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We present global heat-transfer and local temperature measurements, in an asymmetric parallelepiped
Rayleigh-Bénard cell, in which controlled square-studs roughnesses have been added. A global heat transfer
enhancement arises when the thickness of the boundary layer matches the height of the roughnesses. The
enhanced regime exhibits an increase of the heat transfer scaling. Local temperature measurements have been
carried out in the range of parameters where the enhancement of the global heat transfer is observed. They
show that the boundary layer at the top of the square-stub roughness is thinner than the boundary layer of
a smooth plate, which accounts for most of the heat-transfer enhancement. We also report multistability at
long time scales between two enhanced heat-transfer regimes. The flow structure of both regimes is imaged
with background-oriented synthetic Schlieren and reveals intermittent bursts of coherent plumes.

PACS numbers: 47.27.te, 47.27.nb
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I. INTRODUCTION

Thermal convection is a process that occurs naturally
in a wide range of natural systems (convection inside
stars, atmospheric motions, circulation in the ocean) and
this process also plays an important role in the industry
(heat exchangers, indoor air circulation). In these situ-
ations, the thermal forcing is very strong and the flow
highly turbulent. One possible model system, widely
used to study this problem is the Rayleigh-Bénard cell: a
fluid layer confined in a closed cell with adiabatic walls,
heated from below and cooled from above. Although this
is one of the first non-linear model system that was in-
vestigated nearly a century ago', the emergence and the
role of turbulence inside the boundary layers and their
consequences on the global heat transfer are still open
for debate?.

It is now clear however that the plates and the bound-
ary conditions play a crucial role in the dynamics of the
system® 8. To understand how instabilities develop near
the plates and how they affect the general dynamics of
heat transport, one approach is to purposely change the
plate properties to trigger transitions in the boundary
layers. One possibility is to introduce controlled plate
roughnesses. There has been a lot of efforts to figure
out how the dynamics of the flow is modified in this
situation® 6. Tt is now well established that controlled
roughnesses on the plates enhance the global heat trans-
fer and, in some cases, also increase the turbulent convec-
tion scaling exponent. This is also of utmost importance,
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and thus widely used and studied, in the engineering com-

munity as a heat exchange enhancement technique'”.

In this paper, we investigate how the thermal boundary
layers and the flow structure near the plates are modi-
fied by the roughnesses. We use a rectangular Rayleigh-
Bénard cell with a rough bottom plate and a smooth
top plate. This allows in-situ comparison of the flow
structure with or without the roughnesses. We report
both local temperature measurements carried out using
miniature thermistors and fluctuations at a larger scale
obtained with background-oriented synthetic Schlieren
techniques.

Il. EXPERIMENTAL SETUP AND HEAT TRANSFER
MEASUREMENTS

Our convection cell is a 10 cm-thick 40 cm x 40 cm rect-
angular cell with 2.5 cm-thick PMMA walls (see sketch in
figure 1). Both plates consist in 4 cm-thick copper plates
coated with a thin layer of nickel. The bottom plate is
Joule-heated, with possible powers up to 610 W. The
top plate is cooled with a temperature regulated water
circulation. The top plate is smooth. The controlled
roughnesses on the bottom plate consist in an array of
2mm-heigh 5mm x 5 mm square plots, machined in the
copper, evenly spaced every lcm. The working fluid
is deionized water. The mean temperature can be var-
ied between 15 °C and 45°C (the corresponding Prandtl
numbers, Pr = v/k, are respectively 8.1 and 3.9).

The control parameter is the dimensionless tempera-
ture difference between the hot (7}) and the cold (Tt)
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FIG. 1. Sketch of the convection cell. The six dark dots in the
plates show the location of the PT100 temperature sensors.
The miniature thermistor is symbolized by the dark green cir-
cle at a distance z from the bottom plate. The dashed brown
region indicates the area when the Schlieren is recorded. The
light gray rectangles represent the PMMA walls.

plates, given by the Rayleigh number,

Ra — ga(Ty, — T.)H? (1)
VK
where H is the height of the cell, g is the gravitational
acceleration, « the constant pressure thermal expansion
coefficient. In the experiment, the heat flux is imposed
with the electrical power on the bottom plate. We then
measure the temperature drop, T, — T, as well as the
temperature of the bulk, T} k.
The dimensionless global heat transfer response is
given by the Nusselt number,

QH

Nu=—22
YTNT - T

(2)

which compares the heat flux @ to the purely diffusive
flux AN(T), — T.)/H, where X is the fluid thermal conduc-
tivity. In our case, the typical Rayleigh numbers are in
the range 10° — 10!, and the typical Nusselt numbers
between 100 and 400.

Since the cell is not symmetric, given the bulk temper-
ature Ty, it is possible to define Rayleigh and Nusselt
numbers based on the temperature difference between

each plate and the bulk as done in the work of Tis-
serand, et al.'>. The Rayleigh number associated with
the smooth plate is,

o 2ga(Tbu1k - TC)I{3
N VK

Rag (3)

and its Nusselt number,

QH

Nug= —— 2%
2X(Touik — 1)

(4)
And similarly for the rough plate, the Rayleigh number

is,

2g90a(Ty, — Tou ) H?
Ra, = gOé(h blk)

()

VK

and its Nusselt number,

QH

Nup = ——7%
2X(Ty, — Touk)

(6)

To prevent spurious heat losses, the cell was insulated
with several layers of Mylar and placed inside a tempera-
ture regulated copper thermal screen. Each plate temper-
ature is obtained with 4-wire measurements of precisely
calibrated PT100 resistors located inside the copper plate
(see figure 1). The bulk temperature is obtained with a
4-wire measurement of one PT100 resistor placed at the
cell mid-height. It is found to be larger than (7}, +T¢)/2.
The resulting Ras, Nus, Ra,., Nu, are given in figure
2. These results are in quantitative agreement with the
measurements of Tisserand, et al. carried out in a larger
cylindrical cell®®. A transition toward a regime of en-
hanced heat transfer is observed on the rough plate for
Nu, =~ 100, corresponding to a boundary layer thickness,

= — =2
6th w mim (7)

which matches the height of the roughnesses.

In the next sections, we investigate the high-Ra regime
where the heat transfer enhancement is observed. These
are obtained at high power, where the heat losses are
small compared to the heat flux through the cell, even
if the Mylar insulating layers are removed, which is re-
quired to record images with a camera.

11l. BOUNDARY LAYER PROPERTIES
A. Experimental observations

The boundary layer structure 1is investigated
with two miniature glass-encapsulated Betatherm
GR2KM3187J15 thermistors, 400 pm in diameter. They
are placed at the end of rigid rods and inserted inside
the cell from above. The position can be chosen near the
smooth top plate or near the rough bottom plate, either
above a plot, in a groove or in a notch where the fluid
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FIG. 2. Dimensionless heat transfer. Circles: T = 15°C
(Pr = 8). Triangles: T = 30°C (Pr = 5.4). Squares: T =
45°C (Pr = 3.9). Open symbols: Nus versus Ras. Filled
symbols: Nu, versus Ra.. See text for the notations.

is at rest (see figure 3). The results presented in this
section have been obtained with a mean temperature
of 40°C and a heat power of 400 W. The resulting
global temperature difference 7y, — T, ~ 20°C, which
corresponds to a global Rayleigh number Ra ~ 5 x 1019,
and a Nusselt number Nu ~ 250.

Groove

FIG. 3. Schematic view of the rough plate. The blue-shaded
part is a groove, washed by the large scale circulation (given
by the red arrow). The green-shaded part are notches, where
the fluid at rest is not washed by the flow.

The profiles of temperature rms are obtained by mov-
ing the thermistor at a distance z away from the plate.
The definition of z above a plot, or inside a notch, is
schematized in figure 4. Figure 5 shows the profiles ob-
tained near the smooth plate and near the rough plate.

The profile obtained near the smooth plate shows a
peak close to the plate. The absissa of this peak can be

FIG. 4. Definition of z near the rough bottom plate, above a
plot, or inside a notch.
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FIG. 5. Profiles of the rms temperature fluctuations near the
smooth plate (full circles) and near the rough plate, with the
z origin at the bottom of a notch (open squares). The profiles
are compared with results from Ciliberto, et al.'' (x crosses)
and with those of Du, et al.° (black triangles). For reference,
the numerical simulation from Stringano, et al.'® is shown as
solid black line.

used as an estimate of the thermal boundary layer thick-
ness, 0. We find dy, =~ 0.8 mm, in fair agreement with
the classical estimate (Eq. 7) for this set of parameters
(H = 40cm and Nu = 250). The rough-case profile is
obtained near the rough plate, with the z origin at the
bottom of a notch, as in the right sketch in figure 4. It
shows two peaks. This is similar to the profile obtained
by Du and Tong'® in a cell with rough upper and lower
surfaces, and also in good agreement with the measure-
ment of Ciliberto, et al.'', in an asymmetric cell with
a rough bottom plate. It is very likely that the slight
differences between the profiles come from the details of
the roughness features — evenly spaced metallic paral-
lelepipedic roughnesses in our case, versus spheres with
random positions and sizes in the work of Ciliberto, et
al. or evenly spaced pyramids in the work of Du, et al..

The histograms obtained near the smooth plate are
shown in figure 6. They are similar to those typically ob-
tained with symmetric smooth plates!?24. The shape of
the histogram is nearly gaussian deep inside the bound-
ary layer. At the edge of the boundary layer (z = 0.8 mm
in our case), the histogram is skewed and does not show
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FIG. 6. Histogram of temperature for various distance z away
from the top smooth plate. From left to right: z = 0.4mm,
0.6 mm, 0.8 mm, 2.0mm, 3.0mm, 10 mm.

an inflection. Further away but still close to the thermal
boundary layer (z > 0.8mm), the histogram is skewed
and shows an inflection.

The strong quantitative and qualitative similarities
between our measurements near the smooth plate in
this asymmetric cell with those obtained in symmetric
smooth cells back up the hypothesis of independance of
the plates that was used in the analysis of Tisserand, et
al. for such an asymmetric Rayleigh-Bénard system!5.

An order of magnitude of the thermal boundary layer
thicknesses can be obtained by extrapolating the qualita-
tive features of the smooth-case temperature histogram
to the histograms obtained near the rough plate, shown
in figure 7. Du and Tong have shown that the shape
of the temperature histograms in rough cells are simi-
lar to those of smooth cells, at least in the center of the
cell'2. Above a plot, at the closest possible distance from
the plate, the histogram still shows an inflection. This
provides an upper bound for the thermal boundary layer
thickness above a plot, d:p, plos. It is apparently very thin,
thinner that can be resolved by our probe,

6th,p10t 5 0.4 min (8)

Inside a notch, on the other hand, the fluctuations remain
symmetric until z = 1.4 mm. This indicates that the fluid
is indeed rather still inside a notch.

At this stage, the enhancement mechanism that those
results suggest is therefore different from the one which
was proposed in the work of Tisserand, et al.'®. The fluid
that remains still in the notch constitutes a thermal resis-
tance and therefore probably does not contribute much
to the global heat transfer. On the other hand, the ther-
mal boundary layer on the plot is much thinner than the
smooth case, which suggests a higher local Nusselt num-
ber on these locations.
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FIG. 7. Histogram of temperature for various distance z

away from the rough bottom plate. Upper subplot: above
a plot, from right to left z = 0.4mm, 0.6mm, 1.0mm,
3.0mm, 10 mm. Lower subplot: inside a notch, from right to
left, z = 0.4mm, 0.6 mm, 0.8 mm, 1.4mm, 2.0mm, 3.0 mm,
7.2mm. See figure 4 for the definition of z.

B. Laminar interpretation

One possible explanation is that the top of the plots
behaves as if the corresponding portions of the original
smooth plate had been moved higher, inside the bulk.
The boundary layer does not develop continuously on
the whole plate, but rather on each individual plot. One
solution could be a laminar velocity boundary layer de-
veloping on the plots, as sketched in figure 8.

In this situation, the velocity boundary layer, §, can

be computed from the Prandtl-Blasius equations??,

3, () ~ 3'0\/? 9)

The thermal boundary layer lies inside the velocity
boundary layer because Pr > 1. Thus, the thermal
boundary layer thickness relates to the velocity boundary
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FIG. 8. Sketch of a laminar velocity boundary layer on the
top of the plots. Its thickness d,(x) can be estimated from
Prandtl-Blasius equations (Eq. 9).

layer thickness as2®

O, = 6, Pr1/3 (10)

We can then compute an estimate for the thermal bound-
ary layer thickness on the plot

Sih plot ~ 3.0VEHRe™Y/2pr=1/3 (1)

The Reynolds number can be computed experimentally
from velocity measurements obtained both with an in-
strumented “smart” particle?” and with PIV. The full
discussion of the velocity data is outside the scope of this
paper and will be discussed in a future paper.

The measured velocity in this range of parameter is
U ~ 2cm/s, which gives 6y plot &~ 0.7mm using Eq. 11,
which is larger than the experimental estimate. In addi-
tion, there is no experimental evidence that the thermal
boundary layer on the plot is larger at the downstream
edge of the plot. This means that the laminar velocity
boundary layer is not stable. Possible reasons are the di-
vergent streamlines downstream the plot and the sharp
edge of the plots. Both are known to cause destabilisa-
tion of laminar boundary layers.

C. Turbulent model

Since the laminar model appears to fail, we consider
another possible interpretation for our experimental ob-
servations: the boundary layers may have become turbu-
lent. The shear Reynolds number is a criterion to judge
about the potential transition of a boundary layer from
laminar toward the turbulent state. It is given by

S,U
o v

Reg

(12)

where 4, is the velocity boundary layer thickness. Di-
rect measurements of this shear Reynolds number have
recently been carried out in a smooth cylindrical cell of
aspect ratio 1, at Rayleigh numbers similar to ours by the
group of Ilmenau?®. In particular, at Ra = 1.42 x 10'°,
they have measured Res; = 79 and concluded that this
value lies in the range where the boundary layer is lami-
nar.

The Reynolds number may be different in a rectan-
gular cell like ours, but the order of magnitude should
stand. In this range of shear Reynolds numbers how-
ever, various experiments have shown that roughnesses
can lower the critical Reynolds Reg above which the BL
becomes turbulent??. It is therefore possible to consider
that the boundary layer becomes turbulent in our situa-
tion. Therefore, we can follow the approach proposed by
Kraichnan®®. The boundary layer is characterised by a
critical Péclet number Per and a critical shear Reynolds
number Reg. The Péclet number is defined by,

Pep — U(¢n)0en

(13)
In the range of Prandtl numbers that we can explore, the
thermal boundary layer lies within the velocity boundary
layer, hence,

Ué?
Pep = ——th 14
°er =" (14)

The Nusselt number, defined as Nu = H/(2dy,) is thus
1
Nu= iRePrl/z(PeTReS)_l/2 (15)

In the case of Kraichnan theory, the laminar boundary
layer is destabilised by the turbulence in the bulk. In our
case, the destabilisation arises from geometrical reasons.
Therefore, we do not expect the critical Per and Reg
to have the universal values they have in the turbulent
case, but rather to have geometry-dependent values. Our
experimental results, as well as many previous observa-
tions in the literature, show that the transition occurs
when the thermal boundary layer thickness is hg, hence
the critical values of the Péclet and Nusselt numbers:

h2U,
Per = —2=° 1
r Kb¢ (16)
H
And by definition,
5CUC
R(ZS = y (18)

where U, is the mean flow velocity at the transition and
0. the velocity boundary layer thickness at the transition.
From Eq. 16 and 18, we get

c

2
PerReg = (Z}) PrRe? (19)

Combining Eqgs 15 and 19, we obtain

_ H Re
o 2h0 R@c

Nu (20)



with Re = HU. /v « Rai/zPr_?’/‘l, hence

H R 1/2
Nu = a4

== 21
2ho Ral/? (21)

Before the transition, the Nusselt versus Rayleigh be-
havior is similar to a smooth plate. In this range of Ra
and Pr, it is close to Nu = o Ra'/3, thus

Ra, = (N“c)s (22)

g

This allows Eq. 21 to be rewritten:

3/2 1/2
Nu:(QUQ) (;‘;) Ra'/? (23)

In the following, we will use reduced variables: reduced
Rayleigh number r and reduced Nusselt number n, de-

fined as,
3
r= (E) Ra (24)

o () o

In these reduced variables, Eq. 23 can be rewritten with-
out explicit use of the geometrical parameters of the
roughnesses :

n = (20)%%1/? (26)

To determine o, we can use the data obtained by
Roche, et al. in a cell with V-shape groove roughnesses®!.
In this cell, both the plates and the lateral walls was
rough and the authors report a Nu o< Ra'/? scaling law
consistent with fully turbulent heat transfers. We fit Eq.
26 in the least-square sense, in the range of Pr close
to ours. We find o = 0.065 (see figure 9). This value,
fitted in a turbulent rough cell, is close to o = 0.06 usu-
ally found in the literature for smooth cells at moderate
Rayleigh numbers.

However, the reduced Nusselt numbers, n, that we ob-
tain in our cell, although larger than the smooth case
one, are still about 1.5 times smaller than the reduced
Nusselt numbers computed from the data of Roche, et
al.. Additionnally, the observations show a thick bound-
ary layer inside the notches. This is not consistent with
a fully turbulent boundary layer.

D. Turbulent BL on the top of the plots

In the range of parameters that we can achieve in our
rectangular cell, it is possible that only the boundary
layers at the top of the plots are destabilized. Since the
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FIG. 9. Heat transfer measurements obtained by Roche, et
al. in a rough cell®'. Circles: Pr = 1. Squares: Pr = 2.7.
Pentagons: Pr = 5.6. Solid line: Eq. 26 with ¢ = 0.065.

plots and the notches both occupy one quarter of the
plate surface, the rough Nusselt number will be given by

1 1 1
Nu, = iNugroove + ZNUnotch + ZNuplOt (27)

To test this interpretation, we have to derive each con-
tribution.

We assume that the boundary layers on the top of the
plots are turbulent. Therefore, Nupiot Will be given by a
relation similar to Eq. 23:

20)3/2 [ ho\V/?
Nuplot:( 2) (H°> Ral/? (28)

The fluid in the notches is almost quiet, and the bound-
ary layer thickness is large. To take into account the
advection that may still occur inside the notch, we can
compute the Rayleigh number, Rap,, of this small con-
vection cell of height hg,

ho\> T3, — Thou
Ran, — (H) B~ (20)

If we call f, the function that gives the Nusselt number
for a given Rayleigh number in the case of a smooth cell,
then the heat flux in the notch, Quotcn is given by

notc h h s T, — T u
Qnotenho —f (o> h bulk (30)
ATy — Toui) H Ty =T
From this equation, we can compute the Nusselt number
associated to the notches,

QnotchH

A(Th - Tc) (31)

Nunoten =



We can neglect the fact that Ty is larger than (Ty +
T.)/2 and write

T, —Tou 1
Zh T Thulk 2 32
T, — T, 2 (32)

Thus, using the heat flux from Eq. 30,

H (1 [k}
Nunotch - Thof <2 (H) R(L) (33)

At moderate Rayleigh numbers, the smooth Nus-
selt numbers, Nus = f(Ras) that we measure in the
smooth half cell fall fairly close to the prediction of
the Grossmann-Lohse model? with the recently updated
prefactors33. Therefore, we will use the GL model for the
function f. On the other hand, the Rayleigh number of
the notch is much smaller, close to the onset of convec-
tion. In this range of low Rayleigh numbers, the GL
model cannot be used. Therefore, we use a linear inter-
polation of experimental data from Chavanne, et al.?*.
In this range of parameters, the data from Chavanne, et
al. is in fair agreement with all other published data. We
can rewrite Eq. 34 more explicitly using fgr, the func-
tion computed from the GL model, and fc, the function
computed from Chavanne, et al. experimental data :

for(Ra) when Nu < H/(2hg)
= 3

Nupotch %fo (% (th[[)) Ra) when Nu > H/(?ho)
(34)
To estimate the final rough Nusselt number, Nu,., we
also have to compute a local Nusselt number for the
grooves. We assume that they behave as a smooth plate,
but we take into account the contribution of the verti-
cal walls, i.e., the surface increase can be written, using

again fgy, :

Sgroove _ 202 + 2(h0 - 6th)£ -1+ @ _ L
Ssmooth B 202 N l QEfGL(Ra)

(35)

and therefore

ho H
Nugroove = (1 + f) fGL(Ra) - 276 (36)

The expected rough Nusselt numbers are obtained by
combining Eq. 27 with Eqs. 28, 34, 36. This system has
no free parameters : ¢ = 0.065 was fitted from the ex-
perimental data of Roche, et al., the function fo is ob-
tained from the experimental data of Chavanne, et al.
at low Rayleigh numbers and fg is obtained from the
GL model at moderate Rayleigh numbers. A comparison
between this model and the heat-transfer measurements
previously shown in figure 2, and also the heat-transfer
measurements of Tisserand, et al. carried out in two
cylindrical cells'® of aspect ratios I' = 0.5 and I’ = 2.5,
are shown in figure 10.

For reference, the smooth data and the GL model is
also plotted in figure 10. Note that it is possible to plot

the smooth data with the same reduced variables as the
rough case if the Nu scales like Ra'/?, indeed Nu =
0.06Ra'/? can written with the rough reduced variables :

n=0.12r3 (37)

So, one advantage of these reduced variables is that the
two limit cases (roughness-induced turbulent case Nu o
Vho/HRa'/?, and the regular smooth Nu o< Ra'/? case)
should collapse on curves that both no longer depend on
the roughness height hyg.
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FIG. 10. Experimental heat-transfer data in reduced vari-
ables. Full symbols: rough Nusselt numbers. Open symbols:
smooth Nusselt numbers. Squares: present measurements.
Triangles and Circles: respectively, the “Tall cell” and the
“Small cell” of Tisserand, et al.'>. Half-filled symbols: results
of Roche, et al. in a fully turbulent rough cell®* (diamond:
Pr = 2.7, circle: Pr = 5.6). Dashed line: theoretical predic-
tion for a smooth cell with the GL model. Upper solid line:
n = (20)%/?r'/2. Lower solid line: prediction from Eq. 27.

E. Discussion

The present heat-transfer data is in good agreement
with the model prediction based on the assumption that
the BL is turbulent on the top of the plots only. The
data from Tisserand, et al. “Tall cell” (cylindrical cell
of height H = 1m) coincides well with the present data
and predictions.

However, the measurements from Tisserand, et al
“Small cell” (cylindrical cell of height H = 20cm) is
much closer to the fully turbulent data of Roche, et al.
and the turbulent prediction n = (20)%/2r1/2 (see figure
10). The reason may be that the mean velocity is larger
in the “Small cell” than in the “Tall cell”, which leads
to larger Reynolds numbers, and therefore possibly to a
fully turbulent BL.



To test further the agreement between the model
and our experimental observations, we can estimate the
boundary layer thicknesses, dpiot = H/(2Nuplot), and
Onoteh = H/(2Nupoten). The resulting boundary layer
thicknesses are plotted in figure 11. In particular, for
a smooth boundary layer thickness of order 0.8 mm, the
corresponding boundary layer thickness above a plot is
0.4 mm and the boundary layer thickness inside the notch
is 1.8 mm. This is in fair agreement with our experimen-
tal data.
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FIG. 11. Boundary layer thickness above a plot (dashed line),
and inside a notch (dotted line) compared to the boundary
layer thickness of a smooth plate (solid line) computed re-
spectively with our local Nusselt number model (Eq. 28 and
Eq. 34) and with the Grossmann-Lohse model

Although the roughness geometries are different, our
result and our interpretation can be compared to the
measurements of Du and Tong?!. In their case, the
cell has rough upper and lower surfaces, with pyramidal
roughnesses. In this cell, they obtain an enhanced heat
transfer but with no change in the Nu versus Ra scaling:
the scaling is always Ra?/7 but the power-law amplitude
is increased by more than 76 %. For reference, we shall
also cite the work of Qiu, Xia and Tong!* which reports a
Nu ~ Ra®35 scaling law. This exponent, although larger
than 1/3 is closer to the laminar case.

These differences between those results and ours can be
the consequence of the shape of the roughnesses. Indeed,
in their case, only the tip of the roughness elements is
inside the bulk region. In our case, the top of the rough-
ness elements consists in a 5 mm-long flat zone where a
boundary layer has enough room to form. Therefore, the
behavior of the boundary layer may be different. In their
case, they showed that the pyramidal roughnesses en-
hance the plume emissions. In our setup, we observe also
enhancements of plume emissions, but only intermittenly,
as will be discussed at the end of section IV.

Yet our results also bear some similarities with theirs.
The enhancement is greater than the surface increase, in-
duced by the roughnesses. They have seeded their flow
with thermochromic liquid crystal spheres, which allows
velocity and temperature visualization. They clearly evi-
dence secondary flows in the groove region, which is con-
sistent with our notch Rayleigh number that is found
larger than the convection threshold, as was also previ-
ously pointed out by Tisserand, et al.'®. In addition, they
also find a much larger thermal boundary layer thickness
inside the groove and a much thinner one at the tip of the
rough element, which is consistent with our observations.

One possible interpretation is that the intermediate
regime where only the boundary layers at the top of the
roughness become turbulent is not accessible with pointy
roughnesses. If the Reynolds number is large enough, a
fully turbulent regime can be observed, as in the Roche,
et al. case®!, leading to a change in the heat-transfer
scaling law. If it is not, then the boundary layer does not
become turbulent and the scaling law is not changed.
Yet, heat-transfer enhancement is still possible with to
other mechanisms, such as enhancement of plume emis-

sions, as in the Du and Tong case?!.

IV. MULTISTABILITY AND LONGER TIME SCALES
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FIG. 12. Example of coarse-grained timeseries showing evi-
dence of multistability in the flow. From top to bottom: signal
of a thermistor located inside a notch at z = 0.95 mm, skew-
ness of the thermistor signal computed on a moving window,
signal of a second thermistor located in the bulk and signal
of a PT100 sensor on the left-hand-side of the bottom plate.

We have recorded long time series of the thermistor



signal at various positions inside the cell. An example of
coarse-grained time series is plotted in figure 12. The sig-
nal exhibits transitions between two states: in the follow-
ing, we shall call “high-Nu” the state where T}, is colder
(because AT = Ty, — T, is smaller and therefore Nu is
larger), and “low-Nu” the state where T}, is warmer. This
additionnal increase of Nusselt number, of order 1%, is
much smaller to the one described in the previous sec-
tion. The time scales associated with these transitions
are much longer than the typical turnover time.

It is well known that the mean flow in the Rayleigh-
Bénard system can display large scale multistability, eg.
reversals®® 37 or changes in the convective pattern3®3°.
These transitions are known to exhibit time scales much
longer than all other typical times. This type of behavior
is also reported in other turbulent closed flows, such as
Von Kédrmén flow?0.

In the present observation, there were no reversals dur-
ing the time of the acquisition. So this multistability is
not caused by a flow reversal. There is also no measurable
signature in the bulk temperature, nor in temperature
signals near the top plate nor in signal of the PT100 in-
side top plate. However, the transitions evidenced by the
thermistor inside the notch are correlated to changes in
the bottom plate temperature, and therefore to changes
in the Nusselt number. It is worth noting that bistabil-
ity of the Nusselt number has been reported at moder-
ate Rayleigh numbers in high-precision cryogenic helium
convection cells*' 3, and also in water by Chilla, et al.**.

The statistics of the thermistor signal at this particu-
lar position in the notch differs between the two states:
the distribution, shown in figure 13, is more skewed in
the “low-Nu” state, in this case. We have recorded time
series at various positions in several notches, as well as
in grooves, and found out that there is a simultaneous
change of statistics everywhere near the rough plate.
However, the effects of this transition on the statistics
highly depend on the exact position of the thermistor.
There are positions where the thermistor temperature
signal step up when the plate temperature gets higher,
unlike the signal shown in figure 12. Therefore, the only
robust conclusion that can be drawn, is that these two
states are associated with a change in the structure of the
flow, but it is not clear how the boundary layer changes.
This change is visible simultaneously in notches and in
grooves, even if the probes are spacially separated (an ex-
ample is given in figure 14). This means that the change
of flow structure affects large areas of the bottom plate.

To figure out the nature of the two regimes, we recon-
structed the field of the temperature fluctuations with an
optical technique based on the light refraction. Indeed,
the temperature gradients in the fluid induce a gradient
of optical index. These optical index gradients can be
measured optically. This kind of measurements was first
successfully used for temperature imaging in Rayleigh-
Bénard convection using a laser scanning technique346.
In the present work, we combined this technique with the
modern, more straightforward, computer-based method
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FIG. 13. Conditionnal analysis of the time series shown in fig-
ure 12, recorded inside a notch at z = 0.95 mm. Top: thermis-
tor coarse-grained time series devided into two states based
on a threshold on the plate temperature from the PT100.
Bottom: conditionnal histogram computed on the “High-Nu”
state (x crosses) data points and on the “low-Nu” state (+
crosses).

of background-oriented synthetic Schlieren*”48. Unlike

shadowgraphy, this more quantitative technique grants
access to the temperature field, and thus to statistical
quantities.

The background picture is a computer-generated image
of randomly spaced dots. The region of interest, shown as
a brown dashed area in figure 1 was recorded with a black
and white AVT Stingray F125B camera. The framerate
is one image every five seconds during up to a hundred
hours, with synchroneous acquisition of the thermistors.
The apparent motion of the dots in the background pat-
tern is computed using a cross-correlation algorithm im-
plemented in the CIVx software suite®. The vector field,
cf(x, z,t), computed from the image at time t and a ref-
erence image obtained before the experiment starts, is

-

d(x,z,t) x Vp(z,z,t) x VT (z, z,t) (38)

However, in our system, gradients of optical index also
exist inside the plexiglas walls. This prevented us from
getting a reference image of the background pattern with
the fluid at rest (the temperature difference between the



1.2 .

Tnotch,rms [OC]
—
T
|

0.8 | | | | | |
0 2 4 6 8 10 12
= T T T T T
& 1F |
g
5091 |
>
3
@ 0.8 N
E‘m I I I I I
0 2 4 6 8 10 12
t [h]

FIG. 14. Example of simultaneous acquisitions from two ther-
mistors inside the cell. Top: rms of the temperature fluctu-
ations inside a notch at z = 0.70mm. Bottom: rms of the
thermistor in a groove approximately 10cm away from the
first thermistor.

bottom and the top of the wall leads to a spurious dot
motion). Therefore, we had to use cross-correlations be-
tween two successive images instead. The computed vec-
tor field, d, (x, z,t) is therefore

- -

JT(x, z,t) =d(x,z,t + 1) — d(x, 2, 1) (39)

with 7 = 5 in our experiment. After integration in space
of this vector field, we obtain a scalar field, T, (z, z, t),

Tr(z,2,t) x T(x,z,t +7) — T(x, 2,t) (40)

In the following, (.) means average in time, Tp(z, z) =
(T(x,2,t)) and 0T (z,2,t) = T(x,2,t) — To(x, z). Obvi-
ously, (T) is zero everywhere. We note Ty yms(z,2) =

(Tr(z,z,t)?). Tt is given by,

Ty ems (2, 2)? o< (8T (2, 2,t)*) — (6T (z, 2,t + 7)6T (2, 2, t))

(41)
If 7 is sufficiently large, the cross-correlation term
(0T (x, z,t + 7)0T (z,2,t)) can be neglected, and thus
T rms is proportional to the rms temperature fluctua-
tions.

Figure 15 shows two T ms(,z) fields with similar
color codes, one is averaged in the “low-Nu” state, the
other in the “high-Nu” state. They show qualitative dif-
ference between the two regimes. The latter is much
more agitated that the former (there are wide areas with
a larger value of the temperature fluctuations rms). A
slice is shown in figure 16 to better evaluate the increase.

Our interpretation is that there is another mechanism
that adds up to the emergence of turbulence discussed
in section III: the enhancement of plume emissions. This
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sort of effect has been reported for pyramidal roughnesses
by Du and Tong?!, and this effect also induces wider tem-
perature distributions, at least in the center of the cell,
in their case'®. In our cell, the “High Nu” state presents
intermittent bursts of coherent plumes. Example of this
kind of bursts is shown in figure 17. These bursts occur
only infrequently, typically once or twice every minute,
and each burst lasts typically five to ten seconds. This
phenomenon leads to an increase of the Nusselt number
only of order 1%, much lower than the increase reported
by Du and Tong. It is not clear if the enhancement of
plume emissions that we report is similar to theirs, be-
cause our observations are at much larger scales. We do
not have information on the details of the plume emis-
sion enhancement very close to the roughnesses at the
moment. A possible reason for the lower Nusselt in-
crease is the infrequent nature of the burst emissions,
that may depend on the details of the roughness geome-
try. Note that the emissions of coherent plumes have also
been evidenced at very high Rayleigh numbers, beyond
the transition threshold to turbulent boundary layers, by
Gauthier, et al.” from the careful analysis of the plate
temperature fluctuations.

V. DISCUSSION

The transition to turbulence of the boundary layer is
an important problem for Rayleigh-Bénard convection.
Theoretical works have predicted that this transition, at
asymptotically large Rayleigh numbers, leads to a change
in the heat transfer scaling law3%°%. This enhanced heat
transfer regime is sometimes referred to as “ultimate
regime of convection”. Several groups have reported a
transition to an enhanced heat transfer regime with an
experimental critical Rayleigh number varying between
10'2 for the Grenoble results® and 10'# for the Gottingen
results®’. The problem of critical transition values in this
kind of turbulent closed system is well known to highly
depend on details of the boundary conditions®?°3. A key
problem is therefore to figure out if it is possible to pur-
posely change the boundary conditions so that the tran-
sition to turbulence is triggered at moderate Rayleigh
numbers. One approach consists in adding controlled
roughnesses and study how they interact with the flow.

In the present work, heat transfer enhancement is re-
ported when the boundary layer thickness matches the
height of the roughnesses. This is consistent with previ-
ous global heat transfer measurements!%14:15  System-
atic characterizations of the temperature statistics near
the boundaries have been carried out in the enhanced
regime. They indicate, in the range of parameters ex-
plored, that the fluid inside the notches is essentially at
rest and that the boundary layer on the plot is very thin:
this seems to explain most of the enhancement of the
heat transfer. The boundary layer on top of the plots is
destabilised by the mean flow.

We also report intermittent transitions to a more ag-
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FIG. 15. Top: temperature signal of the thermistor located in a notch. The red part of the time series indicates the time
intervals where the average is computed. Bottom: T ms(, z) obtained with background-oriented synthetic Schlieren (see text).
The number of images used to compute the average is nearly the same for both images to prevent statistical bias. Left: picture
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FIG. 16. Slice of the T rms(z, z) fields shown in figure 15 at
x = 8.1cm. Inset: probability density function of T (z, z,t)
in both regimes. Solid red line: “High-Nu” regime. Dashed
blue line: “Low-Nu” regime.

FIG. 17. Instantaneous module of dot displacement, with the
same color code (blue is no displacement, red is 1.6 pixels).
Left: Typical field in the “Low Nu” state. Right: Example of
plume burst in the “High Nu” state.

itated state associated with a higher Nusselt number.
This additionnal increase is much smaller (of order 1 %),
in the range of parameters that we can investigate in this
cell. Our interpretation is that this is caused by another
mechanism, maybe close to the Du and Tong scenario:
the enhancement of plume emissions by the roughnesses.
Indeed, we have observed intermittent burst of coherent
plumes in this more agitated state.



Various observations reported in the literature on
rough Rayleigh-Bénard systems, with pyramids®!0:14:21
V-shape grooves!'®3!, or square-studs'® show both simi-
larities and apparent contradictions. They all report heat
transfer enhancement when the thermal boundary layer
thickness matches the height of the roughness, larger
than the surface increase, which suggests that the trigger-
ing of some enhancement mechanisms. But the amount
of increase can be very different: some have reported no
change in the scaling law but a change in prefactor, some
have reported a transition to a fully turbulent Ra'/? scal-
ing laws, or intermediate cases with an increase of the
scaling law exponent. In our cell, we observe the effect
of two different mechanisms: the emergence of turbu-
lence and the enhancement of plume emissions. This can
explain the apparent discrepancy between the published
results.

Depending on the roughness geometry, and on the
mean velocity, the critical shear Reynolds number can
be lowered, not enough to destabilize the boundary layer
(Du and Tong case), just enough to destabilize the top of
the roughness elements (our case) or sufficiently to obtain
a fully turbulent boundary layer (Roche, et al. case).
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