing time windows in the Stop-Number model, 
means setting lower and upper bound Min(j), Max(j), j= 1..m on h(j) values means 
imposing: Zj,k,h = 0 for any h   {Min(j), .., Max(j)}.  Also, since we also want to 
commpare the Stop-Number criterion with some standard criteria, we provide here 
variants of the above Stop-Number model, which allow dealing with those criteria:   

Vehicle-Number Minimization: {Compute the smallest value K = KMin such that 
Stop-Number(K) has a feasible solution}   

Global-Riding Minimization: {Compute K = KGlob such that Stop-Number(K) has 
a feasible solution and such that the quantity  k Ridek  is minimal, where Ridek is an 
additional integral variable, submitted to the contraints: for any h,j,  h.Zj,k,h ≤  Ridek}   

Waiting-Times Minimization: {Compute K = KWait such that Stop-Number(K) has 
a feasible solution and such that the quantity  j  k,h h.Zj,k,h =  is the minimal}.   

 
Remark: The waiting times criterion is antagonistic to the vehicle number one: KWait 
will be such that h(j) = 0 for any j = 1..m. 

 

3 A Branch/Price Method for Stop-Number. 

 
The Stop-Number(K) ILP model is difficult to handle as soon as parameters n, m, 

H and K do not take small values. Worse, as it also happens for Graph Coloring: [6, 
8, 12], above Stop-Number model is not a true ILP one. So, following [1, 9], we re-
formulate it as a column generation oriented ILP model. A feasible service is any pair 
s = (J, h), where J  {1..m}, and h some function from {1..m} to {0..H}, such that, for 
any i = 0..(H+2).n - 1,  j D such that (j,h(j))  A(i) L(j)  ≤ C. Clearly, a feasible service iden-
tifies the demands j which are serviced by a same vehicle as well as related waiting 
times h(j). We denote by S the set of all feasible services. For any s = (J, h)  S, we 
set Stop(s) = {i  1..(2+H).n – 1, such that B(i)  {j, h(j), j =  1..m) ≠ Nil}, and N-
Stop(s) = Card(Stop(s)). Then we reformulate Stop-Number problem as follows:  

 
Stop-Number Reformulation:   

{ Compute: (Xs, s  S) with {0, 1} values: Xs = 1 if some vehicle performs the fea-
sible service s. 

Constraints :  For any j 1..m,  s such that j  s Xs  = 1 ; (*every demand is met*) 



Minimize :  s N-Stop(s).Xs}  
 
Then we may also rewrite the Vehicle-Number problem: { Compute K = minimal 

number of vehicles and (Xs, s  S) with {0, 1} values such that: 
- For any j 1..m,  s such that j  s Xs  = 1 ; (*Every demand is serviced once*)  

-  s Xs ≤  K;                                   (*Vehicle number no more than K *)} 
By the same way, we notice that, with any service s = (J, h) we may associate: 

-  its Waiting Number N-Wait(s) =  j  J h(j) 
- Its Global Ride Number N-Glob(s) = Sup j  J h(j) 

So, we may also rewrite the Global-Riding and Waiting-Times variants by replac-
ing, inside the Stop-Number reformulation, the “Minimize :  s N-Stop(s).Xs“ criterion 
by, respectively, “Minimize :  s N-Glob(s).Xs” and “Minimize :  s N-Wait(s).Xs”. 
Methods for the Stop-Number Problem will also work for those problems. 

 
We are now going to describe the Branch/Price procedure, close to clustering algo-

rithms of [1] and [13], which will be implemented with the help of the SCIIP library 
([14]). In order to do it, we first specify the way tree search, bounding, branching, and 
constraint propagation are performed. Next we shall address the Pricing issue.  

 
Tree Search: A node N in the search tree induced by the Stop-Number process will 

be defined by a collection of additional constraints EX(j1, j2), IN(j1, j2), WAIT+(j, h), 
WAIT -(j, h), whose meaning comes as follows:    (E1) 
- EX(j1, j2) : demands j1, j2 are handled by the same vehicle;   
- IN(j 1, j2) : j1 and j2 cannot belong to the same service s;   
- WAIT +(j, h) (WAIT-(j, h)): the waiting time of j must not be smaller (larger) than 

h; WAIT constraints restrict the set H(j) of possible h(j) values.   
 

Lower Bound/Branching: We insert (E1) into the Stop-Number ILP by setting:  
-  In case of a EX(j1, j2) constraint:  Xs = 0 for any s containing both j1 and j2;  (E2) 
-  In case of a IN(j1, j2) constraint:  Xs = 0 for any s which contains j1 and not  j2, and 

for  any s which contains j2 and not  j1;     (E3) 
- In case of a WAIT+(j, h) (WAIT-(j, h)) constraint: Xs = 0 for any s which contains j 

with a waiting time less (more) than h;    (E4, E5)  
Let us denote by Stop-Number-Aux(EX, IN, WAIT) the resulting ILP. The optimal 
value of its integral relaxation Stop-Number-Aux(EX, IN, WAIT)* provides us with a 
lower bound for N. X being some related solution, we get, as in [13]:  

 
Proposition 1. If X is not integral, then there must: 

- either exist j1 and j2 in {1..m} such that:    (E6)  there exist s, such that X ≠ 0 and not integral, which contains both j1 and j2;  there exist s’, such that X ≠ 0 and not integral,  which contains j1 and not j2; 
- or j, s1 and s2 such that:       (E7)   both Xs1 and Xs2 are non null and not integral; 



 the waiting times h1(j) and h2(j) of j in s1 and s2 are different.  
 
Proof: as in [13]: for any pair (j1, j2), j1 ≠  j2, such that there is no constraint EX(j1, 

j2), we denote by (j1, j2) the sum (j1, j2) =  j1, j2  s Xs. In case some value (j1, j2) is 
non integral, we are done. Else, the pairs (j1, j2) such that (j1, j2) = 1 define a non 
oriented graph whose connected components are complete sub-graphs and induce a 
partition D1 .. DP of the set {1..m}. If any j  Dp always appear in related services 
with the same waiting times, then only one service s = s(p) such that Xs ≠ 0 may be 
considered as associated with Dp, and X is a feasible integral solution of Stop-
Number-Aux(EX, IN, WAIT). Else we get the (E7) pattern. END-PROOF.  

 
Then we pick up (j1, j2) which satisfies (E6) and branch between EX(j1, j2) and 

IN(j 1, j2), and, in case of failure, pick up j, s1 and s2 such that (E7) holds, and such that  
h1(j) < h2(j), and branch between WAIT-(j, h2(j)) and WAIT+(j, h). In case (E6) pat-
tern may be used, we choose j1, j2, in such a way the sum of their degrees in the union 
of IN and EX graphs is the largest possible (most constrained variable principle). In 
case only (E7) may be used, we choose j which maximizes area (L(j).(d(j) – o(j)).  
 

Constraint Propagation: Given a node N of the Search Tree induced by the Stop-
Number process. We derive constraint propagation inference rules by noticing that: 
any connected component of the IN graph should define a complete sub-graph; the 
EX relation should be extended to those connected components; if G1 is some con-
nected component of the IN graph and if no insertion of j into G1 is possible without 
violating either the WAIT constraints or the Capacity constraint, then we should have 
EX(j1, G1);  if only 1 value h exists in H(j),  then  h(j) should be equal to h. 
 
 
A.  Handling the integral relaxation of Stop-Number-Aux(EX, IN, WAIT).  

 
We do it through column generation. Given S0  S, the restriction Stop-Number-
Aux(EX, IN, WAIT)S0 to S0 of the integral relaxation of Stop-Number-Aux(EX, IN, 

WAIT)  and ( = (j, j = 1..m)) a related dual solution. Then, Pricing comes as follows:    
 

ILP Stop-Number-Price Model: 
{ Compute:   
o Z = (Zj,h, j = 1..m, h = 0..H) with {0, 1} values : Zj,h = 1 if (j, h) is in s ;  

o T = (Ti i = 1..(2+H)n-1, with {0, 1} values : Ti = 1 if i  Stop(s).   
Constraints : 

o  i = 0..(2+H).n-1:  (j, h) A(i) L(j). Zj,h ≤ C;   
o  j =1..m,  h = 0..H Zj,h ≤ 1;  (*No Redundancy Constraint*)  

o  i = 1..(2+H).n-1, (j ,h) in B(i): Zj,h  ≤ Ti;        (*Coupling Constraints*)  

o  (j1, j2) in EX, Zj1 + Zj2 ≤ 1 ;  (j1, j2) in IN, Zj1 = Zj2 ;  

o  (j, h) in WAIT+ (WAIT -), for any  h’ < h (h’ > h), Zj,h’ = 0;  



Maximize :   j j .Zj,h  -  i  Ti, which should > 0}.   
We conjecture that this problem is NP-Complete. Still, we may notice that:  
 
Proposition 2: If C is fixed, then Stop-Number-Price is time-polynomial.  
 
Proof. It can be solved as a largest path problem set on an acyclic digraph F with a 

number of vertices which depends in a polynomial way on n and H. We first define a 
state as being any integer valued vector V = (V1,..,VC), such that n ≥ V1 ≥ V2 ≥ ..≥ VC 
≥ -1: the vehicle is loaded with L  ≥ c when arriving to any i1 such that  i1 ≤  i + Vc and 
this L is less than c when the vehicle leaves node i + Vc;  V1 = -1 means that the vehi-
cle is empty when it arrives to i. Clearly, V tells us whether the vehicle unloads or 
loads at i, and, so, whether i is currently a stop node for s. We denote by SV the set of 
all possible states. Then nodes in the digraph F are 3-uples (i ,j, V), i I(), j = 1..m, 
such that o(j) = i modulo n, V  SV, augmented with fictitious nodes Start and End. 
An arc ((i0, j0, V0), (i1, j1, V1)) exists in F if one of the following conditions holds: 
- i1 = i0 + 1, j1 = (smallest value j, such that o(j) = i1 modulo n), V1 = V0 – 1;  
- i1 = i0, j1 = (smallest value j > j0, such that  o(j) = i1 modulo n), V1 = V0; 
- i1 = i0, j1 = (smallest value j > j0, such that  o(j) = i1 modulo n), V1 derives from 

V0 by adding load L(j0) between i0 and i0 + d(j0) – o(j0).  
In the first 2 cases, the arc ((i0, j0, V0), (i1, j1, V1)) has a null length. In the third 

case, it is provided with a length which expresses the impact on the Stop Number of 
the insertion of j0 into s, taking into account current state V0. One easily checks that 
solving Stop-Number-Price means computing a largest path in F. END-PROOF.   

 
Still, proposition 2 is hardly suitable for application, since Card(SV) increases as 

nC. So, in order to deal with the Stop-Number-Price issue in an efficient way, we 
adopt a double trigger approach:  we first try a fast GRASP insertion/removal process, 
and, in case of failure, we try an exact method involving a flow reformulation. 

  
The Initialization of the GRASP process works by successive insertions of con-

nected components G of the IN graph into a current feasible service s, until  j  s j   -  
N-Stop(s)) > 0 or no additional insertion is possible, while considering that the largest 
are j and Card(H(j)), and the smallest are L(j), d(j) – o(j) and the number of induced 
additional stop nodes, the most relevant is inserting j into s; its Local Search loop 
works as a descent process involving operators Remove(G): demands j  G are re-
moved from s; Insert(G): demands j  G, are inserted into s; Exchange(G1, G2): per-
forms Remove(G1) and next Insert(G2); Move(j, h): the waiting time of j  s demand j 
is re-assigned to  h, where G, G1 and G2 are connected components of the IN graph.  
 
 

B.  Handling Stop-Number-Price through a Max Flow and Lagrangean Relaxation.    
 
 Let us introduce the Demand Network D-NET, whose node set is the set 

{0..(2+H).n-1} and whose arcs are:   



o demand arcs aj,h = (o(j)+h, d(j)+h), j =1..m, h = 0..H, provided with a null low-

er capacity Min(aj), an upper capacity Max(aj) =  L(j),  and a cost Q(aj) =  j; 

o chain arcs ei = (i, i+1), i = 0..(2+H).n-2; Min(ei) = 0, Max(ei) = +  , Q(ei) = 0; 
o a backward arc bk = ((2+H).n-1, 0); Min(bk) = Max(bk) =  C, Q(bk) = 0.   
This allows us to reformulate Stop-Number-Price as the following flow problem:  

 

Flow Stop-Number-Price Formulation. 
{Compute on the network D-NET an integral flow vector F, together with 2 {0, 
1}-valued vector T = (Ti, i = 1..(2+H).n -1) and U = (Uj, j = 1..m), such that: 
o F is consistent with Min/Max capacities ;      (E8) 
o For any demand arc aj,h, Faj,h =  0 or L(j) ;  (E9: Non Load Preemption) 
o For any h in  {0..m} - H(j), Faj,h =  0;     (E10) 

o For any j = 1..m, L(j).Uj =  h Faj,h;   (E11: No Redundancy) 

o For any pair  (j1, j2)  EX: Uj1 +  Uj2 ≤ 1;      (E12) 

o For any pair  (j1, j2)  IN: Uj1 – Uj2 = 0 ;      (E13) 

o For any i = 1..(2+H)n -1, j B(i): Uj ≤  Ti;    (E14) 

o Maximize  j,h j.Fj,h – 1.T, which should be > 0}.    
 
We relax (E9) and consider the Lagrangean relaxation of  (E11). Given multipliers  = (j, j  = 1..m) we set:  L(F, T, U, ) = .F – 1.T - j j.(L(j).U j -  h Faj,h). Maxim-

izing L(F, T, U, ) may be done by solving 2 independent  sub-problems:  
 
- A Max Flow problem about F: {Compute an integral flow vector F, consistent 

with capacity and (E10) constraints, and maximizing:  j,h (j + j). Faj,h} .  
- A problem P-Aux about U and T: {Compute T = (Ti, i = 1..(2+H)n -1) and U = 

(Uj, j = 1..m), with {0, 1} values, which satisfy (E12, E13, E14) and which min-

imize 1.T + j j.L(j).U j. If C-IN is the set of connected components of the IN 
graph, then we may extend to C-IN the EX exclusion in a natural way, and re-
place U by a C-IN indexed vector U*, subject to:  (Reduced-P-Aux) 

o  c1, c2  C-IN such that EX(c1, c2), U*c1 + U*c2 ≤ 1;  (E15) 

o  c  C-IN, i = 1..(2+H).n – 1, such that B(i)  c ≠ Nil, U*c ≤  Ti;  (E16) 

o The quantity1.T +  c (jc j.L(j)).U*c is minimal. 

 We see that (E15) impose U* to define an independent subset of the graph (C-
IN, EX) defined on C-IN by the EX relation. This graph usually happens to be a 
sparse graph, with few edges, whose cliques and odd cycles with no chords may 
easily be enumerated. So constraints (E15) may be replaced by stronger con-
straints, which are usually facets of the Independent Set polytope (see [2, 9, 15]): 
o For any clique Q in the graph (C-IN, EX),  c  Q U*c ≤  1;  (E15-1) 
o For any odd cycle  with no chord in the graph (C-IN, EX),  c   U*c ≤  Card()/2.       (E15-2) 



This makes possible, in most cases, solving Reduced-P-Aux, through a simple 
relaxation of the integrality constraint followed by a simple rounding process. 

 
Proposition 3: The Non Load Preemption Constraint (E9) contains the integrality 

constraints on F, U and T. That means that if F, U, T are rational vectors which satisfy 
(E8..E14) then they are integral.  

 
Proof: left to the reader. END-PROOF.  
 
As a consequence, we handle Stop-Number-Price through Branch and Bound:  

- Bounding derives from computing the Lagrangean value Min  Max F, T, U satisfy (E8, 

E10, E15-1, E15-2, E16) L(F, T, U, ). This process yields some triple F, T, U. 
- Branching is performed according to a 3 trigger mechanism: 
o  If F resulting from bounding does not satisfy (E9), then we pick up aj,h such 

that Faj,h ≠ 0 and Faj,h ≠ 0 L(j), and try both Faj,h =  0 and  Faj,h = L(j).   
o In case F, U satisfy (E9) and j, h, h’ exist such that  Faj,h = Faj,h = L(j), then we 

pick up j, h such that Faj,h = L(j) and try both  Faj,h =  0 and  Faj,h = L(j); 

o  Else we pick up j such that Uj = 1 and  h Faj,h = 0, and branch between Uj = 0, 
and the h+1 options Faj,h = 1, h = 0..H. 

 

4 An Insertion Method   

  
Since our ultimate goal is the real time VIPA management, we also propose an in-

sertion algorithm Stop-Number-Insert: demands are successively inserted into the 
vehicles. Such an algorithm links in a well-fitted way off line and on line paradigms: 
when dealing with an on line instances, we insert, in real time, recent demands into 
the currently working vehicles. Those usually non deterministic algorithms may be 
cast into Monte-Carlo schemes.  We do not detail here the way Stop-Number-Insert 
works, and restrict ourselves to a brief description of its general structure:   

 
Stop-Number-Insert Algorithmic Scheme: 
 J <- {1..m}; K; Service(1) <-  Nil; (*Service(k), k = 1..K, is the current service 

of vehicle k; K denotes a Fictitious Vehicle, and K-1 is the Vehicle Number*)  
While J ≠ Nil do 

Randomly pick up j0 J, according to some priority rules;   (I1) 
Compute k0 in 1..K, h0 = 0..H, such that the insertion of j0 into Service(k0) 
with waiting time value h(j0) = h0  is feasible and its Quality level is the 
highest possible; Insert (j0, h0) into Service(k0) and remove j0 from J;   (I2)   
If k0 = K then increase K by 1; 

Stop-Number-Insert <- (Vehicle Number K – 1, Service(k), k = 1..K-1).  
 



Since Stop-Number-Insert is non deterministic, it may be cast into the following 
Monte-Carlo scheme, which involves a replication parameter R:  

For i = 1..R do Apply Stop-Number-Insert; 
Keep the best solution (Service, K-1) ever obtained.  

  
Priority Rules (Instruction (I1)) lead to deal with those among the remaining de-

mands which appear to be the most difficult to insert.  Quality criteria lead us to  
choose k0  and h0 in such a way the fewest possible additional stop nodes are created 
and current stop nodes may be reused as often as possible. 
 

5 Numerical Tests 

 
We present here tests, which are performed on a LINUX server CentOS 5.4, Quad-

ripro Quadcore, 3 Ghz. In order to deal with ILP models, we use the SCIIP free-
access software (see [14]), combined with CPLEX12 LP Library, which efficiently 
implements the branch/cut/price generic framework. Since no test-bed exists for the 
Stop-Number problem, we randomly generate instances, whose characteristics are:  
- n =  number of stop nodes of the circuit;  m = number of demands;  
- n-act = number of active nodes; w = mean load value; 
- C =  capacity of the vehicles; t = mean distance between o(j) and d(j), j = 1..m; 
- H =  maximum authorized waiting time.   

For every such an instance, we try the Stop-Number ILP model of Section II, 
solved by CPLEX12, the column generation oriented reformulation of Stop-Number 
of Section III, and the Stop-Number-Insert algorithm of Section IV.  

While performing this experiment, we want to evaluate the algorithms, and com-
pare the Vehicle Number and Global Riding Time values which derive from the Stop-
Number process with their optimal values. So, for every instance, we denote by:   
-  KMi the optimal Vehicle Number, and  Stop0 the related Stop Number;  
- StMin the optimal Stop Number, K1, Ride1, the related Vehicle and Global Riding 

numbers; CPU is the running time of the Stop-Number program while Col and 
Nd are respectively the numbers of columns and nodes generated by the process;  

- Ride the optimal Global Riding Time, and KG the related Vehicle Numbers.  
- LB the lower bound induced  of Section III 
- K Ins and StopIns the Vehicle and Stop Numbers which are computed by Stop-

Number-Insert: R is the replication number, and CPUIns the related CPU time (s).  
We provide here results for a 7  instance set, generated as told above:   

 
Id = Instance n m n-act H w t C 
1 10 40 10 0 1 5 6 
2 5 40 5 1 1 2.5 6 
4 10 40 10 1 1 5 6 



6 30 120 30 3 3 15 10 
7 30 70 28 4 5 15 10 
8 40 150 40 2 1 20 6 
10 100 100 89 4 5 50 10 

Table 1: Description of the instances. 
 
 

Id K1 StMin CPU Nd Col  LB 

1 4 26 37 24 352 25 
2 4 13 72 9 751 13 
4 2 17 3 1 84 17 
6 30 120 30 3 3 15 
7 6 86 186 14 356 79 
8 4 181 954 16 965 178 
10 10 146 11986 24 9896 139 

Table 2: Behaviour of the Stop-Number Process of Section III. 
  

Id KINS   

R=1 
StopINS  

R = 1 

CPUINS   

R = 1  
KINS   

R= 20 
StopINS   

R = 20 
1 4 29 0.1 4 26 
2 4 15 0.1 4 14 
4 2 20 0.2 2 18 
6 30     120      30 3      3 
7 5 94 0.6 6 90 
8 4 208 1.0 4 193 
10 9 8.2 0.6 10 3.4 

Table 3: Behavior of MC-Stop-Number-Insert.  
 
 
Instance K  CPU (s) 
1 4 3 
2 4 74 

4 2 561 
6 No Result * 

Table 4: CPLEX12 Resolution of the Stop-Number(K) model of Section II 
 

 
Id KMi Stop0 Ride KG Ride1 
1 4 26 0 4 0 
2 4 13 3 4 4 
4 2 17 2 2 2 
6 30 120 30 3 3 
7 5 89 18 5 20 



8 4 181 7 4 7 
10 8 158 30 9 33 

Table 5: Feature Analysis.  
 
Comments: The lower bound provided by the linear relaxation of the column gen-

eration oriented reformulation of Stop-Number is very good. Still, running times re-
main high, since even when this lower bound happens to be equal to the optimal value 
of the problem, the linear relaxation of the linear program Stop-Number-Aux may not 
yield an integral optimal solution. Also, we notice that Stop-Number-Insert, which 
should efficiently perform in a dynamic context, tends to require fewer vehicles than 
the exact method, and that optimizing the Vehicle Number also tend to minimize the 
Vehicle Number, as well as the Global Riding Time. Finally we may also notice that 
unit load instances are easier to handle than instances when the Non Load Preemption 
Constraint plays an important role,  and, by the same way, that forbidding waiting 
times, which means assuming H = 0, also tends to make the problem easier to handle.  
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