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 and are an extension of the classical Fourier-Mellin descriptors for grayscale images. These are invariant under direct similarity transformations (translations, rotations, scale) and marginal treatment of colors images is avoided. An implementation of these features is given and the choice of the bivector (a distinguished color plane which parameterizes the Clifford Fourier Transform) is discussed. The proposed formalism extends and clarifies the notion of direction of analysis as introduced for the quaternionic Fourier-Mellin moments (Guo and Zhu, 2011). Thus, another set of descriptors invariant under this parameter is defined. Our proposals are tested with the purpose of object recognition on well-known color image databases. Their retrieval rates are favourably compared to standard feature descriptors.

Introduction

In the literature, there are many recent advances in terms of image recognition. The recognition process depends highly on discriminative and invariant descriptors. Two main approaches can be used: global methods which concern features calculated on the entire image [START_REF] Bornard | Mouvements et traitement d'images[END_REF][START_REF] Zhang | Shape-based image retrieval using generic fourier descriptor[END_REF][START_REF] Teague | Image analysis via the general theory of moments[END_REF] and local methods based on feature extraction around of keypoints (e.g. SIFT [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF], GLOH [START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF], FAST [START_REF] Rosten | Faster and better: A machine learning approach to corner detection[END_REF]).

Among global methods, one can cite moment-based descriptors [START_REF] Flusser | Moments and Moment Invariants in Pattern Recognition[END_REF] such as Hu invariants [START_REF] Hu | Visual pattern recognition by moment invariants[END_REF], Legendre moments or Zernike moments [START_REF] Zernike | Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode[END_REF]. Other approaches based on the computation of an histogram can be used [START_REF] Chapelle | Support vector machines for histogrambased image classification[END_REF]. An alternative to these methods is to define descriptors in the frequency domain. For example, the family of Fourier descriptors [START_REF] Zhang | Shape-based image retrieval using generic fourier descriptor[END_REF][START_REF] Smach | Generalized fourier descriptors with applications to objects recognition in svm context[END_REF] is widely used because of their properties of invariance, speed of convergence, low computational time. Originally, the 1-D Fourier descriptors [START_REF] Cosgriff | Identification of shape[END_REF][START_REF] Arbter | Application of affineinvariant fourier descriptors to recognition of 3-d objects[END_REF] are obtained through Fourier transform (FT) on a shape signature function derived from shape boundary coordinates. More recently, 2-D Fourier descriptors have been proposed. In this case, it is assumed that images contain only one object and that the background is uniform. The most common are the Generalized Fourier Descriptors (GFD) [START_REF] Smach | Generalized fourier descriptors with applications to objects recognition in svm context[END_REF] (invariant under translation and rotation) and the Fourier-Mellin descriptors [START_REF] Sheng | Experiments on pattern recognition using invariant fourier-mellin descriptors[END_REF][START_REF] Derrode | Robust and efficient fourier-mellin transform approximations for gray-level image reconstruction and complete invariant description[END_REF]) (invariant under translation, rotation and scale) computed from the Fourier-Mellin transform of a grayscale image. This later is widely applied in the field of document processing [START_REF] Sheng | Experiments on pattern recognition using invariant fourier-mellin descriptors[END_REF][START_REF] Grace | A comparison between fourier-mellin descriptors and moment based features for invariant object recognition using neural networks[END_REF].

Originally, the Fourier-Mellin method is based on the polar transformation of the image, followed by a Fourier transform then a Mellin transform. More recently, Derrode and [START_REF] Derrode | Robust and efficient fourier-mellin transform approximations for gray-level image reconstruction and complete invariant description[END_REF] proposed a complete set of Fourier-Mellin descriptors using an analytical Fourier-Mellin transform. Three algorithms which consider the original image, its polar and log-polar forms are defined to accelerate the computation of these descriptors. This work emphasized the effect of the polar and log-polar transformation of an image which are not exact (numerical interpolation is needed). This is a wellknown open issue that is currently under investigation by [START_REF] Fenn | On the computation of the polar fft[END_REF] and [START_REF] Liu | Pseudo-log-polar fourier transform for image registration[END_REF].

Extending these approaches to color images is not straightforward because they rely on the definition of a Fourier transform on color images. More precisely, these images are no longer viewed as functions from R 2 to R but from R 2 to R 3 : the value of each pixel is not a scalar but a vector. A classical generalization to color images is the use of an ad hoc approach like the marginal one [START_REF] Smach | Generalized fourier descriptors with applications to objects recognition in svm context[END_REF], i.e. a separate treatment of each red, green, blue color plane. Another method consists in encoding RGB color space within the space of pure quaternions. In this framework, Sangwine and Ell proposed a Quaternionic Fourier Transform (QFT) [START_REF] Sangwine | The discrete fourier transform of a colour image[END_REF]. This one is defined by replacing the imaginary unit i in the exponential of the Fourier transform by a pure unit quaternion µ, interpreted as a direction of analysis. This latter is commonly set as the gray level axis to obtain a luminance/chrominance analysis. Based on this QFT, [START_REF] Guo | Quaternion fourier-mellin moments for color images[END_REF] derivated a quaternionic extension of the Fourier-Mellin moments [START_REF] Sheng | Experiments on pattern recognition using invariant fourier-mellin descriptors[END_REF] with application to color image registration.

Clifford algebras [START_REF] Hestenes | Clifford Algebra to Geometric Calculus : A Unified Language for Mathematics and Physics[END_REF], which contains the quaternion algebras, can also be used to embed and process color images. In our previous works, the GFD have been extended in several ways to color images yielding the Generalized Color Fourier Descriptors [START_REF] Mennesson | New geometric fourier descriptors for color image recognition[END_REF] (GCFD1 and GCFD2) by using a Clifford Fourier transform (CFT) dedicated to color images [START_REF] Batard | Clifford fourier transform for color image processing[END_REF].

In this paper, we define new sets of Fourier-Mellin descriptors for color images, namely poFMD, CFMD and CFMDi, which are different extensions of the Fourier-Mellin moments computed from the CFT. In section 2, definition and a fast implementation of the CFT are recalled. Then, in section 3, 4 and 5, the three differents color Fourier-Mellin descriptors are defined (their invariance under translations, rotations and scale changes are proven in Appendix A and Appendix B). Finally, in section 6 our proposals are tested with the purpose of object recognition and retrieval on well-known color image databases. Their retrieval rates are compared to standard feature descriptors.

Clifford Fourier Transform For Color Images (CFT)

Classical Fourier transforms [START_REF] Bracewell | The Fourier Transform and Its Applications[END_REF][START_REF] Bornard | Mouvements et traitement d'images[END_REF][START_REF] Ghorbel | Application de la transformée de fourier généralisée au problème de l'invariance en reconnaissance de formes a niveaux de gris[END_REF] are usually defined for complex valued functions that suited well for gray level, and not for color images. The most immediate solution is to compute three Fourier transforms independently on each channel of the color image. This marginal method raises problems as emergence of false colors in the case of color image filtering.

To avoid this marginal treatment, [START_REF] Batard | Clifford fourier transform for color image processing[END_REF] defined a Fourier transform for L 2 (R 2 ;R 4 ) functions using Clifford Algebras [START_REF] Hestenes | Clifford Algebra to Geometric Calculus : A Unified Language for Mathematics and Physics[END_REF]. This one is different from other color Fourier transforms [START_REF] Sangwine | The discrete fourier transform of a colour image[END_REF][START_REF] Ell | Hypercomplex spectral transformations[END_REF] because it clarifies relations between the Fourier transform and the action of the translation group through a spinor group. This point of view justifies the necessity of choosing a direction of analysis. It is also demonstrated in [START_REF] Batard | Clifford fourier transform for color image processing[END_REF] that the quaternionic Fourier transform defined by [START_REF] Sangwine | The discrete fourier transform of a colour image[END_REF] is a particular case of this definition.

Definition of the CFT

The RGB pixels of a color image can be embedded in R 1 4,0 algebra (vectors of R 4,0 ) as follows

f (x) = r(x)e 1 + g(x)e 2 + b(x)e 3 + 0 e 4 . (1) 
with x = (x 1 , x 2 ) and r, g, b are red, green and blue channels of a color image.

The color Clifford Fourier Transform CFT [START_REF] Batard | Clifford fourier transform for color image processing[END_REF] of f ∈ L 2 (R 2 ;R 1 4,0 ) functions (i.e. a color image) with respect to an unit bivector B (identifiable to an analysis plane) is the vector-valued function

f B (u) = R 2 e 1 2 u,x B e 1 2 u,x I 4 B f (x)e -1 2 u,x I 4 B e -1 2 u,x B dx (2) 
where I 4 is the pseudo-scalar of R 4,0 and I 4 B is an unit bivector which is orthogonal to B. This color Fourier transform is invertible and the inverse of the CFT is given by

f (x) = R 2 e -1 2 u,x B e -1 2 u,x I 4 B f B (u)e 1 2 u,x I 4 B e 1 2 u,x B du (3) 
A vector can be decomposed in a parallel part and an orthogonal part depending on the choice of the bivector B [START_REF] Hestenes | Clifford Algebra to Geometric Calculus : A Unified Language for Mathematics and Physics[END_REF]. Being f an image and B a bivector, this decomposition is

f = f BB -1 = ( f • B + f ∧ B)B -1 = f B + f ⊥B where f B = ( f • B)B -1 (resp. f ⊥B = ( f ∧ B)B -1
) is the parallel (resp. orthogonal) projection of f on a bivector B.

After some elementary calculations, Eq. 2 can be rewritten depending on this de-

composition f B (u) = f B (u) + f ⊥B (u) where f B (u) = R 2 e u,x 2 B f B (x)e -u,x 2 B dx = R 2 f B (x) e -u,x B dx (4) f ⊥B (u) = R 2 f ⊥B (x) e -u,x I 4 B dx (5)
Now, the bivectors B and I 4 B can be identified to a pure imaginary number i since B 2 = (I 4 B) 2 = -1. Equations 4 and 5 can be calculated using two usual fast Fourier transforms.

Depending on the application, it may be advisable to reconstruct f B from f B and f ⊥B . The problem can be modelled as a system of four equations where the unknowns are the coordinates of f B in the basis {e 1 , e 2 , e 3 , e 4 } (see details in [START_REF] Mennesson | Color object recognition based on a clifford fourier transform[END_REF][START_REF] Mennesson | Un nouvel ensemble de descripteurs de Fourier Clifford pour les images couleur : les GCFD3[END_REF]).

Computational complexity of the color Clifford Fourier transform, including the reconstruction step, is O(n log(n)) where n is the number of pixels of the considered image. Indeed, this one requires only eight projections (O(n)) and two fast Fourier transforms (O(n log(n))).

The bivector B is a required parameter of the CFT, hence of any derivated descriptors that are not invariant to the parameter. The choice of a given B can be left to the user, assuming some prerequired knowledge about the dataset at hand. The next subsection gives some guidelines for such choice.

Practical construction of a bivector B

An unit bivector B can be obtained with taking the geometric product of two unit vectors v 1 , v 2 , orthogonal to each other w.r.t. the quadratic form Q. The corresponding bivector can be geometrically interpretable as the oriented plane spanned by v 1 and v 2 . Note that when v 1 and v 2 are not colinear, it is always possible to find an Q-orthonormal basis taking the rejection of v 2 on v 1 and scaling to unity. If the bivector B c = c ∧ e 4 (with c = c 1 e 1 + c 2 e 2 + c 3 e 3 a normed color vector chosen by the user) is considered, the direction of analysis of the CFT is the same as the QFT by considering the unit quaternion µ = c 1 i + c 2 j + c 3 k in [START_REF] Ell | Hypercomplex fourier transforms of color images[END_REF]). Let's recall that the QFT is used by [START_REF] Guo | Quaternion fourier-mellin moments for color images[END_REF] 

with µ = i+k √ 2 .
In contrast of the quaternionic Fourier transform, the bivector used in the CFT is more general and allows, for example, to take hue planes by taking bivectors of the form B c = c ∧ gray = c 1 e 1 + c 2 e 2 + c 3 e 3 ∧ e 1 +e 2 +e 3 √ 3 with c a color. In this case, the two vectors must be orthogonalized using the following rejection formula :

v 3 = (v 2 ∧ v 1 )v 1 -1 (6)
with v 1 , v 2 two non orthogonal vectors, v 3 a vector orthogonal to v 1 in the plane generated by v 1 ∧ v 2 and ∧ the outer product.

In section 6, the sensitivity to the choice of B is tested and is emphasized by different applications.

The parallel-orthogonal Fourier-Mellin Descriptors (poFMD)

In this section, we propose to compute the classical Fourier-Mellin moments (FMM) on parallel and orthogonal parts of the CFT as in [START_REF] Mennesson | Color object recognition based on a clifford fourier transform[END_REF] with the Generalized Fourier Descriptors. The two sets of moments can be concatenated and normalized to obtain a description vector.

3.1. Definition of the poFMM Definition 1. The Fourier-Mellin Moments (FMM) are defined for an image f ∈ L 2 (R 2 , C), expressed in polar coordinates, as

F MM f (m, n) = ∞ r=0 2π θ=0 r m-1 f (r, θ)e -inθ dθdr (7) 
The poFMM descriptors are the concatenation of the FMM computed on parallel and orthogonal parts of the color image with respect to a bivector B, i.e.

poF MM f,B (m, n) = F MM f B (m, n), F MM f ⊥B (m, n) (8)
The set of descriptors is not yet invariant under translation, rotation and scale. A normalization step must be applied to obtain these invariances [START_REF] Sheng | Experiments on pattern recognition using invariant fourier-mellin descriptors[END_REF].

Computation of the poFMD

The poFMD are obtained by taking the magnitude of the poFMM and by dividing by the first coefficient of each row, i.e. poF MM f,B (m, 0). The first manipulation provides rotation invariance and, the second, scale invariance (see [START_REF] Sheng | Experiments on pattern recognition using invariant fourier-mellin descriptors[END_REF]).

Definition 2. The poFMD are contained in a R M×N vector and are defined for a color image f ∈ L 2 (R 2 , R 1 4,0 ), expressed in polar coordinates, as

poF MD f,B = |poF MM f,B (1, 1)| |poF MM f,B (1, 0)| , |poF MM f,B (1, 2)| |poF MM f,B (1, 0)| , . . . , |poF MM f,B (m, n)| |poF MM f,B (m, 0)| , . . . , |poF MM f,B (M, N)| |poF MM f,B (M, 0)|
where M × N is the number of considered moments and | | the modulus of a complex.

It is obvious that these descriptors depends on B, which parameterizes the parallelorthogonal decomposition of the color image.

The Color Fourier-Mellin Descriptors(CFMD)

In this section, the Color Fourier-Mellin Moments (CFMM) are defined using the CFT instead of the classical Fourier transform. It follows the approach of [START_REF] Guo | Quaternion fourier-mellin moments for color images[END_REF] for the quaternionic Fourier transform. Just like for the poFMM, these moments are normalized to obtain invariant descriptors.

Definition

Definition 3. The Color Fourier-Mellin Moments (CFMM) are defined for a color image f ∈ L 2 (R 2 , R 1 4,0 ), expressed in polar coordinates, as

CF MM f,B (m, n) = ∞ r=0 2π θ=0 r m-1 e nθ 2 (B+I 4 B) f (r, θ)e -nθ 2 (B+I 4 B) dθdr (9)
with B a unit bivector.

The properties of the CFMM are analyzed in Appendix A.

Computation of the CFMD

The Color Fourier-Mellin Descriptors (CFMD) are obtained by taking the magnitude of the CFMM and by dividing by the first coefficient of each row, i.e. CF MM f,B (m, 0). The first manipulation provides rotation invariance and the second, scale invariance (see theorem 1 and 2 in Appendix A). The results for empirical invariance to these geometrical transformations and for sensitivity to the choice of B are provided in Appendix C.

Definition 4. The Color Fourier-Mellin Descriptors (CFMD) are contained in a R M×N vector and are defined for a color image f ∈ L 2 (R 2 , R 1 4,0 ), expressed in polar coordinates, as

CF MD f,B = |CF MM f,B (1, 1)| |CF MM f,B (1, 0)| , |CF MM f,B (1, 2)| |CF MM f,B (1, 0)| , . . . , |CF MM f,B (m, n)| |CF MM f,B (m, 0)| , . . . , |CF MM f,B (M, N)| |CF MM f,B (M, 0)|
where M × N is the number of considered moments and | | the magnitude of a vector.

With the normalization of the moments, it is obvious that an invariance under global luminance changes is also achieved.

Invariance under translation

The CFMD are invariant under rotations and scale by construction, but not by translation. To solve this problem, the center of the image must be estimated to define the origin of coordinates. This can be done using a direct extension of the image moments for color images as in [START_REF] Guo | Quaternion fourier-mellin moments for color images[END_REF].

Definition 5. Being a color image f ∈ L 2 (R 2 , R 1 4,0
), the color image moments are defined as follows :

M c p,q = +∞ -∞ +∞ -∞ x p 1 x q 2 | f (x 1 , x 2 )|dx 1 dx 2 (10)
where | | is the magnitude of a vector. The center of the image is determined by

x 1 = M c 1,0 /M c 0,0 and x 2 = M c 0,1 /M c 0,0 . It can be easily proved that if the color image is translated by (∆ x 1 , ∆ x 2 ), i.e. f (x 1 , x 2 ) = f (x 1 + ∆ x 1 , x 2 + ∆ x 2 ) then f (x 1 -x 1 , x 2 -x 2 ) = f (x 1 -x 1 , x 2 -x 2 )
. So, if the origin of coordinates is translated to the color image centroid, the invariants computed on the resulting image are invariant under translation.

Implementation of the CFMD

To be able to compute the CFMD, one has to compute the CFMM using the fast implementation of the Clifford Fourier Transform given in section 2. Eq. 9 can be rewritten as follows.

Let f a color image of size n 1 × n 2 , the discrete implementation of the CFMM is given by

CF MM f,B (m, n) = rmax r=0 2π θ=0 r m-1 e nθ 2 (B+I 4 B) f (r, θ)e -nθ 2 (B+I 4 B) ∆θ∆r (11) = rmax r=0 r m-1        2π θ=0 e nθ 2 (B+I 4 B) f (r, θ)e -nθ 2 (B+I 4 B) ∆θ        ∆r (12) 
with r max = max{ (x 1x 1 ) + (x 2x 2 )|x 1 = 1, 2, ..., n 1 ; x 2 = 1, 2, ..., n 2 }, ∆r = r max /(nr -1), ∆θ = (2π)/na, nr and na are respectively the number of radius and angle values in polar coordinates.

The CFMM computation can be interpreted as the computation of one-dimensional CFT with respect to variable θ, followed by the discrete summation in Eq. 12.

The computational complexity of the CFMM is O(M N log(N)) where N is the number of angles considered (i.e. the maximum number of columns) of the polar image and M the maximum of radial frequencies to compute.

Color Fourier-Mellin Descriptors Invariant under the Choice of B (CFMDi)

Although our method is translation, rotation and scale invariant, it still depends on the choice of a bivector. Depending on the application at hand, invariance with respect to this parameter may be required. Indeed, if a privileged color is available (dominant color of objects of interest, background color and so on), the previous CFMM are perfectly well suited. But, when no such knowledge is available an alternative, bivector invariant, descriptor may be required. Definition 6. The definition of the Color Fourier-Mellin Moment invariant under the choice of the bivector(CFMMi) for a color image f

∈ L 2 (R 2 , R 1 4,0 ) in polar coordinates, is CF MMi f,B (m, n) = ∞ r=0 r m-1        2π θ=0 e nθ 2 (B+I 4 B) f (r, θ)e -nθ 2 (B+I 4 B) dθ 2 + 2π θ=0 e -nθ 2 (B+I 4 B) f (r, θ)e nθ 2 (B+I 4 B) dθ 2        dr (13) = ∞ r=0 r m-1 f B (m, n) 2 + f B (m, -n) 2 dr (14)
with B a unit bivector.

The properties of the CFMMi are provided in Appendix B. The CFMMi must be normalized in the same way as the CFMM to achieve the invariance under rotation and scale. This is done by the following definition.

Definition 7. The Color Fourier-Mellin Descriptors invariant under the choice of the bivector (CFMDi) are defined for a color image f ∈ L 2 (R 2 , R 1 4,0 ), expressed in polar coordinates, as

CF MDi f = CF MMi f,B (1, 1) CF MMi f,B (1, 0) , CF MMi f,B (1, 2) CF MMi f,B (1, 0) , . . . , CF MMi f,B (m, n) CF MMi f,B (m, 0) , . . . , CF MMi f,B (M, N) CF MMi f,B (M, 0)
where M × N is the number of considered moments.

It must be emphasized that this invariance under the choice of the bivector is not an invariance to the colors present in the image. This is just a way to obtain color Fourier-Mellin descriptors without reference to some bivector B,i.e. no privileged direction of analysis. The results for empirical invariance to rotation and scale are provided in Appendix C.

Experiments

In this section, the poFMD, CFMD, CFMDi are evaluated and compared in the context of color image recognition and image retrieval. The choice of the bivector is discussed and proposals are compared to classical Fourier-Mellin Moments FMM [START_REF] Sheng | Experiments on pattern recognition using invariant fourier-mellin descriptors[END_REF]) (128 desc.), classical Fourier-Mellin Moments computed on color channels R, G, B separately (F MM rgb ) (128 desc.), Generalized Color Fourier Descriptors GCFD1 [START_REF] Mennesson | New geometric fourier descriptors for color image recognition[END_REF]) (128 desc.), Zernike moments [START_REF] Zernike | Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode[END_REF] (72 desc.), original Local Binary Patterns (Ahonen et al., 2006) (256 desc.).

In these experimentations, it is assumed that there is just one object per image and that the background is uniform. Thus, we have decided not to compare our proposals with local methods for image recognition since they obey generally to very different rules. In particular for local methods, a huge set of descriptors is extracted from many keypoints and is combined in order to cope with occlusions and cluttered background. In this context, it becomes risky to guess whether the individual quality of the descriptors derived from their definition, their size or from the classifier used. By the way, some recent works [START_REF] Andrade | Fusion of local and global descriptors for content-based image and video retrieval[END_REF] showed that global and local descriptors may be combined successfully to improve the process of image recognition.

Image recognition experiments

To evaluate our descriptors different standard color image databases have been used. The choice of the bivector B, the parameter of the color Clifford Fourier transform, and the respective performances of the various descriptors in terms of recognition rates are discussed. In the following, the experimental protocol to test our approach is described.

Image databases

The databases used in this section are a modified version of COIL-100 and color FERET.

• To check rotation and scale invariance, a modified version of COIL-100 [START_REF] Nene | Columbia object image library (coil-100)[END_REF] (Columbia Object Image Library) database is used. Each image for this database (except the first of each class) is randomly rotated by an angle φ = [0, 360] and scaled by a factor k ∈ [0.5, 1].

• The color FERET database [START_REF] Phillips | The feret database and evaluation procedure for face recognition algorithms[END_REF] is composed of face images of 1408 different persons, taken from different angles of view. In our tests, a set of 2992 images containing 272 persons equally represented by 11 pictures is selected and size of images is reduced to 128 × 128.

Descriptors extraction

In order to make a fair comparison, the length of each set is limited to 128, whatever the considered associated descriptors (GCFD1 [START_REF] Mennesson | Un nouvel ensemble de descripteurs de Fourier Clifford pour les images couleur : les GCFD3[END_REF], FMM, F MM rgb , CFMD, CFMDi or poFMD). The 128 poFMD(m,n) descriptors correspond to m = 1, ..., 8 and n = 1, ..., 8, the 128 CFMD(m, n) descriptors and the CFMDi(m,n) descriptors correspond to n = 1, ..., 11 and m = 1, ..., 12 (the four last descriptors are removed).

Classification step

The classification step is performed using a standard Support Vector Machine S V M [START_REF] Vapnik | Statistical Learning Theory[END_REF] using LIBS V M implementation [START_REF] Chang | Libsvm: a library for support vector machines[END_REF]. Each descriptors set is used as feature vector in the classifier.

In our tests on the Modified COIL-100 and color FERET databases, the standard radial basis kernel (Gaussian kernel) is used in order to compare our results with those obtained in [START_REF] Mennesson | New geometric fourier descriptors for color image recognition[END_REF]. Parameters σ (of the gaussian kernel) and C (the penalty coefficient) are set empirically by a 10-cross validation and a grid search [START_REF] Duda | Pattern Classification[END_REF] to maximize the recognition rate for each experiment [START_REF] Chang | Libsvm: a library for support vector machines[END_REF]. Other less sophisticated algorithm as LDA or 1-NN [START_REF] Jain | Data clustering: A review[END_REF] are also used to test the influence of the SVM on recognition rates obtained with our descriptors.

Experiment on modified COIL-100 database

In Fig. 1, the poFMD with the best bivector give better results than the other descriptors regardless of the method of classification. But, it seems to be much more dependent on the choice of the bivector than the other methods. Note that the differences between recognition rates obtained by the various descriptors with the SVM are not significant.

Concerning the CFMDi, the recognition rates obtained are better than the CFMD (except for the LDA) and the invariance of these descriptors under the choice of the bivector is verified. The F MM rgb give a good recognition rate with the LDA and give results very close to CFMDi with other classifiers.

Concerning other global descriptors, one can note that the GCFD1 and the LBP give worse results than those of the CFMD, CFMDi and poFMD. This is due to their non-invariance to scale changes. Moreover, the GCFD1 are very sensitive to the choice of the bivector. 

. Experiment on color FERET database

Concerning the color FERET database (see Fig. 2), the recognition rates are lower because the background of images is not uniform. According to the experimentations conducted previously [START_REF] Mennesson | New geometric fourier descriptors for color image recognition[END_REF] with Clifford Fourier descriptors, we can suppose that the reconstructed f B carries less interesting frequency information when both f B and f ⊥B are mutually discriminant (e.g. image contains high frequency in red and low frequency in blue). That is why it is not surprising that the poFMD and GCFD1, which are computed on the parallel and the orthogonal parts give the best results on this database. Compared with the CFMD, the standard deviation of the recognition rates obtained with these descriptors are high, showing their sensitivity to the choice of the bivector. Again, the F MM rgb give better results than the other descriptors with the LDA classifier. However, they are less successful with other classifiers. For the CFMDi, the recognition rates are close to those obtained by the CFMD with the 1-NN and the SVM and really better with a linear classifier LDA.

Application in image retrieval

This application aims at showing the efficiency of the Fourier-Mellin moments in a context of image retrieval, i.e. a query image is given by the user and the nearest First experiment aims at retrieving a "colorful mug" (cf. Fig. 3, firsts column) in the database. Visual inspection (on shape and color) of the rows containing the retrieved objects, ordered according to the increasing distance to the query object, clearly shows that the best results are obtained with the CFMDi and the poFMD using the bivector B red with a score of 10/10 and 9/10. These descriptors take into account the color of the flower on the cup. The CF MD fail 3 times but they succeed to recognize 3 other mugs, this is to be compared to F MM rgb which retrieves mugs of different shapes but same dominant color. The classical FMM retrieve only 4 mugs but has difficulties to separate mugs of different colors. The GCFD1 gives a poor score of 0/10 due to its non-invariance under scale changes.

To confirm these observations, a second set of experiment where each of the 7200 images have been taken as request image has been made. The corresponding retrieval rate in terms of retrieval position is showed in Fig. 4. q q q q q q q q q q q q q q q q q q q q 5 10 15 20 Retrieval rate q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q poFMDred poFMDgreen poFMDblue FMMRGB CFMDi CFMDred CFMDgreen CFMDblue FMM GCFD1red GCFD1green GCFD1blue It is clear that the poFMD give better results than the other descriptors in terms of retrieval rate. The retrieval rates of the CFMDi and the F MM rgb stay between retrieval rates curve of the poFMD and the CFMD one. Retrieval rates of the FMM seem to be slightly below the CFMD. Indeed, a good choice of bivector for one image can be a bad choice for an other. In this experiment, the results are averaged on all images, minimizing the influence of the choice of the bivector. Finally, one can see that the GCFD1 give bad retrieval rates. This result is not surprising because, as in the Fig. 3, these descriptors are not invariant under scale changes. To summarize these experimentations, we can note again that the performance of the various descriptors can be ordered as poF MD > F MM rgb CF MDi > CF MD. The computational time of these descriptors for one image (in milliseconds) with our implementation and a desktop computer (Intel core 2 processor 2.66 GHz × 2, 64-bit operating system, 2 Gbytes RAM) are reported in Table 1. 

Conclusion

In this article, the poFMD are first defined from the parallel and the orthogonal part of the Clifford Fourier transform. Then, the Quaternionic Fourier-Mellin Moments (QFMM) of [START_REF] Guo | Quaternion fourier-mellin moments for color images[END_REF] have been rewritten in the Clifford algebra context leading to the definition of the so-called Color Fourier-Mellin Moments (CFMM). This rewriting in a more general mathematical framework allows extended choices for a crucial parameter of the method, namely the color analysis plane as defined by two color vectors (a bivector in terms of Clifford Algebras). This parameterization is more natural and easier to handle from an user point of view than the one previously defined in a quaternionic context. Specifically, one can easily discriminate color objects relatively to a prescribed hue. Besides this colorimetric property, a careful examination of the behavior of the moments with respect to usual geometric transforms (translation, rotation, scale) led to the definition of a first set of descriptors. These Color Fourier-Mellin Descriptors (CFMD) are shown to be invariant to geometric transformations but are still sensitive to the bivector choice. Depending on the kind of application at hand, e.g. classification or image retrieval, this may be valuable or not. To take into account the cases where no information about such color of interest is available, a bivector insensitive set of descriptor, the CFMDi, is also proposed. It must be underlined, that while it does not require the choice of a privileged color plane, it still perfectly discriminates objects of different colors. This is confirmed by experiments on color objects retrieval. When scale change is applied to the considered image data sets, COIL-100 in this article, the poFMD, CFMD and CFMDi outperform Generalized Color Fourier Descriptors [START_REF] Mennesson | Color object recognition based on a clifford fourier transform[END_REF], the invariant poFMD consistently being the best of the three. Last experiments on image retrieval with scale change unsurprisingly exhibit better results for moment based descriptors and, in such case, we have the following performance ordering : poF MD > F MM rgb CF MDi > CF MD > GCFD1. These results lead to prescribe poFMD as a default choice in most cases. From a computational cost perspective, the proposed sets of descriptors depend essentially on the computations of several Fast Fourier Transforms, hence a O(n log(n)) cost where n is the number of pixels of the considered image.

We have to notice that the choice of a color space (RGB, Lab, XYZ, Ohta, etc.) has been experimented and has shown that it impacts in the similar way the performances of our descriptors and the performance of marginal descriptors. Besides, empirical invariance to every considered transforms and parametrization have been numerically checked. But, due to the lack of space, these results are not shown in this paper.

Finally, as observed in [START_REF] Andrade | Fusion of local and global descriptors for content-based image and video retrieval[END_REF][START_REF] Singh | Performance analysis of various local and global shape descriptors for image retrieval[END_REF], global and local descriptors can be used together to improve results. Hence, local Color Fourier-Mellin Descriptors extracted in the neighborhood of keypoints (e.g. SIFT (Lowe, which does not depend on B. Second term is splitted as f

B (n) • f B (-n) + f ⊥B (n) • f ⊥B (-n) where f B (n) • f B (-n) = 1 2 f B (n) f B (-n) + f B (-n) f B (n) (B.5) = 2π θ 1 =0 2π θ 2 =0
f B (θ 1 ) f B (θ 2 ) cos(nθ 1 + nθ 2 )dθ 1 dθ 2 (B.6)

Same calculus for f ⊥B (n)

• f ⊥B (-n) leads to f B (n) • f B (-n) + f ⊥B (n) • f ⊥B (-n) = 2π θ 1 =0 2π θ 2 =0
( f (θ 1 ) • f (θ 2 )) cos(nθ 1 + nθ 2 )dθ 1 dθ 2 (B.7)

We conclude that both terms in Eq. B. 
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Figure 1 :

 1 Figure 1: Modified COIL 100: Performance of CFMD, CFMDi, poFMD and GCFD1 for 100 random bivectors (mean and standard deviation) and FMM, F MM rgb , ZM, LBP

Figure 2 :

 2 Figure 2: color FERET: Performance of CFMD, CFMDi, poFMD and GCFD1 for 100 random bivectors (mean and standard deviation) and FMM, F MM rgb , ZM, LBP

Figure 3 :

 3 Figure 3: Modified COIL 100: nine best retrievals (ordered from left to right) for the query of the "colorful mug" (left column) with poFMD, CFMD, GCFD1 (parametrized by the bivector B red ), CFMDi, F MM rgb and FMM.

Figure

  Figure Modified COIL 100 : Retrieval rate of poFMD, CFMD, CFMDi, FMM, F MM rgb and GCFD1 for the 20 first retrieval positions

Figure C. 5 :

 5 Figure C.5: CFMD and GCFD1 computed on a non-rotated and non-scaled butterfly image with 100 random bivectors

Table 1 :

 1 Computation time of 128 poFMD, CFMD, CFMDi, F MM rgb for one image of size 128 × 128

		F MM rgb	poFMD	CFMD	CFMDi
	Comp. time in ms.	4, 6 ms.	7, 4 ms.	10, 8 ms.	18, 5 ms.

  2 not depend on B. 2 Appendix C. Empirical invariance of descriptors

	CF MD	(1, 1)	(2, 1)	(3, 1)	(1, 2)	(2, 2)	(3, 2)	(1, 3)
	mean	0.0764	0.0613	0.0172	0.2184	0.3314	0.4167	0.1113
	std	0.0004	0.0011	0.0019	0.0020	0.0009	0.0005	0.0009
				GCFD1 Bc		GCFD1 ⊥Bc
		GCFD1	1	2	3	1	2	3
		mean	3.5 10 6	2.0199	0.7788	1.3 10 6	2.3880	1.2562
		std	1.0 10 6	0.0795	0.0209	1.0 10 6	1.0979	2.4273

for 100 random bivectors

cos(nθ) f (θ)dθ 2 (B.4)

Appendix A. Properties of the CFMM Theorem 1 (Invariance under rotation). Being a rotation angle φ and f, g ∈ L 2 (R 2 , R 1 4,0 ) such as g is a rotated version of f . If we denote x 1 = rcos(θ) and x 2 = rsin(θ), then g(r, θ) = f (r, θ + φ) and

Proof.

If we make the substitution

So, a rotation of the spatial domain implies a phase shift of the Color Fourier-Mellin moments. 2

Theorem 2 (Invariance under scale). Being a scale parameter k and f, g

The proof is the same as in [START_REF] Guo | Quaternion fourier-mellin moments for color images[END_REF] because a scale change does not affect the CFT but only the Mellin transform.

Appendix B. Properties of the CFMMi

Theorem 3 (Invariance to bivector B).

with a fixed r (resp. m). It is obvious that r m-1 does not depend on the choice of the bivector, so we only have to prove that