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Abstract

We propose new sets of Fourier-Mellin descriptors for color images. They are con-
structed using the Clifford Fourier Transform of Batard et al. (2010) and are an exten-
sion of the classical Fourier-Mellin descriptors for grayscale images. These are invari-
ant under direct similarity transformations (translations, rotations, scale) and marginal
treatment of colors images is avoided. An implementation of these features is given
and the choice of the bivector (a distinguished color plane which parameterizes the
Clifford Fourier Transform) is discussed. The proposed formalism extends and clari-
fies the notion of direction of analysis as introduced for the quaternionic Fourier-Mellin
moments (Guo and Zhu, 2011). Thus, another set of descriptors invariant under this
parameter is defined. Our proposals are tested with the purpose of object recognition
on well-known color image databases. Their retrieval rates are favourably compared to
standard feature descriptors.

Keywords: Object recognition, Image retrieval, Invariant color descriptors, Frequency
methods, Clifford algebra

1. Introduction

In the literature, there are many recent advances in terms of image recognition. The
recognition process depends highly on discriminative and invariant descriptors. Two
main approaches can be used: global methods which concern features calculated on
the entire image (Bornard et al., 1986; Zhang and Lu, 2002; Teague, 1980) and local
methods based on feature extraction around of keypoints (e.g. SIFT (Lowe, 1999),
GLOH (Mikolajczyk and Schmid, 2005), FAST (Rosten et al., 2010)).

Among global methods, one can cite moment-based descriptors (Flusser et al.,
2009) such as Hu invariants (Hu, 1962), Legendre moments or Zernike moments (Zernike,
1934). Other approaches based on the computation of an histogram can be used
(Chapelle et al., 1999). An alternative to these methods is to define descriptors in
the frequency domain. For example, the family of Fourier descriptors (Zhang and Lu,
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2002; Smach et al., 2008) is widely used because of their properties of invariance,
speed of convergence, low computational time. Originally, the 1-D Fourier descriptors
(Cosgriff, 1960; Arbter et al., 1990) are obtained through Fourier transform (FT) on a
shape signature function derived from shape boundary coordinates. More recently, 2-D
Fourier descriptors have been proposed. In this case, it is assumed that images contain
only one object and that the background is uniform. The most common are the Gen-
eralized Fourier Descriptors (GFD) (Smach et al., 2008) (invariant under translation
and rotation) and the Fourier-Mellin descriptors (Sheng and Arsenault, 1986; Derrode
and Ghorbel, 2001) (invariant under translation, rotation and scale) computed from the
Fourier-Mellin transform of a grayscale image. This later is widely applied in the field
of document processing (Sheng and Arsenault, 1986; Grace and Spann, 1991).

Originally, the Fourier-Mellin method is based on the polar transformation of the
image, followed by a Fourier transform then a Mellin transform. More recently, Der-
rode and Ghorbel (2001) proposed a complete set of Fourier-Mellin descriptors using
an analytical Fourier-Mellin transform. Three algorithms which consider the original
image, its polar and log-polar forms are defined to accelerate the computation of these
descriptors. This work emphasized the effect of the polar and log-polar transformation
of an image which are not exact (numerical interpolation is needed). This is a well-
known open issue that is currently under investigation by Fenn et al. (2007) and Liu
et al. (2006).

Extending these approaches to color images is not straightforward because they
rely on the definition of a Fourier transform on color images. More precisely, these
images are no longer viewed as functions from R2 to R but from R2 to R3 : the value
of each pixel is not a scalar but a vector. A classical generalization to color images
is the use of an ad hoc approach like the marginal one (Smach et al., 2008), i.e. a
separate treatment of each red, green, blue color plane. Another method consists in
encoding RGB color space within the space of pure quaternions. In this framework,
Sangwine and Ell proposed a Quaternionic Fourier Transform (QFT) (Sangwine and
Ell, 2000). This one is defined by replacing the imaginary unit i in the exponential of
the Fourier transform by a pure unit quaternion µ, interpreted as a direction of analysis.
This latter is commonly set as the gray level axis to obtain a luminance/chrominance
analysis. Based on this QFT, Guo and Zhu (2011) derivated a quaternionic extension
of the Fourier-Mellin moments (Sheng and Arsenault, 1986) with application to color
image registration.

Clifford algebras (Hestenes and Sobczyk, 1987), which contains the quaternion
algebras, can also be used to embed and process color images. In our previous works,
the GFD have been extended in several ways to color images yielding the Generalized
Color Fourier Descriptors (Mennesson et al., 2010) (GCFD1 and GCFD2) by using a
Clifford Fourier transform (CFT) dedicated to color images (Batard et al., 2010).

In this paper, we define new sets of Fourier-Mellin descriptors for color images,
namely poFMD, CFMD and CFMDi, which are different extensions of the Fourier-
Mellin moments computed from the CFT.
In section 2, definition and a fast implementation of the CFT are recalled. Then, in
section 3, 4 and 5, the three differents color Fourier-Mellin descriptors are defined (their
invariance under translations, rotations and scale changes are proven in Appendix A
and Appendix B). Finally, in section 6 our proposals are tested with the purpose of
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object recognition and retrieval on well-known color image databases. Their retrieval
rates are compared to standard feature descriptors.

2. Clifford Fourier Transform For Color Images (CFT)

Classical Fourier transforms (Bracewell, 1986; Bornard et al., 1986; Ghorbel, 1993)
are usually defined for complex valued functions that suited well for gray level, and not
for color images. The most immediate solution is to compute three Fourier transforms
independently on each channel of the color image. This marginal method raises prob-
lems as emergence of false colors in the case of color image filtering.

To avoid this marginal treatment, Batard et al. (2010) defined a Fourier transform
for L2(R2;R4) functions using Clifford Algebras (Hestenes and Sobczyk, 1987). This
one is different from other color Fourier transforms (Sangwine and Ell, 2000; Ell, 1992)
because it clarifies relations between the Fourier transform and the action of the transla-
tion group through a spinor group. This point of view justifies the necessity of choosing
a direction of analysis. It is also demonstrated in (Batard et al., 2010) that the quater-
nionic Fourier transform defined by Sangwine and Ell (2000) is a particular case of this
definition.

2.1. Definition of the CFT
The RGB pixels of a color image can be embedded in R1

4,0 algebra (vectors of R4,0)
as follows

f (x) = r(x)e1 + g(x)e2 + b(x)e3 + 0 e4. (1)

with x = (x1, x2) and r, g, b are red, green and blue channels of a color image.
The color Clifford Fourier Transform CFT (Batard et al., 2010) of f ∈ L2(R2;R1

4,0)
functions (i.e. a color image) with respect to an unit bivector B (identifiable to an
analysis plane) is the vector-valued function

f̂B(u) =

∫
R2

e
1
2 〈u,x〉Be

1
2 〈u,x〉I4B f (x)e−

1
2 〈u,x〉I4Be−

1
2 〈u,x〉Bdx (2)

where I4 is the pseudo-scalar of R4,0 and I4B is an unit bivector which is orthogonal to
B. This color Fourier transform is invertible and the inverse of the CFT is given by

f (x) =

∫
R2

e−
1
2 〈u,x〉Be−

1
2 〈u,x〉I4B f̂B(u)e

1
2 〈u,x〉I4Be

1
2 〈u,x〉Bdu (3)

A vector can be decomposed in a parallel part and an orthogonal part depending on
the choice of the bivector B (Hestenes and Sobczyk, 1987). Being f an image and B
a bivector, this decomposition is f = f BB−1 = ( f · B + f ∧ B)B−1 = f‖B + f⊥B where
f‖B = ( f · B)B−1 (resp. f⊥B = ( f ∧ B)B−1) is the parallel (resp. orthogonal) projection
of f on a bivector B.

After some elementary calculations, Eq. 2 can be rewritten depending on this de-
composition f̂B(u) = f̂‖B(u) + f̂⊥B(u) where

f̂‖B(u) =

∫
R2

e
〈u,x〉

2 B f‖B(x)e−
〈u,x〉

2 Bdx =

∫
R2

f‖B(x) e−〈u,x〉Bdx (4)
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f̂⊥B(u) =

∫
R2

f⊥B(x) e−〈u,x〉I4Bdx (5)

Now, the bivectors B and I4B can be identified to a pure imaginary number i since
B2 = (I4B)2 = −1. Equations 4 and 5 can be calculated using two usual fast Fourier
transforms.

Depending on the application, it may be advisable to reconstruct f̂B from f̂‖B and
f̂⊥B. The problem can be modelled as a system of four equations where the unknowns
are the coordinates of f̂B in the basis {e1, e2, e3, e4} (see details in (Mennesson et al.,
2011, 2012)).

Computational complexity of the color Clifford Fourier transform, including the
reconstruction step, is O(n log(n)) where n is the number of pixels of the considered
image. Indeed, this one requires only eight projections (O(n)) and two fast Fourier
transforms (O(n log(n))).

The bivector B is a required parameter of the CFT, hence of any derivated descrip-
tors that are not invariant to the parameter. The choice of a given B can be left to
the user, assuming some prerequired knowledge about the dataset at hand. The next
subsection gives some guidelines for such choice.

2.2. Practical construction of a bivector B

An unit bivector B can be obtained with taking the geometric product of two unit
vectors v1, v2, orthogonal to each other w.r.t. the quadratic form Q. The corresponding
bivector can be geometrically interpretable as the oriented plane spanned by v1 and v2.
Note that when v1 and v2 are not colinear, it is always possible to find anQ-orthonormal
basis taking the rejection of v2 on v1 and scaling to unity. If the bivector Bc = c ∧ e4
(with c = c1e1 + c2e2 + c3e3 a normed color vector chosen by the user) is considered,
the direction of analysis of the CFT is the same as the QFT by considering the unit
quaternion µ = c1i + c2 j + c3k in (Ell and Sangwine, 2007). Let’s recall that the QFT
is used by Guo and Zhu (2011) with µ = i+k

√
2
.

In contrast of the quaternionic Fourier transform, the bivector used in the CFT is
more general and allows, for example, to take hue planes by taking bivectors of the

form Bc = c ∧ gray =

(
c1e1 + c2e2 + c3e3 ∧

e1+e2+e3√
3

)
with c a color. In this case, the

two vectors must be orthogonalized using the following rejection formula :

v3 = (v2 ∧ v1)v1
−1 (6)

with v1, v2 two non orthogonal vectors, v3 a vector orthogonal to v1 in the plane gen-
erated by v1 ∧ v2 and ∧ the outer product.

In section 6, the sensitivity to the choice of B is tested and is emphasized by differ-
ent applications.

3. The parallel-orthogonal Fourier-Mellin Descriptors (poFMD)

In this section, we propose to compute the classical Fourier-Mellin moments (FMM)
on parallel and orthogonal parts of the CFT as in (Mennesson et al., 2011) with the
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Generalized Fourier Descriptors. The two sets of moments can be concatenated and
normalized to obtain a description vector.

3.1. Definition of the poFMM
Definition 1. The Fourier-Mellin Moments (FMM) are defined for an image f ∈ L2(R2,C),
expressed in polar coordinates, as

FMM f (m, n) =

∫ ∞

r=0

∫ 2π

θ=0
rm−1 f (r, θ)e−inθdθdr (7)

The poFMM descriptors are the concatenation of the FMM computed on parallel and
orthogonal parts of the color image with respect to a bivector B, i.e.

poFMM f ,B(m, n) =
{
FMM f‖B (m, n), FMM f⊥B (m, n)

}
(8)

The set of descriptors is not yet invariant under translation, rotation and scale. A
normalization step must be applied to obtain these invariances (Sheng and Arsenault,
1986).

3.2. Computation of the poFMD
The poFMD are obtained by taking the magnitude of the poFMM and by dividing

by the first coefficient of each row, i.e. poFMM f ,B(m, 0). The first manipulation pro-
vides rotation invariance and, the second, scale invariance (see (Sheng and Arsenault,
1986)).

Definition 2. The poFMD are contained in a RM×N vector and are defined for a color
image f ∈ L2(R2,R1

4,0), expressed in polar coordinates, as

poFMD f ,B =

{
|poFMM f ,B(1, 1)|
|poFMM f ,B(1, 0)|

,
|poFMM f ,B(1, 2)|
|poFMM f ,B(1, 0)|

, . . . ,

|poFMM f ,B(m, n)|
|poFMM f ,B(m, 0)|

, . . . ,
|poFMM f ,B(M,N)|
|poFMM f ,B(M, 0)|

}
where M × N is the number of considered moments and | | the modulus of a complex.

It is obvious that these descriptors depends on B, which parameterizes the parallel-
orthogonal decomposition of the color image.

4. The Color Fourier-Mellin Descriptors(CFMD)

In this section, the Color Fourier-Mellin Moments (CFMM) are defined using the
CFT instead of the classical Fourier transform. It follows the approach of Guo and Zhu
(2011) for the quaternionic Fourier transform. Just like for the poFMM, these moments
are normalized to obtain invariant descriptors.
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4.1. Definition
Definition 3. The Color Fourier-Mellin Moments (CFMM) are defined for a color im-
age f ∈ L2(R2,R1

4,0), expressed in polar coordinates, as

CFMM f ,B(m, n) =

∫ ∞

r=0

∫ 2π

θ=0
rm−1e

nθ
2 (B+I4B) f (r, θ)e−

nθ
2 (B+I4B)dθdr (9)

with B a unit bivector.

The properties of the CFMM are analyzed in Appendix A.

4.2. Computation of the CFMD
The Color Fourier-Mellin Descriptors (CFMD) are obtained by taking the magni-

tude of the CFMM and by dividing by the first coefficient of each row, i.e. CFMM f ,B(m, 0).
The first manipulation provides rotation invariance and the second, scale invariance
(see theorem 1 and 2 in Appendix A). The results for empirical invariance to these
geometrical transformations and for sensitivity to the choice of B are provided in Ap-
pendix C.

Definition 4. The Color Fourier-Mellin Descriptors (CFMD) are contained in a RM×N

vector and are defined for a color image f ∈ L2(R2,R1
4,0), expressed in polar coordi-

nates, as

CFMD f ,B =

{
|CFMM f ,B(1, 1)|
|CFMM f ,B(1, 0)|

,
|CFMM f ,B(1, 2)|
|CFMM f ,B(1, 0)|

, . . . ,

|CFMM f ,B(m, n)|
|CFMM f ,B(m, 0)|

, . . . ,
|CFMM f ,B(M,N)|
|CFMM f ,B(M, 0)|

}
where M × N is the number of considered moments and | | the magnitude of a vector.

With the normalization of the moments, it is obvious that an invariance under global
luminance changes is also achieved.

4.3. Invariance under translation
The CFMD are invariant under rotations and scale by construction, but not by trans-

lation. To solve this problem, the center of the image must be estimated to define the
origin of coordinates. This can be done using a direct extension of the image moments
for color images as in (Guo and Zhu, 2011).

Definition 5. Being a color image f ∈ L2(R2,R1
4,0), the color image moments are

defined as follows :

Mc
p,q =

∫ +∞

−∞

∫ +∞

−∞

xp
1 xq

2| f (x1, x2)|dx1dx2 (10)

where | | is the magnitude of a vector.
The center of the image is determined by x1 = Mc

1,0/M
c
0,0 and x2 = Mc

0,1/M
c
0,0. It

can be easily proved that if the color image is translated by (∆x1 ,∆x2 ), i.e. f (x1
′, x2

′) =

f (x1 + ∆x1 , x2 + ∆x2 ) then f (x1
′ − x′1, x2

′ − x′2) = f (x1 − x1, x2 − x2). So, if the origin
of coordinates is translated to the color image centroid, the invariants computed on the
resulting image are invariant under translation.
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4.4. Implementation of the CFMD
To be able to compute the CFMD, one has to compute the CFMM using the fast

implementation of the Clifford Fourier Transform given in section 2. Eq. 9 can be
rewritten as follows.

Let f a color image of size n1 × n2, the discrete implementation of the CFMM is
given by

CFMM f ,B(m, n) =

rmax∑
r=0

2π∑
θ=0

rm−1e
nθ
2 (B+I4 B) f (r, θ)e−

nθ
2 (B+I4 B)∆θ∆r (11)

=

rmax∑
r=0

rm−1

 2π∑
θ=0

e
nθ
2 (B+I4 B) f (r, θ)e−

nθ
2 (B+I4 B)∆θ

 ∆r (12)

with rmax = max{
√

(x1 − x1) + (x2 − x2)|x1 = 1, 2, ..., n1; x2 = 1, 2, ..., n2}, ∆r =

rmax/(nr − 1), ∆θ = (2π)/na, nr and na are respectively the number of radius and
angle values in polar coordinates.

The CFMM computation can be interpreted as the computation of one-dimensional
CFT with respect to variable θ, followed by the discrete summation in Eq. 12.

The computational complexity of the CFMM is O(M N log(N)) where N is the
number of angles considered (i.e. the maximum number of columns) of the polar image
and M the maximum of radial frequencies to compute.

5. Color Fourier-Mellin Descriptors Invariant under the Choice of B (CFMDi)

Although our method is translation, rotation and scale invariant, it still depends on
the choice of a bivector. Depending on the application at hand, invariance with respect
to this parameter may be required. Indeed, if a privileged color is available (dominant
color of objects of interest, background color and so on), the previous CFMM are
perfectly well suited. But, when no such knowledge is available an alternative, bivector
invariant, descriptor may be required.

Definition 6. The definition of the Color Fourier-Mellin Moment invariant under the
choice of the bivector(CFMMi) for a color image f ∈ L2(R2,R1

4,0) in polar coordinates,
is

CFMMi f ,B(m, n) =

∫ ∞

r=0
rm−1

∣∣∣∣∣∣
∫ 2π

θ=0
e

nθ
2 (B+I4 B) f (r, θ)e−

nθ
2 (B+I4 B)dθ

∣∣∣∣∣∣2 +∣∣∣∣∣∣
∫ 2π

θ=0
e−

nθ
2 (B+I4 B) f (r, θ)e

nθ
2 (B+I4 B)dθ

∣∣∣∣∣∣2
 dr (13)

=

∫ ∞

r=0
rm−1

(∣∣∣∣ f̂B(m, n)
∣∣∣∣2 +

∣∣∣∣ f̂B(m,−n)
∣∣∣∣2) dr (14)

with B a unit bivector.

The properties of the CFMMi are provided in Appendix B. The CFMMi must be
normalized in the same way as the CFMM to achieve the invariance under rotation and
scale. This is done by the following definition.
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Definition 7. The Color Fourier-Mellin Descriptors invariant under the choice of the
bivector (CFMDi) are defined for a color image f ∈ L2(R2,R1

4,0), expressed in polar
coordinates, as

CFMDi f =

{
CFMMi f ,B(1, 1)
CFMMi f ,B(1, 0)

,
CFMMi f ,B(1, 2)
CFMMi f ,B(1, 0)

, . . . ,

CFMMi f ,B(m, n)
CFMMi f ,B(m, 0)

, . . . ,
CFMMi f ,B(M,N)
CFMMi f ,B(M, 0)

}
where M × N is the number of considered moments.

It must be emphasized that this invariance under the choice of the bivector is not an
invariance to the colors present in the image. This is just a way to obtain color Fourier-
Mellin descriptors without reference to some bivector B,i.e. no privileged direction
of analysis. The results for empirical invariance to rotation and scale are provided in
Appendix C.

6. Experiments

In this section, the poFMD, CFMD, CFMDi are evaluated and compared in the
context of color image recognition and image retrieval. The choice of the bivector
is discussed and proposals are compared to classical Fourier-Mellin Moments FMM
(Sheng and Arsenault, 1986) (128 desc.), classical Fourier-Mellin Moments computed
on color channels R, G, B separately (FMMrgb) (128 desc.), Generalized Color Fourier
Descriptors GCFD1 (Mennesson et al., 2010) (128 desc.), Zernike moments (Zernike,
1934) (72 desc.), original Local Binary Patterns (Ahonen et al., 2006) (256 desc.).

In these experimentations, it is assumed that there is just one object per image and
that the background is uniform. Thus, we have decided not to compare our proposals
with local methods for image recognition since they obey generally to very different
rules. In particular for local methods, a huge set of descriptors is extracted from many
keypoints and is combined in order to cope with occlusions and cluttered background.
In this context, it becomes risky to guess whether the individual quality of the descrip-
tors derived from their definition, their size or from the classifier used. By the way,
some recent works (Andrade et al., 2012) showed that global and local descriptors may
be combined successfully to improve the process of image recognition.

6.1. Image recognition experiments

To evaluate our descriptors different standard color image databases have been
used. The choice of the bivector B, the parameter of the color Clifford Fourier trans-
form, and the respective performances of the various descriptors in terms of recognition
rates are discussed. In the following, the experimental protocol to test our approach is
described.
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6.1.1. Image databases
The databases used in this section are a modified version of COIL-100 and color

FERET.

• To check rotation and scale invariance, a modified version of COIL-100 (Nene
et al., 1996) (Columbia Object Image Library) database is used. Each image
for this database (except the first of each class) is randomly rotated by an angle
φ = [0, 360] and scaled by a factor k ∈ [0.5, 1].

• The color FERET database (Phillips et al., 1998) is composed of face images
of 1408 different persons, taken from different angles of view. In our tests, a
set of 2992 images containing 272 persons equally represented by 11 pictures is
selected and size of images is reduced to 128 × 128.

6.1.2. Descriptors extraction
In order to make a fair comparison, the length of each set is limited to 128, what-

ever the considered associated descriptors (GCFD1(Mennesson et al., 2012), FMM,
FMMrgb, CFMD, CFMDi or poFMD). The 128 poFMD(m,n) descriptors correspond
to m = 1, ..., 8 and n = 1, ..., 8, the 128 CFMD(m, n) descriptors and the CFMDi(m,n)
descriptors correspond to n = 1, ..., 11 and m = 1, ..., 12 (the four last descriptors are
removed).

6.1.3. Classification step
The classification step is performed using a standard Support Vector Machine S V M

(Vapnik, 1998) using LIBS V M implementation (Chang and Lin, 2001). Each descrip-
tors set is used as feature vector in the classifier.

In our tests on the Modified COIL-100 and color FERET databases, the standard
radial basis kernel (Gaussian kernel) is used in order to compare our results with those
obtained in (Mennesson et al., 2010). Parameters σ (of the gaussian kernel) and C
(the penalty coefficient) are set empirically by a 10-cross validation and a grid search
(Duda et al., 2001) to maximize the recognition rate for each experiment (Chang and
Lin, 2001). Other less sophisticated algorithm as LDA or 1-NN (Jain et al., 1999)
are also used to test the influence of the SVM on recognition rates obtained with our
descriptors.

6.1.4. Experiment on modified COIL-100 database
In Fig. 1, the poFMD with the best bivector give better results than the other de-

scriptors regardless of the method of classification. But, it seems to be much more
dependent on the choice of the bivector than the other methods. Note that the differ-
ences between recognition rates obtained by the various descriptors with the SVM are
not significant.

Concerning the CFMDi, the recognition rates obtained are better than the CFMD
(except for the LDA) and the invariance of these descriptors under the choice of the
bivector is verified. The FMMrgb give a good recognition rate with the LDA and give
results very close to CFMDi with other classifiers.
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Concerning other global descriptors, one can note that the GCFD1 and the LBP
give worse results than those of the CFMD, CFMDi and poFMD. This is due to their
non-invariance to scale changes. Moreover, the GCFD1 are very sensitive to the choice
of the bivector.

LDA 1−NN SVM(RBF)

Classifications methods

R
ec

og
ni

tio
n 

ra
te

s 
in

 %

75
80

85
90

95
10

0

FMM(128)
FMMRGB(128)
CFMDi(128)
CFMD(128)
poFMD(128)

Modified COIL-100 ZM (72) LBP (256) GCFD11 (128) poFMD1 (128)
Reco. rates (SVM RBF) 83, 15% 40, 31% 86.34% 99.72%
Std in % - - ±3.51% ±0.13%

Figure 1: Modified COIL 100: Performance of CFMD, CFMDi, poFMD and GCFD1 for 100 random
bivectors (mean and standard deviation) and FMM, FMMrgb, ZM, LBP

6.1.5. Experiment on color FERET database
Concerning the color FERET database (see Fig. 2), the recognition rates are lower

because the background of images is not uniform. According to the experimentations
conducted previously (Mennesson et al., 2010) with Clifford Fourier descriptors, we
can suppose that the reconstructed f̂B carries less interesting frequency information
when both f̂‖B and f̂⊥B are mutually discriminant (e.g. image contains high frequency
in red and low frequency in blue). That is why it is not surprising that the poFMD
and GCFD1, which are computed on the parallel and the orthogonal parts give the
best results on this database. Compared with the CFMD, the standard deviation of the
recognition rates obtained with these descriptors are high, showing their sensitivity to
the choice of the bivector. Again, the FMMrgb give better results than the other descrip-
tors with the LDA classifier. However, they are less successful with other classifiers.
For the CFMDi, the recognition rates are close to those obtained by the CFMD with
the 1-NN and the SVM and really better with a linear classifier LDA.

6.1.6. Application in image retrieval
This application aims at showing the efficiency of the Fourier-Mellin moments in

a context of image retrieval, i.e. a query image is given by the user and the nearest

1for 100 random bivectors
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Figure 2: color FERET: Performance of CFMD, CFMDi, poFMD and GCFD1 for 100 random bivectors
(mean and standard deviation) and FMM, FMMrgb, ZM, LBP

images (using Euclidean distance) are returned. The modified COIL 100 database is
used. The results are shown for 128 poFMD, CFMDi, CFMD, FMMrgb, FMM, and
GCFD1.

Figure 3: Modified COIL 100: nine best retrievals (ordered from left to right) for the query of the ”colorful
mug” (left column) with poFMD, CFMD, GCFD1 (parametrized by the bivector Bred), CFMDi, FMMrgb
and FMM.

First experiment aims at retrieving a ”colorful mug” (cf. Fig. 3, firsts column) in the
database. Visual inspection (on shape and color) of the rows containing the retrieved
objects, ordered according to the increasing distance to the query object, clearly shows
that the best results are obtained with the CFMDi and the poFMD using the bivector
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Bred with a score of 10/10 and 9/10. These descriptors take into account the color of
the flower on the cup. The CFMD fail 3 times but they succeed to recognize 3 other
mugs, this is to be compared to FMMrgb which retrieves mugs of different shapes but
same dominant color. The classical FMM retrieve only 4 mugs but has difficulties to
separate mugs of different colors. The GCFD1 gives a poor score of 0/10 due to its
non-invariance under scale changes.

To confirm these observations, a second set of experiment where each of the 7200
images have been taken as request image has been made. The corresponding retrieval
rate in terms of retrieval position is showed in Fig. 4.
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Figure 4: Modified COIL 100 : Retrieval rate of poFMD, CFMD, CFMDi, FMM, FMMrgb and GCFD1 for
the 20 first retrieval positions

It is clear that the poFMD give better results than the other descriptors in terms of
retrieval rate. The retrieval rates of the CFMDi and the FMMrgb stay between retrieval
rates curve of the poFMD and the CFMD one. Retrieval rates of the FMM seem to be
slightly below the CFMD. Indeed, a good choice of bivector for one image can be a
bad choice for an other. In this experiment, the results are averaged on all images, min-
imizing the influence of the choice of the bivector. Finally, one can see that the GCFD1
give bad retrieval rates. This result is not surprising because, as in the Fig. 3, these de-
scriptors are not invariant under scale changes. To summarize these experimentations,
we can note again that the performance of the various descriptors can be ordered as
poFMD > FMMrgb ' CFMDi > CFMD. The computational time of these descrip-
tors for one image (in milliseconds) with our implementation and a desktop computer
(Intel core 2 processor 2.66 GHz × 2, 64-bit operating system, 2 Gbytes RAM) are
reported in Table 1.
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Table 1: Computation time of 128 poFMD, CFMD, CFMDi, FMMrgb for one image of size 128 × 128

FMMrgb poFMD CFMD CFMDi
Comp. time in ms. 4, 6 ms. 7, 4 ms. 10, 8 ms. 18, 5 ms.

7. Conclusion

In this article, the poFMD are first defined from the parallel and the orthogonal part
of the Clifford Fourier transform. Then, the Quaternionic Fourier-Mellin Moments
(QFMM) of Guo and Zhu (2011) have been rewritten in the Clifford algebra context
leading to the definition of the so-called Color Fourier-Mellin Moments (CFMM). This
rewriting in a more general mathematical framework allows extended choices for a cru-
cial parameter of the method, namely the color analysis plane as defined by two color
vectors (a bivector in terms of Clifford Algebras). This parameterization is more natu-
ral and easier to handle from an user point of view than the one previously defined in a
quaternionic context. Specifically, one can easily discriminate color objects relatively
to a prescribed hue. Besides this colorimetric property, a careful examination of the be-
havior of the moments with respect to usual geometric transforms (translation, rotation,
scale) led to the definition of a first set of descriptors. These Color Fourier-Mellin De-
scriptors (CFMD) are shown to be invariant to geometric transformations but are still
sensitive to the bivector choice. Depending on the kind of application at hand, e.g. clas-
sification or image retrieval, this may be valuable or not. To take into account the cases
where no information about such color of interest is available, a bivector insensitive set
of descriptor, the CFMDi, is also proposed. It must be underlined, that while it does
not require the choice of a privileged color plane, it still perfectly discriminates objects
of different colors. This is confirmed by experiments on color objects retrieval. When
scale change is applied to the considered image data sets, COIL-100 in this article, the
poFMD, CFMD and CFMDi outperform Generalized Color Fourier Descriptors (Men-
nesson et al., 2011), the invariant poFMD consistently being the best of the three. Last
experiments on image retrieval with scale change unsurprisingly exhibit better results
for moment based descriptors and, in such case, we have the following performance
ordering : poFMD > FMMrgb ' CFMDi > CFMD > GCFD1. These results lead
to prescribe poFMD as a default choice in most cases. From a computational cost per-
spective, the proposed sets of descriptors depend essentially on the computations of
several Fast Fourier Transforms, hence a O(n log(n)) cost where n is the number of
pixels of the considered image.

We have to notice that the choice of a color space (RGB, Lab, XYZ, Ohta, etc.) has
been experimented and has shown that it impacts in the similar way the performances
of our descriptors and the performance of marginal descriptors. Besides, empirical
invariance to every considered transforms and parametrization have been numerically
checked. But, due to the lack of space, these results are not shown in this paper.

Finally, as observed in (Andrade et al., 2012; Singh and Sharma, 2013), global and
local descriptors can be used together to improve results. Hence, local Color Fourier-
Mellin Descriptors extracted in the neighborhood of keypoints (e.g. SIFT (Lowe,
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1999)) are under investigations. This, hopefully, will provide robustness against oc-
clusions and non uniform background.

Appendix A. Properties of the CFMM

Theorem 1 (Invariance under rotation). Being a rotation angle φ and f , g ∈ L2(R2,R1
4,0)

such as g is a rotated version of f . If we denote x1 = rcos(θ) and x2 = rsin(θ), then
g(r, θ) = f (r, θ + φ) and

CFMMg,B(m, n) = e−
nφ
2 (B+I4 B)CFMM f ,B(m, n)e

nφ
2 (B+I4 B) (A.1)

Proof.
CFMMg,B(m, n) =

∫ ∞

r=0

∫ 2π

θ=0
rm−1e

nθ
2 (B+I4 B) f (r, θ + φ)e−

nθ
2 (B+I4 B)dθdr (A.2)

If we make the substitution ψ = θ + φ then

CFMMg,B(m, n) =

∫ ∞

r=0

∫ 2π

ψ=0
rm−1e

n(ψ−φ)
2 (B+I4 B)g(r, ψ)e−

n(ψ−φ)
2 (B+I4 B)dψdr (A.3)

= e−
nφ
2 (B+I4 B)CFMM f ,B(m, n)e

nφ
2 (B+I4 B) (A.4)

So, a rotation of the spatial domain implies a phase shift of the Color Fourier-Mellin
moments. 2

Theorem 2 (Invariance under scale). Being a scale parameter k and f , g ∈ L2(R2,R1
4,0)

such as g is a scaled version of f expressed in polar coordinates then g(r, θ) = f (kr, θ)
and

CFMMg,B(m, n) = k−mCFMM f ,B(m, n) (A.5)

The proof is the same as in (Guo and Zhu, 2011) because a scale change does not
affect the CFT but only the Mellin transform.

Appendix B. Properties of the CFMMi

Theorem 3 (Invariance to bivector B). Let f ∈ L2(R2,R3), B1,B2 two unit bivectors
in R4,0 then

CFMMi f ,B1 (m, n) = CFMMi f ,B2 (m, n). (B.1)

Proof. Let f (θ) (resp. f̂B(n)) denotes f (r, θ) (resp. f̂B(m, n)) with a fixed r (resp. m). It
is obvious that rm−1 does not depend on the choice of the bivector, so we only have to
prove that

| f̂B(n)|2 + | f̂B(−n)|2 = | f̂B(n) + f̂B(−n)|2 + 2 f̂B(n) · f̂B(−n) (B.2)

is invariant under the choice of B. Using the generalization of Euler formula for
isoclinic 4D rotation e

θ
2 (B+I4 B)ve−

θ
2 (B+I4 B) + e−

θ
2 (B+I4 B)ve

θ
2 (B+I4 B)

2

 = cos(θ)v, (B.3)

the following equation is obtained :∣∣∣∣ f̂B(n) + f̂B(−n)
∣∣∣∣2 =

∣∣∣∣∣∣
∫ 2π

θ=0
2 cos(nθ) f (θ)dθ

∣∣∣∣∣∣2 (B.4)
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which does not depend on B. Second term is splitted as
(

f̂‖B(n) · f̂‖B(−n)
)
+
(

f̂⊥B(n) · f̂⊥B(−n)
)

where

f̂‖B(n) · f̂‖B(−n) =
1
2

(
f̂‖B(n) f̂‖B(−n) + f̂‖B(−n) f̂‖B(n)

)
(B.5)

=

∫ 2π

θ1=0

∫ 2π

θ2=0
f‖B(θ1) f‖B(θ2) cos(nθ1 + nθ2)dθ1dθ2 (B.6)

Same calculus for f̂⊥B(n) · f̂⊥B(−n) leads to

f̂‖B(n) · f̂‖B(−n) + f̂⊥B(n) · f̂⊥B(−n) =

∫ 2π

θ1=0

∫ 2π

θ2=0
( f (θ1) · f (θ2)) cos(nθ1 + nθ2)dθ1dθ2 (B.7)

We conclude that both terms in Eq. B.2 not depend on B. 2

Appendix C. Empirical invariance of descriptors

CFMD (1, 1) (2, 1) (3, 1) (1, 2) (2, 2) (3, 2) (1, 3)
mean 0.0764 0.0613 0.0172 0.2184 0.3314 0.4167 0.1113
std 0.0004 0.0011 0.0019 0.0020 0.0009 0.0005 0.0009

GCFD1‖Bc GCFD1⊥Bc
GCFD1 1 2 3 1 2 3
mean 3.5 106 2.0199 0.7788 1.3 106 2.3880 1.2562
std 1.0 106 0.0795 0.0209 1.0 106 1.0979 2.4273

Figure C.5: CFMD and GCFD1 computed on a non-rotated and non-scaled butterfly image with 100 random
bivectors
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