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LAGRANGEAN HEURISTIC FOR A MULTI-PLANT

LOT-SIZING PROBLEM WITH TRANSFER AND

STORAGE CAPACITIES

S. Deleplanque1, S. Kedad-Sidhoum2 and A. Quilliot1 1

Abstract. The paper addresses a multi-item, multi-plant lot-sizing

problem with transfer costs and capacity constraints. The problem is

reformulated according to a multi-commodity flow formalism, and de-

composed, through Lagrangean relaxation, into a master facility loca-

tion problem and a slave minimal cost multi-commodity flow problem.

The decomposition framework gives rise in a natural way to the de-

sign of Lagrangean based heuristic. Numerical experiments showing

the efficiency of the proposed approach are reported.

Keywords: Lot-sizing, multi-plant, storage and trans-

fer capacity, facility location, multi-commodity flow,

Lagrangean relaxation.

1. Introduction

Lot-sizing models are production planning models which involve clustering ef-
fects: demands may be produced together as part of lots or batches while sharing
some kinds of fixed cost resources. This class of problems may be set at both
operational and tactical levels. Models may be dynamic or static, and involve as-
sembly processes (multi-level), one or several plants (multi-plant), one or several
kinds of products (multi-item). Performance criteria may be about production
cost minimization, delay or shortage minimization.
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One of the major difficulties in solving lot-sizing problems arises from capacity
restrictions in each time period. Problems are polynomially solvable when capac-
ities are not considered, as well as when production capacities are constant over
the planning horizon [4]. When capacities are allowed to vary over the planning
horizon, the problem becomes NP-Hard [3].

Real lot-sizing problems are usually constrained by tight capacity restrictions,
high setup times and specific industrial constraints. The classical multi-item ca-
pacitated lot-sizing problem (MCLS) is widely the most basic big-bucket model
studied in the context of multi-item capacitated lot-sizing [7]. Nevertheless, ob-
taining optimal and sometimes even feasible solutions remains challenging. Chen
and Thizy [3] prove that the MCLS problem is strongly NP-Hard. Florian et al. [5]
and Bitran and Yanasse [2] show that the single-item capacitated lot-sizing prob-
lem is NP-hard in the ordinary sense. There are extensions of the basic lot-sizing
problem that can be used to model a variety of industrial problems. We refer to
the extensive literature review Jans and Degraeve [6] for an overview of the latest
modeling developments in lot-sizing field.

The problem addressed in this paper is a multi-plant multi-item capacitated lot-
sizing problem where transferring some productions between plants is allowed. The
items can be directly sent to the customers from the plant where they are produced.
A plant can get the items from other plants and store them in inventory. The
problem is clearly an NP-hard problem. We can refer to the work of Sambivasan
and Yahya [8] that describes some Lagrangean based heuristics to solve a relaxed
version of the addressed problem.

The contribution of the present work is to present a new decomposition scheme
of the problem into a master facility location problem and a slave minimum cost
multi-commodity flow problem. Since both problems have been widely studied,
with many applications to the design of telecommunication networks or to VLSI
conception, this kind of decomposition framework open the way to faster generic
software development. Part of the difficulty consists in designing the projection
part of the decomposition scheme, in such a way that it ensures the feasibility
of both capacity and demand constraints. The rest of the paper describes the
algorithms which implement this decomposition scheme and tackle the feasibility
problem in a Lagrangean relaxation framework. Numerical experiments are re-
ported.

The structure of the paper is the following. Section 2 describes an aggregated
formulation of the problem. A reformulation follows in Section 3 based on multi-
commodity flows. Section 4 provides the description of the Lagrangean based
heuristic to solve the problem that requires solving a facility location problem.
Computational experiments are reported in Section 5 before a concluding part in
Section 6.
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2. Problem definition and mathematical formulation

We consider a set K of K items (products) that must be produced at I plants
over a discrete planning horizon of T periods. We denote by I, the set of plants
and T the set of time periods. A plant i in I may be at the same time a producer
plant when some items are produced at i and a customer plant if i requires some
items to meet a given demand. A plant i may also be used as an inventory place for
the transfer of items from some producer sites to some customer sites. Moreover,
we have to satisfy a demand dkit for each period t ∈ T , item k in K, and plant i
in I. We assume that the productions and transfers are performed within a time
period. Indeed, if an item is produced at plant i at period t and transferred to a
plant j, j 6= i, the transfer occurs at period t. However, if the item has to be stored
in plant j, we consider that this storage transition takes place between period t
and period t+ 1.

The production of an item k at plant i at period t induces a unit production
cost pkit as well as a fixed setup cost qkit. A unit holding (storage) cost hk

it is induced
when one unit of item k is stored at plant i at period t. A cost ckijt is induced for
each unit of item k transferred from plant i to plant j at period t. The objective
is to minimize the total cost, i.e. production, setup, transfer and storage costs to
satisfy the demands over the planning horizon.

Capacity constraints are considered on both production, transfer and storage
resources. We denote by αk

it the amount of production capacity consumed per
unit of item k at plant i at period t. Similarly, βk

it is the fixed (setup) production
capacity consumed for producing item k at plant i at period t. For each unit
of item k, γk

it denotes the unit storage consumption at plant i for period t. We
assume that the available production (resp. storage) capacity at plant i at period
t is Ait (resp. Bit). The transfer operations must respect capacity restrictions.
Each unit of item k transferred from plant i to plant j at period t consumes τkijt.
The total consumption induced by the transfer of items from plant i to plant j at
period t must not exceed BTijt.

The problem consists in integrating both production planning decisions and
transfer/storage operations. To this end, we propose a Mixed Integer Program-
ming (MIP) model. The decision variables are defined for every i, j ∈ I, k ∈ K,
and t ∈ T as follows:

• variable xk
it represents the (positive) quantity of item k produced at plant

i at period t,
• variable zkit is a binary variable equal to 1 if item k is produced at plant i

at period t or 0 otherwise,
• skit represents the (positive) quantity of item k stored in plant i at the end

of period t (we assume that ski0 = 0),
• ykijt gives the (positive) quantity of item k transferred from plant i to plant

j at period t.
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The multi-item Multi-plant Lot-sizing problem under Storage, Transfer and
Production Capacity constraints (MLS-STPC problem) can be formulated as fol-
lows:

min
∑

i∈I

∑
k∈K

∑
t∈T (p

k
itx

k
it + qkitz

k
it + hk

its
k
it) +

∑
i,j∈I

∑
k∈K

∑
t∈T ckijty

k
ijt (1)

s.t.

xk
it + skit−1 +

∑
j∈I ykjit = dkit + skit +

∑
j∈I ykijt, ∀i, k, t (2)

∑
k∈K αk

itx
k
it + βk

itz
k
it ≤ Ait, ∀i, t (3)

∑
k∈K γk

its
k
it ≤ Bit, ∀i, t (4)

∑
k∈K,i∈I τkijty

k
ijt ≤ BTijt, ∀j, t (5)

xk
it ≤

∑N

l=1

∑T

r=t d
k
lrz

k
it, ∀i, k, t (6)

xk
it, s

k
it, y

k
ijt ≥ 0, ∀i, j, k, t (7)

zkit ∈ {0, 1} , ∀i, k, t (8)

The objective function (1) minimizes the total production (fixed and variable),
transfer and storage costs. The item conservation constraints are defined by Con-
straints (2). The production (resp. storage) capacity constraint at plant i for
period t is given by (3) (resp. (4)). Similarly, the transfer capacity constraint
when transferring items from plant i to plant j at period t is given by (5). Finally,
Constraints (6) are the linking constraints.

We propose a different formulation of the MLS-STPC problem based on multi-
commodity reformulation described in the following section.

3. Multi-commodity flow reformulation of the

MLS-STPC problem

The MLS-STPC problem can be formulated as a fixed charge network flow
problem. A classical way to tighten this kind of formulation in standard lot-sizing
problem is to decompose the flow along each arc of the network as a function of
its destination. This defined a so-called multi-commodity formulation assigning
a different commodity to each destination node. The decomposition by commod-
ity allows one to tighten the formulation by decreasing the upper bounds in the
variable upper bound constraints.

Several works in the literature deal with the multi-commodity version of the
classical multi-item capacitated lot-sizing problem, we quote the work of Barany
et al. [1] that propose exact methods based on the multi-commodity formulation for
the problem without setup times. Wu and Golbasi [15] propose a survey paper for
multi-item, multi-facility supply chain planning. They propose multi-commodity
flow formulations where each commodity is related to the product.
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We define a reformulation of the MLS-STPC problem based on network and
multi-commodity flows, which will be useful to propose a decomposition of the
problem. A commodity will be related to an item in our formulation. We first
describe the overall network structure.

We consider a network G = (V,A) associated to the MLS-STPC problem such
that the set of nodes is defined by V = {(i, t), i ∈ I, t ∈ T } ∪ {T + 1, 0} where 0
and T + 1 are two dummy nodes that represent respectively a sink and a source
node. The set of arcs will consist in what will be defined as the storage, production,
transfer and customer arcs. We define the following set of arcs:

• the set As of storage arcs ((i, t), (i, t + 1)) that define the total inventory
at plant i at the end of period t, for i = 1, . . . , N, t = 1, . . . , T − 1,

• the set At of transfer arcs defined by ((i, t), (j, t)), t ∈ T , i, j ∈ I, i 6= j,
that represent the transferred quantities between plants i and j,

• the set Ap of production arcs defined by (0, (i, t)), i ∈ I, t ∈ T , that define
the produced quantities at plant i at period t,

• the set Ac of customer arcs defined by ((i, t), T + 1), i ∈ I, t ∈ T , that
define the quantities consumed at plant i at period t,

• an additional arc (T +1, 0) called the equilibrium arc will be also defined.

The set of arcs A of G is thus defined as follows:

A = As ∪At ∪Ap ∪Ac ∪ {(T + 1, 0)}

We now characterize arc labels in the multi-commodity network. Each arc a of
A is characterized by a flow, a cost structure and a capacity. Two cost components
will be defined for each arc a: a fixed cost FCk(a) and a variable cost V Ck(a) for
each item k ∈ K as follows:

• if a = ((i, t), (i, t+1)) is a storage arc, then FCk(a) = 0 and V Ck(a) = hk
it,

• if a = ((i, t), (j, t)) is a transfer arc, then FCk(a) = 0 and V Ck(a) = ckijt,

• if a = (0, (i, t)) is a production arc, then FCk(a) = qkit and V Ck(a) = pkit,
• if a = ((i, t), T +1)) is a customer arc, then FCk(a) = 0 and V Ck(a) = 0,
• if a = (T + 1, 0), then FCk(a) = 0 and V Ck(a) = 0.

Similarly, we define a fixed FCP k(a) and variable V CP k(a) capacity consump-
tion for each arc a of A regarding each item k as follows:

• if a = ((i, t), (i, t+1)) is a storage arc, then FCP k(a) = 0 and V CP k(a) =
γk
it,

• if a = ((i, t), (j, t)) is a transfer arc, then FCP k(a) = 0 and V CP k(a) =
τkijt,

• if a = (0, (i, t)) is a production arc, then FCP k(a) = βk
it and V CP k(a) =

αk
it,

• if a = ((i, t), T +1) is a customer arc, then FCP k(a) = 0 and V CP k(a) =
0,

• if a = (T + 1, 0), then FCP k(a) = 0 and V CP k(a) = 0.

The capacity CA(a) of an arc a can be defined as follows:

• if a = ((i, t), (i, t+ 1)) is a storage arc, then CA(a) = Bit,
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• if a = ((i, t), (j, t)) is a transfer arc, then CA(a) = BTijt,
• if a = (0, (i, t)) is a production arc, then CA(a) = Ait,
• if a = ((i, t), T + 1) is a customer arc, then CA(a) = +∞,
• if a = (T + 1, 0), then CA(a) = +∞.

In the sequel, we will denote dkit by Dk(a) if a = ((i, t), T + 1), i.e. a is a cus-
tomer arc.

Figure 1 illustrates an instance of the problem for a single commodity k with
two plants i and i + 1 and a planning horizon consisting in periods t and t + 1.
The values between parenthesis represent the demands all the other values are the
cost parameters. The zero values are omitted.

hki+1,t

hkit (dkit)

(dk
i,t+1)

(dki+1,t)

(dki+1,t+1)

(i, t) (i, t + 1)

(i + 1, t + 1)(i + 1, t)

cki+1,i,t ck
i,i+1,t+1

cki+1,i,t+1ck
i,i+1,t

pk
i,t+1, q

k
i,t+1

pkit, q
k
it

pk
i+1,t, q

k
i+1,t

pk
i+1,t+1, q

k
i+1,t+1

T + 10

Figure 1. An example of the MLS-STPC problem with two
plants and two time periods.

In the sequel, we will denote by f a multi-commodity flow and Ind(f) the
boolean vector indexed on the arcs where for a ∈ A, Ind(f(a)) = 1 if f(a) > 0 and
0 otherwise. Moreover, we will denote by (a−, a+) each arc a and by Apst (resp.
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Ast) the set Ap ∪As ∪At (resp As ∪At).

The reformulation of the MLS-STPC problem is:

min
∑

k∈K,a∈Ap
FCk(a)Ind(fk(a)) +

∑
k∈K,a∈Apst

V Ck(a)fk(a) (9)
∑

k∈K(V CP k(a)fk(a) + FCP k(a)Ind(fk(a))) ≤ CA(a) ∀a ∈ Apst (10)

fk(a) = Dk(a) ∀a ∈ Ac, k ∈ K (11)
∑

b f
k((b, a−)) =

∑
b f

k((a+, b)) ∀a ∈ A, k ∈ K (12)

Constraints (10) are the capacity constraints. Satisfying the demand for each
item is imposed by Constraints (11). Finally, Constraints (12) represent the clas-
sical flow conservation constraints.

It comes that the MLS-STPC problem reduces to solving the fixed charge
minimum cost multi-commodity flow problem for G, that is finding the multi-
commodity flow f∗ that minimizes the total cost.

4. Solving method for the MLS-STPC problem by

Lagrangean relaxation

As mentioned in Section 1, the MLS-STPC problem is NP-hard. We propose
in the following a Lagrangean heuristic approach based on the decomposition of
the problem into a facility location and a minimum cost multi-commodity flow
problem.

The Lagrangean heuristic is based on the relaxation of the capacity constraints (10)
for the MIP formulation presented in Section 3. Any Lagrangean multiplier vector
is an indexed vector λ on the set Apst of positive values. The Lagrangean function
L(f, λ) will thus be defined as follows:

L(f, λ) =∑
k∈K,a∈Ap

FCk(a)Ind(fk(a)) +
∑

k∈K,a∈Apst
V Ck(a)fk(a)

+
∑

a∈Ap
λ(a)

∑
k FCP k(a)Ind(fk(a))

+
∑

a∈Apst
λ(a)

∑
k V CP k(a)fk(a)−

∑
a∈Apst

λ(a)CA(a)

Therefore, the Lagrangean problem consists in minλ,f L(f, λ) such that Con-
straints (11) and (12) are satisfied.

Let us suppose that we are provided with some Lagrangean multiplier vector
λ = (λ(a), a ∈ Apst) ≥ 0 then, for every pair of nodes (v, w) in V \{0, T + 1}, we
may set:

• P k
λ (v) = FCk((0, v)) + λ((0, v))FCP k((0, v)),
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• Qk
λ(v, w) = (V Ck((0, v)) + λ((0, v))V CP k(0, v) +Distkλ(v, w))d

k
w,T+1,

where Distkλ(v, w) is the length of a shortest path from v to w in the
network G, computed while considering every arc a ∈ Ast as provided
with a length V Ck(a) + λ(a)V CP k(a).

Before stating a property that will be useful for solving the problem, we re-
call briefly the definition of the standard (uncapacitated) facility location prob-
lem that will be used to solve the MLS-STPC problem (cf. [9], [10] and [11]).
Given a (location) set of nodes X, a function g from X to the set of the non
negative rational numbers, and a function l from X × X to the set of the non
negative rational numbers, such that l(x, x) = 0 for any x in X. The facility
location problem aims at finding a subset Y of X which minimizes the quantity:∑

x∈Y g(x) +
∑

x∈X miny∈Y (l(x, y)).

We get the following property:

Theorem 1: Minimizing L(f, λ) on the set of multi-commodity flows f which
satisfy the demand constraints (11), reduces to solving, for every k in K, an in-
stance of a facility location problem denoted by FLk

λ on X = V \{0, T + 1} with
g = P k

λ and l = Qk
λ. The related optimal value minf L(f, λ) is then equal to

W k
λ −

∑
a∈Apst

λ(a)CA(a) where W k
λ is the optimal value of the facility location

instance FLk
λ.

Proof. Solving optimally an instance of FLk
λ provides a set of nodes Y ∗ that

minimizes
∑

v P
k
λ (v) +

∑
v minw Qk

λ(v, w). Moreover, by construction, each node
v ∈ Y ∗ will be related to a production arc (0, v) and the demand of the customer
arc (w, (T + 1)) will be satisfied by using the shortest path between v and w, i.e.
the one that minimizes the total cost V Ck(a) + λ(a)V CP k(a) over all the arcs of
the path. Moreover, the value

∑
v∈Y P k

λ (v) is minimized, which corresponds to
the minimization of the total fixed cost components in the Lagrangean function,
i.e. FCk((0, v)) + λ((0, v))FCP k((0, v)). If we fix all the active production arcs
as the set of arcs (0, v) such that v ∈ Y ∗, then every customer node w is going to
get the whole demand dkw,T+1 from the node v in Y ∗ that induces the best total
cost. �

We describe in the following a Lagrangean based heuristic for the MLS-STPC
problem which requires solving instances of the facility location problem. We in-
troduce the following notations that will be useful for the description of the solving
approach. We will assume that an exact method called FACLOC, that uses pa-
rameter N which is the replication number, will be used to solve the instances of
the facility location problem. The FACLOC solving methods used will be specified
in Section 5. Computing the maximal value maxλ≥0 minf L(f, λ), may be done
according to the following procedure LAG-LOT-SIZING:
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LAG-LOT-SIZING(N: Integer)
λ← 0; W ← 0; λmax ← 0; n← 0;
While (W is improved in less than N iterations) do

Compute Wλ by applying FACLOC procedure to FLk
λ;

If Wλ > W then W ←Wλ; λmax ←;λ; Update Aλ
p ;

Update λ so that the sequence (λn) satisfies convergence conditions of the sub-
gradient method (as n→ +∞, λn → 0 and

∑
i λi → +∞);

Update the Distkλ matrices;
n← n+ 1;

EndWhile

The set Aλ
p corresponds to the active production arcs related to the final solu-

tion.
Several formulas can be used to compute the sequence (λn) [14], which allow

efficient updating of the Lagrangean multipliers.

LAG-LOT-SIZING ends while yielding some value W , together with some mul-
tiplier vector λmax and a subset Aλ

p representing the set of active production arcs,
i.e. the arcs with a strictly positive flow. However, since the capacity constraints
are relaxed, the feasibility of the solution is not guaranteed. Therefore, a heuristic
called PROJECTION is proposed in the following, to try to get a feasible solution.

The PROJECTION heuristic is based on solving a relaxation of the MLS-STPC
problem based on the solution obtained with LAG-LOT-SIZING. The main steps
of the PROJECTION algorithm are the following:

(1) Solve a classical minimum cost multi-flow problem for G′ = (V ′, A′) where
A′ = Aλ

p ∪Astc ∪ {(T + 1, 0)} and S′ is the subset of S induced by A′ and
where all the fixed parameters are set to 0. The solution obtained at this
step is denoted by f̄k(a).

(2) Solve the following instance of the MLS-STPC problem using LAG-LOT-
SIZING for G = (V,A):
• for each arc a ∈ Ac, D

k(a)← Dk(a)− f̄k(a) (residual demands),
• for each arc a ∈ Aλ

p , CA(a) ← CA(a) −
∑

k∈K V CP k(a)f̄k(a) −
∑

k∈K FCP k(a) (residual capacities)

• for each arc a ∈ Ast, CA(a)← CA(a)−
∑

k∈K V CP k(a)f̄k(a) (resid-
ual capacities).

Solving the first step of the PROJECTION algorithm consists in solving a clas-
sical minimum cost multi-flow problem with a standard linear programming solver.
The second step of the PROJECTION algorithm will provide a set of active pro-
duction arcs denoted by Āλ

p . The drawback of the PROJECTION procedure is
that the obtained solution is not guaranteed to be feasible, therefore we propose
to iterate the procedure in a solving approach called MLS-STPC-ALG that aims
at producing a feasible solution for the problem, i.e. a solution that satisfies the
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demand of the customers while respecting all the capacity restrictions. The solving
method is described in the following:

MLS-STPC-ALG

Stop ← 0; Aλ
p , Ā

λ
p ← ∅;

Initialize N, Initialize a MLS-STPC instance IG with the original parameters of
the problem;

While Non Stop do
Apply LAG-LOT-SIZING(N) on instance IG; Update Aλ

p ;

If Aλ
p = ∅ then Stop ← 0 (no feasible solution);

Else
Compute f̄ using PROJECTION given Aλ

p ;

If f̄ is null then Stop ← 0 (no feasible solution);
Else

Update IG with residual demands and capacities;
If (Dk(a) = 0) for all a ∈ Ac then Stop ← 0 (feasible solution);

EndIf
EndIf

EndWhile

The MLS-STPC-ALG procedure terminates providing at least a lower bound on
the objective value of the MLS-STPC problem. When the constraints are satisfied,
a feasible solution is obtained.

5. Experimental analysis

We performed experiments on a PC AMD opteron 2.1GHz. The MIP solver
used to solve the minimum cost multi-flow problem is CPLEX. facility location in-
stances were alternatively handled through CPLEX and for large instances through
FACLOC heuristics. We tried several instance packages, generated as described
in [8]. The generated instances correspond to the following parameters where UD
means Uniform Distribution:

• number of plants: I = 2, 3, 4, 5, 8, 10,
• number of items: K = 2, 3, 5, 10, 15,
• number of periods: T = 3, 5, 6, 10, 15,
• variable production cost is generated using UD[0,8],
• unitary inventory (storage) is generated using UD[0, 2],
• variable transfer cost is generated using UD[0, 2],
• fixed setup cost is generated using UD[5, 15],
• demand is generated using UD[0, 50].

The size of an instance is defined by the triplet (I,K, T ).

Capacities were generated as follows, a first flow f was randomly generated, in
such a way it satisfies the demand constraints. A value of a covering parameter α
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was chosen in UD[0, 100], and the capacity values for the arcs were computed in
order to make possible an increase f on the equilibrium arc by α%.

We denote by RCP (k) the ratio used to measure the capacity tightness of a
production plant of item k. We used the same capacity tightness average for
all the instances but not the same distribution on all the couples (i, t). Firstly,
we generated instances with a RCP (k) = 30%, k ∈ K for Sections 5.1 and 5.2
experiments. The instances generated in Section 5.3 have a RCP (k) = 0, which
means that the production capacity distribution is nearly the same for all the
producer plants.

We handled the facility location instances in an exact way, using CPLEX, Ta-
ble 1 describes the obtained gaps. The following notations are used:

• Ite: number of iterations of the MLS-STPC-ALG procedure,
• Gap: given by (W −WOpt)/WOpt which is the gap between the value W

produced by MLS-STPC-ALG and the optimal value WOpt obtained using
the CPLEX library,

• GLg: given by (W −WLag)/WLag which is the gap between W and the
value WLag produced by the LAG-LOT-SIZING algorithm,

• GLP: given by (W −WLP )/WLP which is the gap between W and WLP

produced by the LP relaxation of the MLS-STPC problem,
• GPr: given by (Wopt−Wopt1)/Wopt1 which is the gap betweenWopt and the
optimal value Wopt1 of the problem obtained by only taking into account
production capacity constraints,

• GFr: given by (Wopt−Wopt·free)/Wopt·free which is the gap between Wopt

and Wopt·free related to the uncapacitated version of the problem,
• Def: percentage of the whole demand which could not be satisfied after
the 1th iteration of the MLS-STPC-ALG algorithm.

5.1. Experiments with facility location handled through CPLEX Li-

braries - part 1

In the case that we handled the facility location instances in an exact way
(through CPLEX) we got results reported in Table 1. Lagrangean relaxation
yields good lower bounds. Indeed, if we compare the Gap values with the ones
obtained with the LP relaxation, i.e. GLP, we can see that the lower bounds are
close to the optimal values. The mean Gap value is equal to 0,68 while its value
is 17,41 for the GLP mean value. The projection mechanism, though it usually
fails in meeting demands at the end of the first iteration, still gets close to those
demands and usually meets them fast.

5.2. Experiments with facility location handled through FACLOC

heuristic

When large size instances are considered, heuristic procedures are used to han-
dle the facility location problem. It is interesting to study in such a case, the way
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Size Ite Gap GLg GLP GPr GFr Def
(3,5,3) 1 0 5.4 15.6 0.8 85 0
(3,5,3) 1 0 7.5 12.7 0.6 54 0
(3,5,3) 1 0 0.8 15.9 5.8 32.5 0
(4,10,6) 1 1.7 0.2 15.6 2.9 21.5 0
(4,10,6) 1 0 0.2 20.3 3.8 9.2 0
(4,10,6) 2 1.0 5.4 13.8 20.0 25.4 3.5
(5,10,10) 1 0.7 0.6 19.7 5.2 20.2 0
(5,10,10) 1 0.7 1.5 15.3 6.7 19.1 0
(5,10,10) 1 0.1 0.4 20.2 5.5 14.7 0
(8,10,15) 1 0 0.9 13.5 2.6 23.6 0
(8,10,15) 1 0.8 3.4 12.8 3.7 49.0 0
(8,10,15) 2 1.5 4.5 19.4 7.5 58.3 2.2
(10,15,15) 1 1.2 2.6 23.7 3.4 37.2 0
(10,15,15) 1 0 0.9 14.5 3.5 29.6 0
(10,15,15) 3 2.5 6.5 28.2 11.8 82.0 4.8

Table 1. Gap Analysis.

the solution induced by the application of such a heuristic procedure is going to
impact the final result. In order to understand it, we used the same instances as
in Table 1, and, for every instance, we computed the mean error (in percentage)
performed by the FACLOC procedure used, and compared it with the final error.
The FACLOC like heuristic which we used was a rough adaptation (with signifi-
cantly worse performances) of the sophisticated algorithm of [13]. It is based on
designing a randomized GRASP greedy and descent scheme, related to the stan-
dard local search operators (remove, transfer or merge location operators).

The following parameters are used:

• Ite-Approx (resp. Def-Approx) represents parameter Def (resp. Ite) de-
fined in Section 5.1), for the case where the facility location problem is
handled in a heuristic way,

• Gap-Approx and GLg-Approx are the increase rate (in %) with relation re-
spectively with Gap and GLg of the experiments conducted in Section 5.1,
due facility location handling in a heuristic way,

• Gap-Loc-Approx is the mean error (in %) induced by the use of the FA-
CLOC heuristic instead of a MIP solver on the resolution of the facility
location sub-problem.

Table 2 provides the result obtained for the sensibility analysis.

We can see that GLg increase closely follows the gap between the optimal
solution and the result produced by the heuristic. Still, impact on the final Gap
value was more difficult to predict, due to the dependency of the behaviour of the
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Size Ite-Approx Gap-Approx GLg-Approx Gap-Loc-Approx Def-Approx
(3,5,3) 2 10.8 6.7 6.5 2.3
(3,5,3) 1 2.0 2.0 2.1 0
(3,5,3) 1 12.6 12.8 12.5 0
(4,10,6) 2 9.9 5.1 3.8 1.8
(4,10,6) 1 6.8 6.7 6.4 0
(4,10,6) 1 0.1 1.5 1.9 0
(5,10,10) 2 11.0 9.6 8.5 5.2
(5,10,10) 2 20.7 15.0 13.4 2.1
(5,10,10) 1 8.4 6.9 7.7 0
(8,10,15) 1 5.0 5.1 4.8 0
(8,10,15) 1 14.5 16.4 15.2 0
(8,10,15) 3 10.2 4.5 3.9 6.2
(10,15,15) 1 12.5 14.9 10.6 0
(10,15,15) 1 7.0 6.8 7.3 0
(10,15,15) 2 3.2 7.6 5.5 2.8

Table 2. Sensibility analysis: heuristic vs. exact method for FACLOC.

projection mechanism on the characteristics of the arc production set obtained at
the end of the LAG-LOT-SIZING procedure.

5.3. Experiments with facility location handled through CPLEX Li-

braries - part 2

As shown in Section 5.1, we solved the facility location problem in exact way
but we generated other kind of instances with Rcp(k) = 0, k ∈ K and other sizes.
Table 3 reports the results of three sets of five instances.

We can notice in Table 3 that even if the capacity repartition seems to lead to
more difficult instances, the proposed procedure solves efficiently the problem. We
can notice that the optimal solution is reached for some instances. However, the
gap values increase in comparison to the results observed in Table 1, but are at
most equal to 5,04. The impact of the capacity constraints can also be measured
by the high increase of the GFr gap values.

6. Conclusion

We address in this paper an NP-hard multi-item multi-plant lot-sizing problem
with production, transfer and storage capacity constraints. This work generalizes
the problem addressed Sambivasan and Yahya [8]. We described the way the
problem might be decomposed, into facility location and network multi-commodity
flow problems. Since both problems have been widely studied, casting lot-sizing
problems into such a decomposition framework opens the way to fast design of
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Size Ite Gap GLg GLP GFr
(3,5,6) 2 2,01 4,90 3,54 52,16
(3,5,6) 2 1,29 3,94 3,93 30,16
(3,5,6) 2 0,85 6,45 2,28 34,47
(3,5,6) 2 1,42 3,70 3,70 48,22
(3,5,6) 2 0,00 10,51 1,28 62,46
(3,3,10) 1 2,13 5,76 6,50 57,02
(3,3,10) 2 0,00 6,56 5,08 62,74
(3,3,10) 2 0,98 6,37 6,29 94,34
(3,3,10) 2 1,69 18,57 6,22 112,65
(3,3,10) 2 0,11 8,04 3,63 65,13
(5,5,15) 2 4,40 6,41 18,16 16,71
(5,5,15) 2 2,71 4,25 12,34 18,49
(5,5,15) 2 5,04 6,20 18,88 16,71
(5,5,15) 2 4,38 5,69 15,35 20,19
(5,5,15) 2 2,44 3,71 13,00 20,63

Table 3. Gap analysis.

generic software components. An efficient Lagrangean heuristic is proposed. The
maximum deviation from the optimal value does not exceed 5% when the facility
location is solved to optimality for all the instances of the test-bed. Several research
perspectives arose from this study. Fixed parameters can be considered for the
storage and the transfer aspects. We can also allow some latencies on the transfer
operations. Specific algorithms should be used for FACLOC procedure instead
of a MIP solver. This is also the case for the minimum cost multi-flow problem.
Finally, the good quality of the solutions suggests the implementation of a branch-
and-bound algorithm to find optimal solutions to the problem. Other subgradient
techniques could also be used to speed up the algorithm.
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