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Abstract: The aims of this paper are two folds. First, we aim to gain some insights at the
time Trajectory-based Active Fault-Tolerant Control (TAFTC) using the frequency spectrum
analysis. Secondly, we introduce the concept of finite-time stability (FTS) in the context of
AFTC systems. Generally, in TAFTC strategy, the desired specifications are defined in terms
of time-domain characteristics under the mathematical framework of behavioral system theory.
In this novel fault-tolerant mechanism, we do not work in the traditional input/output setting,
i.e. the frequency-domain, at the outset. Instead, we use the system time-trajectories. As an
extension, we report some results within this TAFTC strategy showing what frequency-domain
properties are actually satisfied by the closed loop. Since the TAFTC scheme is based on the
trajectories generated by the system, where no a priori information regarding the plant is known
at a run-time, the theory of FTS renders a more practical insight than is provided by the classical
theory to study the “behavior” of systems.
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1. INTRODUCTION

A fault, in general, is defined as un-permitted dynamics
that changes the dynamics of a closed-loop system in such
a way it no longer satisfies the desired specifications. Thus,
the aim of fault tolerant control (FTC) is to counteract
those altered dynamics by applying a suitable control
law such that the system encore achieves the prescribed
specifications. Predominately, a traditional process to re-
establish the desired specifications undergoes the following
two cascade stages: Fault Detection and Diagnoses (FDD),
and controller reconfiguration (CR). The purpose of FDD
is to use available signals to detect, identify, and isolate
possibly the sensor faults, actuator faults, and any other
system faults. Subsequently, the CR module reckons to-be-
required actions so the system can still continue to operate
safely even under faulty conditions Blanke et al. [2003].

Focusing on some of the disadvantages, described in Jain
et al. [2011], of the above classical approach to address
an FTC problem, the authors have proposed a novel tech-
nique in Jain et al. [2012a]. This approach is developed by
taking the time-trajectory viewpoint of behavioral system
theory Polderman and Willems [1997]. We term this FTC
approach as time trajectory-based active fault-tolerant
control (TAFTC). In this approach, no a priori infor-
mation about the plant is used in real-time. In addition,
neither the model of the plant is determined. Hence, no use

of FDD module is seen in this approach. Instead, TAFTC
strategy uses only the real-time measurements generated
by the system. Finally, based on the desired specifications,
the controller is reconfigured online such that an occurred
fault can be accommodated.

While putting forward this novel approach, the stabil-
ity issues of the overall scheme were not addressed. A
preliminary work on the stability issue was addressed in
Jain et al. [2012c]. In this paper, we use the concept of
finite-time stability (FTS) that dates back to the sixties
Weiss and Infante [1967]. Since then various version of FTS
were introduced in the literature Dorato [2006], e.g. in the
context of state-space equations, in the context of transfer
functions, for time-varying systems, etc. Basically, the FTS
concept differs from classical stability in two important
ways. First, it deals with systems whose operation is lim-
ited to a fixed finite interval of time. Second, FTS requires
prescribed bounds on system variables. Most of the results
related to stability and performance in the AFTC research
community are defined over an infinite time interval. This
could only be feasible if a model of the plant is available
in real-time. Unlikely, the TAFTC strategy deals with the
behavior of the system over a fixed finite time interval.
Therefore, FTS offers practical advantages. In addition,
the concept of FTS has never been presented or dealt
within the literature of fault-tolerant systems.



The second contribution of this paper is to present the
spectral analysis of a TAFTC system. The key con-
cept within the TFTC strategy contains only the time-
domain specifications. At the outset, it is difficult to real-
ize that which desired specifications in frequency-domain
are achieved by the closed-loop system. Consequently, in
addition to proving the FTS, another contribution is to
investigate the frequency-domain specifications achieved
by this novel TAFTC scheme. This helps one to gain more
insights and to infer explicit advantages offered by this
scheme.

2. TIME TRAJECTORY-BASED ACTIVE
FAULT-TOLERANT CONTROL

We view a dynamical system as an exclusion law that
indicates which trajectories are admissible for the system.
A trajectory is a vector-valued function s : T→ S, t 7→ s(t)
that take its values in the signal space S where T ⊆ R,S ⊆
Rs with s denoting the dimension of s(t). The behavior of
such systems can be expressed as the set of solutions of a
system of linear, constant-coefficient differential equations.
The set of all linear differential systems with s variables
will be denoted by Ls. The system is defined by a linear
differential equation

R0s+R1
d

dt
s+R2

d2

dt2
s+ . . .+Rn

dn

dtn
s = 0, (1)

where Ri, i = 0, 1, 2, . . . , n are real constant matrices
belonging to R•×s with finite number of rows and s
columns. Equation (1) can be compactly written as

R

(
d

dt

)
s = 0, R(ξ) ∈ R•×s[ξ], (2)

with R(ξ) = R0 +R1ξ +R2ξ
2 + . . .+Rnξ

n where R•×s[ξ]
denotes the set of • × s polynomial matrices with real
coefficients and indeterminate ξ. Then the behavior B is
given by the set

B = {s ∈ (Rs)R|s satisfies (2)}. (3)

The representation used in (2) is called the kernel repre-
sentation of B, and we often write it as B = ker(R( ddt )).
From the above, clearly a dynamical system is now repre-
sented by a set of operating signals given in (3). The shift
from representing a dynamical system as an input/output
processor standpoint to an equivalent set of solutions is
the key idea within the novel time trajectory-based FTC
approach.

2.1 Feedback Interconnection of Dynamical Systems

The concept of interconnection plays the central role
in modeling and control of system in the behavioral
framework. By an interconnected system, we mean a
system that consists of interacting subsystems. Here, we
deal within a special type of interconnection, termed as the
feedback interconnection. Let P ∈ Ls denotes the behavior
of the plant and C ∈ Ls denotes the behavior of the

controller, where s =
[
rT yT uT

]T
, whose values lie in the

signal space S having the dimension s = r + y + u. In the
sequel, we denote this column vector by s = col(r, y, u).
See Fig. 1 for a pictorial description of P and C. Taking the
behavioral point of view, we can now define the trajectory-
based behaviors of the plant as

P =

{
s = col(r, y, u) ∈ ST

∣∣∣∣R( d

dt

)
s = 0

}
, (4)

whereR(ξ) = [0r Dp(ξ) −Np(ξ)] withDp(ξ) ∈ R•×y[ξ], Np(ξ) ∈
R•×u[ξ] being co-prime polynomials, and 0r representing
the zero matrix of dimension r. From the classical in-
put/output point of view, y is considered as the output
of the plant and u as the input. With this partition of
inputs and outputs, evidently Dp(ξ)

−1Np(ξ) = G(ξ) de-
fines a proper rational matrix with Dp(ξ) 6= 0 [Willems
1991, Section VIII]. In a similar way, the behavior of the
controller is given by

C =

{
s = col(r, y, u) ∈ ST

∣∣∣∣C ( d

dt

)
s = 0

}
, (5)

where C(ξ) = [Nc(ξ) −Nc(ξ) −Dc(ξ)] with Dc(ξ) ∈
R•×u[ξ], Nc(ξ) ∈ R•×y[ξ] being co-prime polynomial, and
Dc(ξ)

−1Nc(ξ) = H(ξ) representing a proper rational
matrix with Dc(ξ) 6= 0. In this controller configuration,
u is the output of the controller, and (r, y) are the
inputs. The interconnection of P and C through the shared
variable s results in a system in which this shared variable
satisfies the dynamics of both P and C. The behavior of
this interconnection system is termed as the controlled
behavior or the implemented behavior K, and this is given
by the set K = P ∩ C, which is equivalent to

K = {s = col(r, y, u) |s ∈ P and s ∈ C} , (6)

where the symbol ‘∩’ denotes the interconnection oper-
ation. Note that the interconnection symbol ‘∩’ is akin
to the interconnection of sets. The following definition
formalizes the above concept of implementability.

Definition 1. (Implementability) Let P ∈ Ls be a linear
differential system, C ∈ Ls be a controller, and K ∈ Ls.
Whenever K is obtained by interconnecting P and C, we
say that “C implements K”. In addition, for a given K ∈ Ls

whenever there exists C ∈ Ls such that C implements K,
K is said to be implementable by the interconnection.

The above definition implies that K is the restricted behav-
ior satisfying the dynamics of both P and C. Accordingly,
a given K ∈ Ls is implementable by an interconnection
with respect to P if and only if K ⊆ P.

2.2 Effect of Faults

The real-time notion of controlling a faulty system is that
the operating plant must achieve the control objectives
at anytime, i.e. regardless of any occurrence of a fault.
In this respect, we can single out a subset of plants’
behavior as desirable. We call it the desired behavior,
denoted by D ∈ Ls. The underlying principle is that the
set of solutions belonging to the desired behavior satisfy
the control objectives. We define the desired behavior as

D =
{
s = col(r, y, u) ∈ ST |J(s) ≤ λ

}
, (7)

where J : (Rs)R → R, s 7→ J(s) defines the control perfor-
mance functional with λ ∈ R denoting the threshold limit
below which the performance is considered satisfactory.

Faults affect the dynamics of the system in a way that the
control specifications are not satisfied. However, in some
cases, the operating controller in the feedback control loop
is extremely robust making a fault tolerable within an
FTC system. Hence, no change in the control law would
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Fig. 1. Feedback interconnection : shaded behavior indicates that no a priori information is available in real-time

be required. With the above considerations, we define two
classes of faults, namely minor faults, and major faults
Jain [2012].

Definition 2. (Minor Faults). A fault is said to be a mi-
nor fault whenever there is no need of reconfiguring the
controller in the closed-loop.

Definition 3. (Major Faults). A fault is said to be a major
fault whenever K * D.

The real-time FTC problem we are dealing with is posed
in the following way. Given the desired behavior D, the
problem is to find an appropriate controller C, without
using any a priori knowledge about the system in “real-
time”, which have the suitable control actions such that
the controlled behavior K satisfy the desired behavior D
at anytime.

2.3 Design and Implementation of TAFTC

In the traditional structure of AFTC systems, it is a
fact that a precise knowledge of running plant is required
during the fault diagnosis operation. On the other side,
the novelty of utilizing the behavioral approach lies in its
time-trajectories outlook of approaching an FTC problem,
where no such knowledge is required. Nevertheless, the
first stage for developing a fault-tolerant system requires
Failure Mode and Effective Analysis (FMEA) Blanke et al.
[2003]. FMEA’s objective is to forecast systematically how
fault effects on elements relate to faults at inputs, or
outputs within the elements, and what reactions should
be imposed on the system when a certain fault appears.
Therefore, a mandatory prerequisite for achieving fault-
tolerance is to have an effective FMEA of the system.
We termed this phase as the Analysis & Development
(AD) phase, which aims to provide a complete coverage of
possible occurring faults in the closed-loop as well as the
corresponding remedial measures. From the AD phase, it
is assumed that a finite set of controllers

C = {C1,C2, . . . ,CN} (8)

is constructed, which makes the desired behavior D imple-
mentable. An approach to perform this analysis procedure
is discussed in Wu [2004] and the references therein.

The Behaviors All modeling assumptions about the
operating plant are embedded within the R(ξ) matrix
given in (4). At a run time, this matrix will not be
determined. We form a measurement set M, which is non-
empty subset of ST. From the real-time viewpoint, this is
formalized in the following definition.

Definition 4. (Experimental plant’s behavior). Given a vec-
tor space of time-dependent signals ST, a dynamical sys-

P

C1

s
C2

CN

C

Supervisor

faults σ(t)

Fig. 2. System Architecture of time trajectory-based Ac-
tive FTC system in the behavioral context

tem ΣP = (T,S,P), and a measurement set M ⊆ ST, the
behavior of the plant P is a superset of the (experimental)
measurement on time intervals, i.e.

Mτ ⊆ Oτ (P) (9)

where Oτ is the time truncation operator given as

[Oτ (x)](t) =

{
x(t), tn − τ ≤ t < tn ;
0, otherwise.

where tn = nτ,∀n = 1, 2, . . ..

The role of introducing the time-truncation operator is to
produce time-dependent subsets Mτ of M for the interval
of length τ ∈ R. From the above definition, for any
controller C together with the behavior of the plant, we
have

Oτ (O−1τ (Mτ ) ∩ C) ⊆ Oτ (K), (10)

where O−1τ (Mτ ) denotes the pre-image of Mτ . It is inter-
esting to note from (10) that the controlled behavior, by
construction, is formulated independently of the matrix
R(ξ).

Set-up of the TAFTC Architecture The structure of the
real-time fault-tolerant control in the behavioral context
is provided in Fig. 2. Indeed, this structure is similar to
what is usually used in the traditional projection-based
approach. However, the novelty lies in the construction of
the supervisor. Note that the plant in the figure is shaded
as we do not have any a priori knowledge of it in real-time.
Conversely, in the traditional approach, the supervisor
is constructed by assuming the plant’s knowledge which
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performs the “when-which” task, i.e. when to change the
control law, and which controller should be switched in the
closed-loop. To perform this task without the aforesaid
assumptions, we construct a supervisor as illustrated in
Fig. 3, whose job is to select and switch in run time the
correct controller within the closed-loop in one-shot, i.e. in
a single switch. This supervisor is constructed using a bank
of filters, a Performance Index Generator (PIG) block and
a controller selector block.

2.3.2.1. Bank of Filters Since no knowledge of the
plant’s model is available, we only obtain a measurement
set Mτ during the interval of length τ , which is composed
of the trajectories u(t) and y(t) produced by the plant. If
a controller C were in the loop when the plant produced
the trajectories col(y, u), then the restrictions imposed by
the controller behavior (5) would be

Dc(ξ)u(t) = Nc(ξ)r(t)−Nc(ξ)y(t), tn − τ ≤ t < tn

for some r ∈ (Rr)R or equivalently,

Nc(ξ)r(t) = Dc(ξ)u(t) +Nc(ξ)y(t), tn − τ ≤ t < tn. (11)

Assume that all controllers in the controller’s bank (8) are
stable causally left invertible, then based on the observed
set Mτ the corresponding reference trajectory r(t) can be
evaluated as

r̂i(t) = (Nci(ξ))
−1(Dci(ξ)u(t)+Nci(ξ)y(t)), tn−τ ≤ t < tn,

(12)
where i ∈ {1, 2, . . . , N}. For the controller C in the actual
loop, the trajectory r̂(t) asymptotically converges to r(t),
since subtracting (11) from (12) yields N(ξ)(r̂(t)− r(t)) =
0, where N(ξ) is the stable polynomial. Equation (11), in
fact, yields the controlled behavior K as defined in (6),
since here (y, u) ∈ P and (r̂, y, u) ∈ C. Consequently, for a
measurement set Mτ ⊆ Oτ (P), if there exists a trajectory
r̂i(t) corresponding to the ith controller Ci, i = 1, 2, . . . , N ,
then it would yield the corresponding controlled behavior
Oτ (Ki) ⊇ Oτ (O−1τ (Mτ )∩Ci),∀i ∈ {1, 2, . . . , N}. Equation
(12) defines a filter which reconstructs the virtual reference
signal r̂(t) from the measurement set Mτ Safonov and Tsao
[1997]. From this, we have now determined the controlled
behavior of all controllers with respect to P at run time,
however, no knowledge of the plant’s model is used here.

2.3.2.2. PIG block : The measurements generated by
the plant together with the virtual reference, i.e. ŝ =
col(r̂, y, u) ∈ ST, are then fed to the PIG block. This block
yields N performance indices

{J(ŝi), i = 1, 2, . . . , N}, (13)

for the corresponding N controllers, which are evaluated
by considering the signal ŝ during the interval of length τ .

2.3.2.3. Controller Selection : The controller selector
block subsequently produces a piecewise constant signal
(the switching signal) σ(t) based on {J(ŝi)}Ni=1 whose job
is to select the controller that implements D from the
bank of controllers. The switching signal is a map from
the time axis T to the controllers index set {1, 2, ..., N},
i.e. σ : T → {1, 2, ..., N}. The control performance is
evaluated during the interval of length τ , and if it requires
switching of the controller, the switch will occur after
time τ exclusively. Therefore, it imposes a lower bound
on the length of intervals between successive switches.
This minimum length of time in which a controller is
active in the loop is known as the dwell time Morse
[2008]. The control selection logic is then realized through
σ(t) = σ(tn) for tn ≤ t < tn+1 with the updating rule

σ(tn+1) =

{
σ(tn), if K ⊆ D;
argmin{J(ŝi)}i6=σ(tn), if K * D.

(14)

The controller selector block contains the control selection
algorithm given in (14).

3. FINITE-TIME STABILITY OF TAFTC

In the behavioral system theory, the stability is not con-
sidered as a property of a dynamical system, but of a
trajectory generated by the system. However, for linear
systems, the stability can be viewed as a property of
the itself. The following definition formalizes the idea of
stability within the class of linear systems.

Definition 5. A linear dynamical system is said to be
stable whenever all elements of its behavior B, i.e. s =
col(r, y, u) ∈ B are bounded on the half-line [0,∞).
Otherwise, it is said to be unstable.

One can see that the above definition can be put in line to
the classical concept of input/output stability, especially,
bounded-input bounded-output stability. Indeed, this con-
cept of stability considers either the trajectories charac-
terized over an infinite time interval or the mathematical
model of the system. Since, we do not have any a priori
mathematical model of the system in real-time and we do
not have trajectories up to time t→∞, we use the concept
of finite-time stability to deal with AFTC systems.

Definition 6. Given positive scalars T1, T2 ∈ R, (T2 >
T1), a linear dynamical system is said to be finite-time
stable whenever all elements of its behavior B, i.e. s =
col(r, y, u) ∈ B are bounded by a prespecified limit over
the interval t ∈ [T1, T2[.

One can easily infer that the scalars defined above are
in line with time limits specified in Definition 4. Note
the difference between Definitions 5 and 6. First, the
latter involves trajectories characterized over a finite time
interval. Secondly, quantitative bounds are prespecified on
trajectories unlike to the former definition. We want to
guarantee that the novel TAFTC system is a finite-time
stable system. To prove this, the desired behavior D that
captures the dynamics of the closed-loop, should be finite-
time stable. Otherwise, no controller can guarantee FTS
of the closed-loop. First, we shall show when a closed-loop
can be certified as a finite-time stable.

Proposition 1. Given a dynamical system ΣC = (T,S,C),
the desired behavior D, and a measurement set Mτ ⊆



Oτ (P), the interconnection between P and C yields a
‘stand-alone’ finite-time stable system if

Oτ (O−1τ (Mτ ) ∩ C) ⊆ Oτ (D). (15)

Proof Suppose the performance functional in the desired
behavior D is chosen as

J(s = col(r, y, u)) =
‖u‖+ ‖y‖
‖r‖+ α0

,

where α0 is a non-zero constant and ‖ • ‖ denotes the
Euclidean norm. Within a finite-time interval of length τ ,
the stable desired behavior would be defined by

Oτ (D) =

{
s = col(r, y, u)|J(sτ ) =

‖u‖τ + ‖y‖τ
‖r‖τ + α0

≤ λ
}
.

(16)
Whenever the interconnection between the controller C
and the unknown plant P is made, then (r, y, u)τ ∈ Oτ (C)
and (y, u)τ ∈ Oτ (P) ⊇Mτ . Note that no knowledge about
the plant is used; instead we use the experimental plant’s
behavior. If the above interconnected system is included in
the desired behavior then trajectories satisfy the inequality
(16), which is equivalent to

‖u‖τ ≤ λ1‖r‖τ + δ1, ‖y‖τ ≤ λ2‖r‖τ + δ2.

with Σ2
i=1λi = λ and δi = λiα0, i = 1, 2. Hence, according

to the Definition 6, the closed-loop is a ‘stand-alone’ finite-
time stable system.

Indeed, at a runtime the FTS of the closed-loop system
cannot be guaranteed in the event of fault occurrence. In
the sequel, we shall show when an operating closed-loop
system can be certified as a finite-time stable system at a
run-time. As shown earlier, there exists a controller in the
bank that can achieve the desired behavior, and hence the
FTS. A trivial solution is that one can test every controller
sequentially in the closed-loop such that the Proposition
1 can be applied. However, at a runtime illustrating FTS
in such a manner can lead the system to an unrecoverable
mode, i.e. the mode from where an occurred fault cannot
be accommodated. Therefore, to guarantee the FTS of the
overall TAFTC scheme, it is sufficient showing that the
controller that can stabilize the system, in the sense of
FTS, switches in one-shot into the closed-loop.

Proposition 2. Given the stable desired behavior D, and
a measurement set Mτ ⊆ Oτ (P). For any occurrence of
a fault, the time trajectory-based fault-tolerant control
system is finite-time stable.

Proof Without any loss of generality, consider a bank of
three controllers C = {C1,C2,C3} is constructed in the
AD phase. The real-time operation is initiated with an un-
known P interconnected with the C1. Thus, Oτ (O−1τ (Mτ )∩
C1) = Oτ (K1) ⊆ Oτ (D). Suppose, a minor fault occurs
into the system. Since the occurred minor fault does not
change the behavior of the system, we would still have
Oτ (K1) ⊆ Oτ (D). This implies that there is no need to
change the controller C1. Hence, the closed-loop system is
finite-time stable. Consider now that a major fault occurs
into the system. Indeed, this will change the behavior of
the plant, and suppose, this new behavior is then given by
Pf . From the Definition 3, it implies that an occurrence of
major fault causes K1 * D. Therefore, whenever the last
inclusion satisfies, the operating controller in the loop is
invalidated implying that a fault has occurred.

Again, without any loss of generality, suppose, that con-
troller is C2 and not C3. Using the measurement set Mτ

generated by the plant, two virtual reference signals are
evaluated by (11), which gives two sets of trajectories:
ŝ2 = col(r̂2, y, u), and ŝ3 = col(r̂3, y, u). As described
in Section 2.3, for these set of trajectories, we would have
two corresponding virtual interconnected system, namely

K̂2 and K̂3, defined as

K̂2 = {(ŝ2 = col(r̂2, y, u)|(y, u) ∈ Pf and (r̂2, y, u) ∈ C2},
K̂3 = {(ŝ3 = col(r̂3, y, u)|(y, u) ∈ Pf and (r̂3, y, u) ∈ C3}.
Interestingly, we have obtained the virtual closed-loop
behaviors with every controller without putting actually
the controllers into the loop. From the above, C2 is
supposed to be that right controller, not C3. This, indeed,

satisfies Oτ (K̂2) ⊆ Oτ (D). Consequently, the controller C2

will be switched in to the closed-loop by the switching
logic (14), instead of the controller C3. As shown earlier,

r̂ = r, which implies that K̂2 = K2 and hence Oτ (K2) ⊆
Oτ (D). Therefore, the time trajectory-based fault tolerant
strategy is finite-time stable.

Above proposition demonstrates that the stability is guar-
anteed for the overall TAFTC scheme. However, a source
of stability violation could be because of the switching
between the controllers. The lack of dynamical consistency
between the “state trajectories” of the to-be-switched con-
trol and the unknown plant is shown as the prime cause of
stability violation Yamé and Kinnaert [2007]. Due to this
inconsistency, bump appears whenever a new controller is
introduced in the closed-loop at a run-time. To address
this issue, we have used the algorithm proposed in Jain
et al. [2012b], which guarantees the smooth interconnection
between the controller and the unknown plant. The con-
cept of smooth interconnection is demonstrated by using
the behavioral framework. The main idea is to enforce
the dynamical consistency between the controller and the
plant such that whenever a controller is introduced in the
loop, no bumps would appear. In other words, we reset the
“state” of the to-be-switched controller without using any
knowledge about the plant in real-time.

4. FREQUENCY SPECTRUM ANALYSIS OF TAFTC

From Fig. 3, it can be seen that the performance evaluator
block plays a significant role in the selection of one of
the controllers from the bank. Generally, the performance
functional in the PIG block captures the control objective
or the desired specification. No doubt this functional
is composed of the plant trajectories together with the
virtual reference signal. In the existing literature, with
respect to this latter signal, various types of performance
functional exist, see Jain et al. [2012c] for a brief overview.
In this section, we shall see which properties are depicted
by this functional from the viewpoint of frequency-domain.

First, we shall discuss the integral squared error (ISE) as
the performance functional chosen in the desired behavior.
Indeed, ISE is a usual and common performance index
evaluator in practical control engineering problems Jain
et al. [2013]. The desired behavior is then given by

D = {s = col(r, y, u)|J(s) =

∫
t

‖êi(ς)‖2dς ≤ λ} (17)



where êi = r̂i − y, i = 1, 2, . . . , N is the virtual error. Tak-
ing the spectral viewpoint, the virtual reference signal is
given by r̂i(f) = H−1i (f)u(f) + y(f), where H−1i (f) is the
inverse spectrum of the i−th controller. Above equations
yield êi = H−1i (f)u(f). One should keep in mind that
the plant is operating in closed-loop, i.e. the signal u(f)
depends on the plant output signal y(f). The behavior of
the running plant G is captured by the signals (u, y), and
in the classical input/output approach, this is expressed as
y(f) = G(f)u(f), where G(f) is the frequency spectrum
of the plant. On the other hand, we can also formally write
u(f) = G−1(f)y(f), where G−1(f) is the inverse spectrum
of the plant. The above equations yield the virtual error
signal as êi = H−1i (f)G−1(f)y(f), i = 1, 2, . . . , N . Since
the signal y is same for all virtual closed-loops being tested,
the performance formally depends on H−1i (f)G−1(f), and
this can be written as

J =

∫
f

‖H−1i (ς)G−1(ς)y(ς)‖2dς (18)

It is interesting to note that the plant G in the last
expression is the actual plant operating mode, and any
occurrence of a fault results in a change of the operating
mode. One would have certainly recognized that

LHi
(f) = G(f)Hi(f) (19)

is the loop transfer function of the feedback system
(Hi, G), specifically with respect to Hi since the plant is
same for all the virtual loops. Clearly, the switching logic
made the comparison on the basis of the inverse of the loop
transfer L−1Hi

(f). Consequently, the virtual feedback loop
having the highest loop transfer gain (integral (18) will
be minimal in that case) will have its controller switched
in the actual real-time closed-loop by the supervisor. In
fact, recalling that sensitivity is defined by S = (1 + L−1)
where L is the loop transfer, one can clearly see that the
supervisor seeks for the feedback loop which gives a better
sensitivity function.

Since any other functional that capturing the control ob-
jectives can be chosen in the desired behavior. Now we will
carry out the similar analysis with another performance
functional used in Safonov and Tsao [1997], i.e.

J(s) = ‖w1 ∗ (y − r̂i)‖2 + ‖w2 ∗ u)‖2 − ‖r̂i‖2 (20)

where ∗ is the convolution operator, signals (r(t), y(t), u(t))
have their usual meanings and w1, w2 are dynamical
weights. In this case, the desired behavior would be then
expressed as

D = {s = col(r, y, u)|J(s) ≤ 0} (21)

Taking the spectral viewpoint, and putting r̂i(f) =
H−1i (f)u(f) + y(f), u(f) = G−1(f)y(f) in (20) we get

‖w1(f)H−1i (f)G−1(f)‖2

‖H−1i (f)G−1(f) + 1‖2
+

‖w2(f)G−1(f)‖2

‖H−1i (f)G−1(f) + 1‖2
≤ 1

‖w1(f)(GHi)
−1(f)‖2

‖(GHi)−1(f) + 1‖2
+
‖w2(f)G−1(f)‖2

‖(GHi)−1(f) + 1‖2
≤ 1

‖w1(f)‖2

‖(GHi)(f) + 1‖2
+
‖w2(f)Hi(f)‖2

‖(GHi)(f) + 1‖2
≤ 1

‖w1(f)Si(f)‖2 + ‖w2(f)Hi(f)Si(f)‖2 ≤ 1

where Si(f) = 1
1+G(f)Hi(f)

is the sensitivity function with

respect to Hi(f), i = 1, 2, . . . , N . Again, one could have
readily recognized that the supervisor selects a controller

that satisfies an upper bound w−11 (f) on Si(f). Specifi-
cally, it is desired that |Si(f)| ≤ |w1(f)|−1 for f ≥ 0,
while w2(f) aims to limit the control effort. The weighting
function w1(f) gathers the desired specifications to be
achieved.

From the above analysis, we conclude that without using
any a priori model of the plant the supervisor selects
one of the controllers that minimizes the sensitivity func-
tion. Roughly speaking, the performance depends on the
controller-plant pairing (Hi, G) and the well -performing
controller-plant pairings are pairings (Hj , Gj) where j ∈
{1, 2, ..., N} is the index of the actual plant mode, that is,
those pairings in which the controller matches the actual
running mode for which it has been designed in the AD
phase.

5. CONCLUSION

In this paper, we have gained some insights of the time
trajectory-based fault-tolerant control. First, we showed
the finite-time stability of an active fault-tolerant system.
In the TAFTC approach, no a priori information about
the plant is used in real-time. The desired behavior in this
approach is generally defined in terms of time trajectories.
We have showed what properties are actually satisfied by
this novel FTC mechanism in the frequency-domain.
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