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Abstract

This paper proposes a volumetric penalty method to simulate the boundary conditions for a non-

linear hyperbolic problem. The boundary conditions are assumed to be maximally strictly dissipative

on a non-characteristic boundary. This penalization appears to be quite natural since, after a natural

change of variable, the penalty matrix is an orthogonal projector. We prove the convergence towards

the solution of the wished hyperbolic problem and that this convergence is sharp in the sense that it

does not generate any boundary layer, at any order. The proof involves an approximation by asymptotic

expansion and energy estimates in anisotropic Sobolev spaces.

1 Introduction

Non-linear hyperbolic conservation laws models are very common in fluid mechanics, for example let us just
cite Euler, MHD and shallow water equations. The physical domain of the fluid is sometimes quite complex
and this can be the source of difficulties to provide an efficient numerical scheme. Usually, the boundary
conditions need a special treatment with a body-fitted mesh for the implementation in simulation codes.
Beside the mesh of the scheme often has to be fitted to the shape of the domain. Penalization, such as other
immersed boundary methods, can lead to a simpler treatment of the boundary condition and allows one to
use fast numerical solver, such as pseudo-spectral solver for instance, see [8, 10]. The solution of the original
u is approximated by the solution of the penalized problem uε, where ε ≪ 1 is the penalization parameter.
Thus, the error ‖uε − u‖Hs has to be controlled. In the optimal case, ‖uε − u‖Hs = O(ε) when ε tends
to 0. In the non optimal case, the penalty methods generates boundary layers which ensures a connection
between the physical domain and the penalized area. This boundary layer aggravates the convergence rate,
even in some cases the H1 penalization error may increases when ε tends to 0 because of the generation of
oscillations [1, 11].

Immersed boundary methods have been first implemented by Peskin for the numerical simulations of
the flow around heart valves [13]. Some examples of application of penalization method are also given by
fish-like swimming simulations, see for instance [3]. Error analysis of penalization method for incompressible
viscous flow equations, using a BKW method has been performed by Carbou and Fabrie [4]. For the wave
equation in the one dimensional case, Paccou et al. provides a theoretical and numerical study of a L2

penalization for a Dirichlet boundary condition [12]. Penalty method has already been proposed in the semi-
linear characteristic case by Fornet and Guès [6]. The main result of this paper is a penalization technique
for a quasilinear hyperbolic problem which does not generate any boundary layer. To simplify some parts
of the proofs, the notation ∂0 = ∂t has been sometimes used in this paper.

2 Main result

In order to avoid issues of compatibility of the initial condition and to focus on the penalization’s problem,
we consider a boundary value problem instead of an initial boundary value problem. For the same technical
reason, we suppose that the solution is null in the past, i.e. for t < 0.

AMS subject classifications: 35L60, 65N85.
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Figure 1: A schematic representation of the space domain

We could consider the non-linear hyperbolic boundary-value problem presented below:







∂tu(t,x) +
∑d

j=1 Āj(u(t,x))∂ju(t,x) = f̄(t,x,u(t,x)) (t,x) ∈]− T0, T [×Rd
+

Θ(u(t,x′, 0)) = 0 (t,x′) ∈]− T0, T [×R
d−1, i.e. xd = 0

u|t<0 = 0

(1)

But this form does not take into account of some parameters related to t,x but not to u such as, for instance,
the refraction index, the viscosity... In order to have a more general problem which can be applied to a wide
range of physical models, let us add a function a :]− T0, T [×Rd → RN ′

which is supposed to include all this
type of information.

Finally, let us consider a hyperbolic boundary-value problem of the form:







∂tu(t,x) +
∑d

j=1 Āj(a(t,x),u(t,x))∂ju(t,x) = f̄(a(t,x),u(t,x)) (t,x) ∈]− T0, T [×Rd
+

Θ(a(t,x′, 0),u(t,x′, 0)) = 0 (t,x′) ∈]− T0, T [×Rd−1, i.e. xd = 0
u|t<0 = 0

(2)
In this paper, the space variable writes x = (x1, . . . , xd) = (x′, xd). The space domain is represented in the
figure 1.

We make the following assumptions about the hyperbolic problem (2):

1. a :]− T0, T [×Rd → RN ′

is in H∞(]− T0, T [×Rd).

2. f̄ : RN ′ × RN → RN is C∞ and, for all y ∈ RN ′

, f̄(y,0) = 0.

3. Θ : RN ′ ×RN → Rp is C∞ and for all (y,U) ∈ RN ′ ×RN ,∇uΘ (y,U) has a constant rank p. Besides,
for all y ∈ R

N ′

,Θ(y,0) = 0.

4. For every j, Āj : R
N ′ × R

N → MN(R) is C∞.

5. There exists a symmetrizer S(y,U) such that, for all (y,U) ∈ RN ′ × RN :

• S(y,U) is symmetric and positive definite, uniformly in (y,U) when U is in a neighbourhood
U ⊂ RN of 0 and y in a neighbourhood Z ⊂ RN ′

of 0. This means that there exists ē > 0 such
that, for all (y,U) ∈ Z × U , and for all W ∈ R

N , 〈S(y,U)W,W〉 ≥ ē‖W‖2, where 〈, 〉 and ‖.‖
are respectively the euclidean scalar product and norm on RN .

• For all j ∈ {1, . . . , d}, S(y,U)Āj(y,U) is symmetric.

We assume that the problem is non characteristic, i.e. for all (y,U) ∈ RN ′ ×RN such that Θ(y,U) = 0,
the matrix Ād(y,U) is invertible. The boundary conditions are assumed to be maximally strictly dissipative:
For all y ∈ Z, if there existsU ∈ RN such thatΘ(y,U) = 0, the quadratic form have the following properties:

• ∃µ̄ > 0, ∀y ∈ RN ′

, ∀W ∈ ker∇uΘ(y,0), 〈S(y,U)Ād(y,U)W,W〉 ≤ −µ̄‖W‖2.
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• dimker∇uΘ(y,0) is maximal for the property above.

According to [7, 15], one can assert there exists a finite time θ > 0 such that the original problem (cf.
equation (2)) admits a unique solution u in H∞(]− T0, θ[×Rd

+).

Lemma 2.1. There exists Q ⊂ U ,V, two neighbourhoods of 0 ∈ R
N and Y ⊂ Z a neighbourhood of 0 ∈ R

N ′

satisfying: there exists H ∈ C∞ (Y × V ,Q) such that, for all y ∈ Y, H(y, .) is a C∞-diffeomorphism from V
to Q and such that

∀U ∈ Q, ∀y ∈ Y,Θ(y,U) = 0 ⇐⇒ V1 = V2 = · · · = Vp = 0
and ∀y ∈ Y,H(y,0) = 0

Where V ∈ RN is such that U = H(y,V) and (V1, . . . , VN ) = V.

Proof of the lemma 2.1: The matrix ∇uΘ(0,0) has rank p. Eventually re-arranging the terms, let us assume
that the square matrix of size p chose columns are ∂ui

Θ(0,0) (i ∈ {1, . . . , p}) is invertible.
Let us define the function Z : (U,y) 7→ (Θ(y,U), Up+1, . . . , UN ,y) and writeV = (Θ(y,U), Up+1, . . . , UN ).
Observe that ∇u,aZ(0,0) is invertible. The inverse function theorem proves the existence of the neigh-

bourhoods Q ⊂ U ⊂ RN and Y ⊂ Z ⊂ RN ′

such that Z is a C∞-diffeomorphism defined on Q× Y. The N
first components of Z−1 generates the change of unknown function H.

Henceforth, the function a is assumed to be valued in the neighbourhood Y. The proof of the lemma 2.1
contains a simple choice for the change of unknown H.

In order to simplify the notations, the dependence of the functions and matrices on (t,x) and a(t,x)
is now implicit. So, for instance, Āj(u) stands for (t,x) 7→ Āj(a(t,x),u(t,x)) and ∂j

(
Āj(u)

)
means

∇aĀj(a(t,x),u(t,x)) · ∂ja(t,x) +∇uĀj(a(t,x),u(t,x)) · ∂ju(t,x).
P is defined as the matrix of the projection on the linear subspace Rp ×{0}N−p written in the canonical

basis. The boundary condition with the new variables becomes Pv = 0. For the new unknown v, the system
writes (the parameter function a is understood):

{
∇vH(v) ∂tv +

∑d
j=1 Āj (H(v))∇vH(v)∂jv = f̄ (H(v)) in ]− T0, T [×Rd

+

Pv|xd=0 = 0 in ]− T0, T [×Rd−1 (3)

The system is then multiplied on the left by ∇vH(v)⊤S (H(v)) to obtain:







A0(v) ∂tv +
∑d

j=1 Aj(v)∂jv = f(v) in ]− T0, T [×R
d
+

Pv|xd=0 = 0 in ]− T0, T [×Rd−1

v|t<0 = 0 in ]− T0, 0[×R
d
+

(4)

In this new formulation, the functions Aj and f are:

A0(v) = ∇vH(v)⊤S (H(v))∇vH(v)

Aj(v) = ∇vH(v)⊤S (H(v)) Āj(v)∇vH(v)

f(v) = ∇vH(v)⊤S (H(v))



f̄ (H(v)) −∇aH(v) · ∂ta−
d∑

j=1

Āj(v)∇aH(v) · ∂ja





According to the properties on S (H(v)) and ∇vH(v), we can assert that A0(y,V) is uniformly positive
definite regarding (y,V), where y ∈ Y andV such that H(y,V) ∈ Q. Hence, there exists e > 0 (independent
of V) such that, for all y and for all W ∈ R

N , 〈A0(y,V)W,W〉 ≥ e‖W‖2.
The next lemma recalls a classical invariance property (that can be easily checked):

Lemma 2.2. If the original problem (2) has maximally strictly dissipative boundary conditions, the refor-
mulated problem (4) has also maximal strictly dissipative boundary conditions.

For the reformulated problem (4), the property of maximally strictly dissipative boundary conditions
means: For all V ∈ RN such that PV = 0, the quadratic form have the following properties:
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• ∃µ > 0, ∀W ∈ kerP, ∀y ∈ Y, 〈Ad(y,V)W,W〉 ≤ −µ‖W‖2

• N − p is the number of strictly negative eigenvalues of Ad(y,V) with multiplicity. Thus, with multi-
plicity, there are p strictly positive eigenvalues.

Let us now introduce the following penalized system, which is the main concern of the paper

{

A0(vε) ∂tvε +
∑d

j=1 Aj(vε)∂jvε +
χ

ε
Pvε = f(vε) in ]− T0, T [×Rd

vε |t<0 = 0 in ]− T0, 0[×R
d

(5)

where χ is the characteristic function of the obstacle, i.e χ|xd≤0 = 1 and χ|xd>0 = 0, see the figure 1.
Notice that the boundary condition of the reformulated problem (4) is Pv|xd=0 = 0 and the penalization

term added in the penalized system (5) simply writes
χ

ε
Pvε. Thus, when ε tends to 0, from the formal point

of view, one recovers the boundary condition Pvε|xd=0 ≈ 0. The main result of this paper is Theorem 2.1
(see below) which ensure that the penalized system (5) is well-posed and provides an estimation of the error
due to the penalization.

Theorem 2.1. Under the assumptions presented above, there exists a finite time T ∈]0, θ[ and ε0 > 0 such
that, for all ε ∈]0, ε0], the penalized problem

{

A0(vε) ∂tvε +
∑d

j=1 Aj(vε)∂jvε +
χ

ε
Pvε = f(vε) in ]− T0, T [×Rd

vε|t<0 = 0
(6)

has a unique solution vε ∈ H1(]−T0, T [×R
d)∩W 1,∞(]−T0, T [×R

d). Besides, vε is smooth on each side of
the interface xd = 0, i.e., vε|xd>0 ∈ H∞(]− T0, T [×Rd

+) and vε|xd<0 ∈ H∞(]− T0, T [×Rd
−).

Moreover, for all s ∈ N, the following estimate holds as ε goes to 0:

‖v− vε‖Hs(]−T0,T [×Rd
+
) = O(ε)

Theorem 2.1 provides a linear penalization for the reformulated problem. For the original problem (2),
the penalization becomes non linear. Finally, for the hyperbolic problem in the original form, the theorem
reads:

Theorem 2.2. Considering the assumption described above for the original problem







∂tu+
∑d

j=1 Āj(u)∂ju = f̄ (u) in ]− T0, T [×Rd
+

Θ(u) = 0 xd = 0
u|t<0 = 0

(7)

there exists a finite time T ≤ θ and ε0 > 0 such that, for all ε ∈]0, ε0], the penalised problem

{

∂tuε +
∑d

j=1 Āj(uε)∂juε +
χ(x)

ε
M(uε)uε = f̄(uε) (t,x) ∈]− T0, T [×R

d

uε|t<0 = 0

has a unique solution uε ∈ H1(] − T0, T [×Rd
+) ∩W 1,∞(] − T0, T [×Rd) which is smooth on each side of the

boundary xd = 0: uε|xd>0 ∈ H∞(]− T0, T [×R
d
+) and uε|xd<0 ∈ H∞(]− T0, T [×R

d
−)

where:

M(uε)uε = (S(uε))
−1
(

∇vH
(
H−1(uε)

)⊤
)−1

PH−1(uε)

Recall that, for S,H and thus for M, the dependence on the function a is implicit.
For all s ∈ N, the penalization error estimate when ε tends to 0 is given by:

‖uε − u‖Hs(]−T0,T [×Rd
+
) = O(ε)
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The penalization matrix is non trivial and is of the form M(uε)uε, as

(S(0))
−1
(

∇vH
(
H−1(0)

)⊤
)−1

PH−1(0) = 0

Observe that, if p < n, the penalization matrix is not invertible. Besides, remark that it is not always
possible to have a human readable expression of M.

From the practical point of view, it is simpler to consider the reformulated problem (see theorem 2.1), as in
this form, the penalization appears very natural. Furthermore, even in the linear case, the construction of the
penalty matrix P is much simpler than the one proposed in the paper [6]. The estimate ‖uε−u‖Hs = O(ε),
can be interpreted as an absence of boundary layer for the penalty method described in this paper. This
feature differs from the results known for quasilinear hyperbolic problem [9].

To prove Theorem 2.1, we first build an approximate solution va of the penalized problem (4) using
a formal asymptotic expansion, as presented in the section 3. The second step is to prove that the exact
solution of (4) writes va + εw together with a good control of w. In order to show that w remains bounded
in a suitable Sobolev space, an iterative scheme is defined generating a sequence (wk)k∈N. In the section 4,
using energy estimates, we justify that (wk) is bounded for the L2 and the L∞ norms and converges towards
a function w.

The solution of the original problem u is defined up to the time θ but, according to our theorem, the
solution of the penalized problem might not be defined up to this time. Indeed, in the formal asymptotic
expansion we were not able to prove the existence of the expansion in the penalized area up to the time θ.
This is in contrast with the case for the semilinear version of the penalization [6].

In the following sections, we consider that the open subset ΩT =] − T0, T [×Rd. Ω+
T =] − T0, T [×Rd

+

represents the original domain (i.e. the domain of the boundary value problem (2)) and Ω−
T =]−T0, T [×Rd

−

the penalized area (i.e. the fictitious domain). Fornet and Guès [6] presented a method to extend the results
of Theorem 2.1 for a more complicated original domain shape.

The sections 5 and 6 describe in a few lines two examples of application of this penalization method.

3 The formal asymptotic expansion

In order to build an approximate solution we look, at first, for a formal asymptotic expansion of the continuous
solution of the form:

vε(t, x) ∼
{ ∑+∞

n=0 ε
nVn,−(t,x) if xd < 0

∑+∞
n=0 ε

nVn,+(t,x) if xd > 0

where Vn,− and Vn,+ satisfies the assumptions presented below:

• V
n,−
|t<0 = 0.

• V
n,+
|t<0 = 0.

• For all t > −T0,V
n,−(t, x1, . . . , xd−1, 0) = Vn,+(t, x1, . . . , xd−1, 0).

We will build the Vn,− and Vn,+ up to any order n. Vn,± represents Vn,+ in the area xd > 0 and Vn,−

where xd < 0. As the series
∑

n ε
nVn,±(t,x) does not converge in general, this is only a formal expansion

and we use the character ∼ instead of =. The meaning of ∼ is in the sense of asymptotic expansions.
As, for all j ∈ {0, . . . , d}, Aj(a(t,x), .) and f are indefinitely differentiable, the following asymptotic

expansions hold:

Aj (a(t,x),vε(t,x)) ∼
+∞∑

n=0

εnAn
j

(
a(t,x),V0,±(t,x), . . . ,Vn,±(t,x)

)

f (a(t,x),vε(t,x)) ∼
+∞∑

n=0

εnfn
(
a(t,x),V0,±(t,x), . . . ,Vn,±(t,x)

)
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Substituting the expansions in the system (5) gives:

χ

ε
PV0,±+

+∞∑

n=0

εn



A0
0(V

0,±)∂tV
n,±+

d∑

j=1

A0
j(V

0,±)∂jV
n,±+Fn(V0,±,Vk,±, ∂Vk−1,±, 1≤k≤n)+χPVn+1



=0

(8)
Where Fn(V0,±,Vk,±, ∂Vk−1,±, 1≤k≤n) contains all the remaining terms which depend onV0,±, ∂jV

0,±, . . . ,
Vn−1,±, ∂jV

n−1,±, Vn,± but not on ∂jV
n,±. Observe that the function

Vn,± 7→ Fn
(
V0,±,Vk,±, ∂Vk−1,±, 1≤k≤n

)
is affine.

Now, we consider the induction hypothesis: (Hn) : There exists a T > 0 independent of n such that
for all k ≤ n,Vk,+ and Vk,− are well-defined on ] − T0, T [×Rd

+ and ] − T0, T [×Rd
− (respectively). Besides

PVn+1,+ is well-defined on ]− T0, T [×Rd
−.

Proof of the initial assumption (H0), studying the terms in ε0:
According to the term in ε−1, we have PV0,− = 0 (for all xd < 0).
For xd > 0 (χ(x) = 0):

According to term in ε0 of the equation (8), V0,+ satisfies the following hyperbolic system:







A0
0(V

0,+) ∂tV
0,+ +

∑d
j=1 A

0
j (V

0,+)∂jV
0,+ + F0(V0,+) = 0 in ]− T0, T [×Rd

+

PV
0,+
|xd=0 = PV

0,−
|xd=0

V
0,+
|t∈]−T0,0[

= 0

(9)

In fact, this hyperbolic system is exactly the boundary value problem (4), so it has maximally strictly
dissipative and non characteristic boundary conditions. So there exists a unique smooth solution, V0,+ ∈
H∞(]−T0, θ[×Rd

+), of (9). Remark that, finally, V0,+ equals to v, the solution of the reformulated hyperbolic
problem (4).

For xd < 0 (χ(x) = 1):







A0
0(V

0,−) ∂tV
0,− +

∑d
j=1 A

0
j(V

0,−)∂jV
0,− + F0(V0,−) +PV1,− = 0 in ]− T0, T [×Rd

−

V
0,−
|xd=0 = V

0,+
|xd=0

V
0,−
|t∈]−T0,0[

= 0

(10)

In order to obtain V0,−, as PV0,− = 0 has already been computed, we only need to construct (I−P)V0,−

which is solution of:






(I−P)A0
0(V

0,−)(I −P) ∂t
(
(I−P)V0,−

)
+
∑d

j=1 (I−P)A0
j (V

0,−)(I−P)∂j
(
(I−P)V0,−

)

+(I−P)F0(V0,−) = 0 in ]− T0, T [×Rd
−

(I−P)V0,−
|xd=0 = (I−P)V0,+

|xd=0

(I−P)V0,−
|t∈]−T0,0[

= 0

(11)

Let us write (
0

V
0,−
II

)

= (I−P)V0,− ,

(
0

F0
II(V

0,−)

)

= (I−P)F0(V0,−)

and define the N − p×N − p matrices A0,II
j (V0,−) such that

(I−P)A0
j (V

0,−)(I−P) =

(
0 0

0 A
0,II
j (V0,−)

)

The problem (11) can now be rewritten as a hyperbolic problem composed of N − p equations (as its p first
components are null):







A
0,II
0 (V0,−) ∂tV

0,−
II +

∑d
j=1 A

0,II
j (V0,−)∂jV

0,−
II + F0

II(V
0,−) = 0 in ]− T0, T [×Rd

−

V
0,−
II |xd=0 = V

0,+
II |xd=0

V
0,−
II |t∈]−T0,0[

= 0

(12)
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The matrix A
0,II
0 (V0,−) is symmetric positive definite, so do A

0,II
d (V0,−). To prove the well-posedness of

the system (12), we check that the boundary condition is maximally strictly dissipative:

∀WII ∈ R
N−p,W =

(
0

WII

)

∈ R(I−P) = kerP,

〈A0,II
d (V0,−

|xd=0)WII ,WII〉RN−p = 〈A0,II
d (V0,+

|xd=0)WII ,WII〉RN−p

= 〈A0
d(V

0,+
|xd=0) W

︸︷︷︸

∈kerP

,W〉RN−p

≤ −µ‖W‖2 = −µ‖WII‖2

as the reformulated problem has maximally strictly dissipative boundary conditions. Thus, the matrix
A

0,II
d (V0,−

|xd=0) is symmetric negative definite, which shows that N = {0} ∈ RN−p is clearly the space of

maximal dimension for which ∃µ1 > 0, ∀WII ∈ N , 〈−A
0,II
d (V0,+

|xd=0)WII ,WII〉RN−p ≤ −µ1‖WII‖2. Hence,

the boundary conditions of the system (12) are maximally strictly dissipative.
Hence, there exists T ∈]0, θ] such that there is a unique smooth solution, V

0,−
II , of (12) defined on

] − T0, T [×Rd
−. Finally (I − P)V0,− and V0,− are built up to the time T . A priori, it could happen that

T < θ.
Then, PV1,− is computed using:

PV1,− = −PA0
0(V

0,−) ∂tV
0,− −

d∑

j=1

PA0
j(V

0,−)∂jV
0,− −PF0(v0,−)

Proof of the induction hypothesis, using the terms in εn: We assume that, for all k ≤ n− 1, Vk,−,Vk,+ and
PVn,− are built.

For xd > 0 (χ(x) = 0):







A0
0(V

0,+) ∂tV
n,+ +

∑d
j=1 A

0
j (V

0,+)∂jV
n,+ + Fn(V0,+,Vk,+, ∂Vk−1,+, 1≤k≤n) = 0 in ]− T0, T [×Rd

+

PV
n,+
|xd=0 = PV

n,−
|xd=0

V
n,+
|t∈]−T0,0[

= 0

As Fn(V0,+,Vk,+, ∂Vk−1,+, 1≤ k≤ n) is affine for the variable Vn,+, the system (3) is a linear hyperbolic
problem, and the homogeneous boundary condition version have maximally strictly dissipative boundary
condition. So, the hyperbolic problem (3) admits a unique smooth solutionVn,+ up to the time T introduced
in the proof of (H0) [2, 5].

For xd < 0 (χ(x) = 1):

Considering the terms at the order n of (8), Vn,− satisfies:






A0
0(V

0,−)∂tV
n,−+

d∑

j=1

A0
j (V

0,−)∂jV
n,−+Fn(V0,−,Vk,−, ∂Vk−1,−, 1≤k≤n)+PVn+1,−=0 in ]−T0, T [×R

d
−

V
n,−
|xd=0 = V

n,+
|xd=0

V
n,−
|t∈]−T0,0[

= 0

(13)
Again, we only need to evaluate (I −P)Vn,− to obtain Vn,−. So, we consider the N − p last components,
of the following linear system:







(I−P)A0
0(V

0,−)(I−P) ∂t ((I−P)Vn,−) +
∑d

j=1 (I−P)A0
j (V

0,−)(I−P)∂j ((I−P)Vn,−)

+(I−P)Fn(V0,−,Vk,−, ∂Vk−1,−, 1≤k≤n) = 0 in ]− T0, T [×Rd
−

(I−P)Vn,−
|xd=0 = (I−P)Vn,+

|xd=0

(I−P)Vn,−
|t∈]−T0,0[

= 0

As it has been done for the case n = 0 (order ε0) and xd < 0, the solution (I−P)Vn,− is finally built up to
the time T defined in the proof of (H0).



4 WELL-POSEDNESS AND PENALIZATION ERROR ESTIMATE 8

Now, we use the other part of the problem (13), i.e. the p first components, to have PVn+1,−.
So Hn is proven and the asymptotic expansion can be built at any order.
The first term of the asymptotic expansion V0,± is the exact solution of the limit problem, when ε tends

to 0. As the penalization is incomplete (i.e., the penalization matrix is not invertible), it is necessary to
solve a hyperbolic problem in the penalized area (xd < 0) to compute (I−P)V0,−.

Observe that, to build this asymptotic expansion up to any order, we do not need to introduce any variable
of the form xd/ε

b (with b 6= 0). This is not the case in the paper [6] (theorem 2.6) where the asymptotic
expansion terms are in Vn(t,x, xd/ε). A boundary layer due to a L2 penalty method has also been exhibited
thanks to a BKW asymptotic expansion in a paper of Carbou [4] for some Brinkmann-type penalization
model for viscous flows. The boundary layer ensures a continuous connection when the conditions at the
boundary of the original domain (here, Rd

+) and of the penalized domain are not compatible, which is not
the case in our approach.

4 Well-posedness and penalization error estimate

The asymptotic expansion built in the previous section may not be the solution of the penalized problem
(5), it is only a formal expression. But, the first terms (up to an order M) will be useful to find the solution
of (5).

4.1 Definitions and notations

We recall the penalized hyperbolic problem considered:
{

A0(vε)∂tvε +
∑d

j=1 Aj(vε)∂jvε +
1
ε
χPvε = f (t,x) ∈]− T0, T [×Rd

vε|t<0 = 0
(14)

In the previous section, we have built an approximate solution va(t,x) =
∑M

n=0 ε
nVn,±(t,x) (with M

large enough) such that
{

A0(va)∂tva +
∑d

j=1 Aj(va)∂jva +
1
ε
χPva = εMRε + f (t,x) ∈]− T0, T [×R

d

va |t<0 = 0
(15)

The proof of Theorem 2.1 uses the L∞ norm of Rε which is bounded independently from ε. This this
the object of the lemma below:

Lemma 4.1. For some M ∈ N∗ and ε0 > 0, the function va =
∑M

n=0 ε
nVn,± is a solution of this approxi-

mate problem
{

A0(va)∂tva +
∑d

j=1 Aj(va)∂jva +
1
ε
χPva = εMRε + f (t,x) ∈]− T0, T [×Rd

va |t<0 = 0

and ‖Rε‖∞ is bounded uniformly in ε ∈]0, ε0].
Proof of the lemma 4.1: As the asymptotic expansion has a finite order, we can consider:

Aj (a(t,x),va(t,x)) =
M∑

n=0

εnAn
j

(
a(t,x),V0,±(t,x), . . . ,Vn,±(t,x)

)

f (a(t,x),va(t,x)) =

M∑

n=0

εnfn
(
a(t,x),V0,±(t,x), . . . ,Vn,±(t,x)

)

The corrective term Rε satisfies:

εMRε = A0(va)∂tva +

d∑

j=1

Aj(va)∂jva +
1

ε
χPva − f

=
d∑

j=0

M∑

n=0

εnAn
j

(
V0,±, . . . ,Vn,±

)
M∑

p=0

εp∂jV
n,± +

M∑

n=0

εn−1χPVn,± −
M∑

n=0

εnfn
(
V0,±, . . . ,Vn,±

)
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According to the definition of the terms Vn,±, the equation above reads:

εMRε =
d∑

j=0

2M∑

n=M+1

εn
M∑

p=n−M

A
p
j

(
V0,±, . . . ,Vp,±

)
∂jV

n−p,± − εMχPVM+1,±

This is a sum of terms in H∞(ΩT ). It follows that there exists a constant c > 0, independent of ε ∈]0, ε0],
such that:

‖Rε‖∞ ≤ cεM

For the rest of the proof of Theorem 2.1, we choose m ≥ m0 = ⌊d
2⌋+ 2 and M > 3 + 1

2m0.

Definition 4.1 (Tangential derivatives). Consider α = (α0, . . . , αd−1) ∈ Nd, the tangential derivatives
operator T α is defined by T α = ∂α0

t ∂α1
x1

. . . ∂
αd−1

xd−1
.

We also define an ad-hoc functional space:

Definition 4.2. We define the space A(ΩT ) which is the set of functions v : ΩT → RN such that:

• v ∈ H1(ΩT ).

• v ∈ H∞
tan(ΩT ), i.e. for all α ∈ Nd, T αv ∈ L2(Ω).

• ∂dv ∈ H∞
tan(ΩT ).

• v ∈ W 1,∞ which means v ∈ L∞, and, for all j ∈ {0, . . . , d}, ∂jv ∈ L∞

Now, the objective is to find w ∈ A(ΩT ) such as vε = va + εw is a solution of the penalised problem
(5), i.e.:
{

A0(va + εw)∂t(va + εw) +
∑d

j=1 Aj(va + εw)∂j(va + εw) + 1
ε
χP(va + εw) = f (t,x) ∈]− T0, T [×Rd

va |t<0 + εw|t<0 = 0

(16)
Taking the difference between (16) and (15):
{ ∑d

j=0 (Aj(va + εw)∂j(va + εw)−Aj(va)∂jva) +
1
ε
χPεw = −εMRε (t,x) ∈]− T0, T [×Rd

w|t<0 = 0

We define the linear map B(U,V, εw) : W 7→ B(U,V, εw)W such that:

d∑

j=0

(Aj(va + εw)−Aj(va)) ∂jva = −εB(va,∇va, εw)w

This operator depends on (a,va,∇va,w) but it is of class C∞ for all its variables. In order to avoid too
long equations, we will not write the variables va,∇va in the operator B(va,∇va, εw), which now becomes,
B(εw).

Hence the hyperbolic problem for w reads:
{

A0(va + εw)∂tw +
∑d

j=1 Aj(va + εw)∂jw −B(εw)w + 1
ε
χPw = −εM−1Rε (t,x) ∈]− T0, T [×Rd

w|t<0 = 0

We now consider a Picard’s iterative scheme:

w0 = 0

∀k ∈ N,
{

A0(va+εwk)∂tw
k+1+

∑d
j=1 Aj(va+εwk)∂jw

k+1−B(εwk)wk+1+
χ

ε
Pwk+1=−εM−1Rε in ]−T0, T [×Rd

wk+1
|t<0=0

This sequence is expected to converge towards w in L2(ΩT ) and then in H∞(Ω+
T ), in H∞(Ω−

T ) and in
H1(ΩT ).
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4.2 Proof of the convergence of the sequence (wk) in L
2

4.2.1 Weighted norms:

To prove that the sequence (wk) converges in L2(ΩT ), we will use energy estimates. But the L2 norm is not
really practical to obtain estimates which are bounded when ε goes to 0. That is why the weighted norms
presented below are used in this paper:

Definition 4.3 (Weighted norms).

∀Φ ∈ L2(ΩT ), ‖Φ‖0,λ = ‖e−λtΦ‖L2(ΩT )

∀Φ ∈ Hm
tan(ΩT ), ‖Φ‖m,λ =

∑

|α|≤m

λm−|α|‖T αΦ‖0,λ

∀Φ ∈ Hm
tan(ΩT ), ‖Φ‖m,λ,ε =

∑

|α|≤m

λm−|α|‖√ε
|α|T αΦ‖0,λ

Let us note that:

1. ‖.‖0,λ is equivalent to the norm ‖.‖L2(ΩT ) (for a fixed value of λ).

2. ‖.‖m,λ and ‖.‖m,λ,ε are equivalent to the norm ‖.‖Hm
tan(ΩT ) =

∑

|α|≤m ‖T α.‖L2(ΩT ) (for fixed values of

λ and ε).

3. We also have (Φ ∈ Hm
tan(ΩT )):

λ‖Φ‖m−1,λ,ε ≤ ‖Φ‖m,λ,ε√
ε‖TΦ‖m−1,λ,ε ≤ ‖Φ‖m,λ,ε

It is easy to prove that there exist c > 0 (depending on m, but not on λ, ε) and a function ζm(λ)
(independent of ε) such that

‖Rε‖m,λ,ε ≤ ζm(λ)

‖Rε‖∞ ≤ c

Since Rε|t<0 = 0, observe that ζm(λ) = O(λm), when λ tends to the infinity.

4.2.2 Energy estimates for wk+1:

The goal of this subsection is to provide energy estimates for the following hyperbolic problem of unknown
w̃: {

A0(va + εb)∂tw̃ +
∑d

j=1 Aj(va + εb)∂jw̃ −B(εb)w̃ + 1
ε
χPw̃ = g (t,x) ∈ ΩT

w̃|t<0 = 0
(17)

In this subsection, b represents wk (for some k ∈ N) and w̃ stands for wk+1. In our estimates, the constants
must not depend on b, w̃ (i.e. wk, wk+1) to ensure that we can prove by induction the boundedness of
the sequence (wk)k∈N (for ‖.‖m,λ,ε and ‖.‖∞ + ‖∇.‖∞). g represents εM−1Rε, so we assume ‖g‖m,λ,ε ≤
ζm(λ)εM−1 and ‖g‖∞ ≤ cεM−1.

Proposition 4.1. We assume that:

• b ∈ A
(
]− T0, T [×Rd

)
.

• ‖b‖∞ + ‖∇b‖∞ ≤ R.

There exists ε1(R) ∈]0, 1[ such that the hyperbolic problem (17) admits a solution w̃ ∈ A(] − T0, T [×Rd)
for all ε ≤ ε1(R). Besides, there exists C(R) (which does not depends on g) and λ0(R) > 0 such that the
following energy estimates holds:

∀λ > λ0(R),
√
λ‖w̃‖0,λ +

1√
ε
‖χPw̃‖0,λ ≤ C(R)√

λ
‖g‖0,λ
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Proof of the proposition 4.1: We use the following notations:

va−(t, x1, . . . , xd) = va(t, x1, . . . ,−xd) and va+(t, x1, . . . , xd) = va(t, x1, . . . ,+xd)

And we consider this boundary value problem:







(
A0(ua− + εb−) 0

0 A0(ua− + εb−)

)

∂t

(
w̃−

w̃+

)

+

d−1∑

j=1

(
Aj(ua− + εb−) 0

0 Aj(ua− + εb−)

)

∂j

(
w̃−

w̃+

)

+

(
−Ad(ua− + εb−) 0

0 Ad(ua− + εb−)

)

︸ ︷︷ ︸

=Ad

∂d

(
w̃−

w̃+

)

−
(
B(εb−)w̃− 0

0 B(εb+)w̃+

)(
w̃−

w̃+

)

+ 1
ε

(
w̃−

0

)

=

(
g−

g+

)

w̃−|t<0 = 0

w̃+|t<0 = 0

w̃−|xd=0 − w̃+|xd=0 = 0

Observe that the hyperbolic problem above is symmetric and has maximally dissipative boundary conditions:

• At xd = 0, we have Ad(va− + εb−)|xd=0 = Ad(va+ + εb+)|xd=0 and w̃− = w̃+.

So, 〈Ad

(
w̃−

w̃+

)

,

(
w̃−

w̃+

)

〉R2N = 0.

• Ad(va+ + εb+) is symmetric and invertible, for ε sufficiently small (ε < ε1(R)). So the eigenspace
associated to the negative eigenvalues of Ad is of dimension n.

The results from Rauch [15], Guès [7], Benzoni-Serre [2] or Chazarain-Piriou [5] (page 475, theorem 6.10)
let us claim the existence and the uniqueness of (w̃−, w̃+) ∈ H∞(Ω+

T )
2. According to Sobolev inclusions, we

have also (w̃−, w̃+) ∈ W 1,∞(Ω+
T )

2.
The solution of (17) can be written:

w̃(t, x1, . . . , xd) =

{
w̃−(t, x1, . . . ,−xd) if xd < 0
w̃+(t, x1, . . . , xd) if xd ≥ 0

Furthermore, w̃ and its tangential derivatives T αw̃ are in L2(ΩT ).
Computing ∂dw̃ thanks to the equation (17) let us assert that w̃ ∈ H1(ΩT ) ∩ H∞

tan(ΩT ). Finally,
w̃ ∈ A(ΩT ).

Energy estimates for w̃: We define w̃λ(t,x) = exp (−λt) w̃(t,x), such that ‖w̃λ‖L2(ΩT ) = ‖w̃‖0,λ.
As A0(va + εb) is uniformly positive definite (〈A0(εb)w̃λ, w̃λ〉L2(ΩT ) ≥ e0‖w̃λ‖L2(ΩT )):

{
λA0(εb)w̃λ +

∑d
j=0 Aj(εb)∂jw̃λ −B(εb)w̃λ + 1

ε
χPw̃λ = gλ (t,x) ∈]− T0, T [×Rd

w̃λ|t<0 = 0
(18)

The L2(ΩT ) inner product of (18) with w̃λ reads:

λe0‖w̃λ‖2L2(ΩT )+

d∑

j=0

〈Aj(εb)∂jw̃λ, w̃λ〉L2(ΩT )−‖B(εb)‖∞‖w̃λ‖2L2(ΩT )+
1

ε
‖χPw̃λ‖2L2(ΩT ) ≤ ‖gλ‖L2(ΩT )‖w̃λ‖L2(ΩT )

(19)
Besides, we have, for j ∈ {1, . . . , d}:

〈Aj(εb)∂jw̃λ, w̃λ〉L2(ΩT ) = −1

2
〈∂j (Aj(εb)) w̃λ, w̃λ〉L2(ΩT )

≥ −1

2
‖∂j (Aj(εb)) ‖∞‖w̃λ‖2L2(ΩT )
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For the time derivative term:

〈A0(εb)∂0w̃λ, w̃λ〉L2(ΩT )=−1

2
〈∂0 (A0(εb)) w̃λ, w̃λ〉L2(ΩT )+

1

2

∫

Rd

w̃⊤
λ|t=TA0(εb)t=T w̃λ|t=Tdx

︸ ︷︷ ︸

≥0

− 1

2

∫

Rd

w̃⊤
λ|t=−T0

A0(εb)t=T0
w̃λ|t=−T0

dx

︸ ︷︷ ︸

=0 as w̃t<0=0

≥ −1

2
‖∂j (A0(εb)) ‖∞‖w̃λ‖2L2(ΩT )

λe0‖w̃λ‖2L2(ΩT )+
1

ε
‖χPw̃λ‖2L2(ΩT )≤




1

2

d∑

j=0

‖∂j (Aj(εb)) ‖∞+‖B(εb)‖∞



‖w̃λ‖2L2(ΩT )+‖g‖L2(ΩT )‖w̃λ‖L2(ΩT )

(20)
Replacing, in the preceding inequality, the term 1

ε
‖χPw̃λ‖2L2(ΩT ) by 0 leads to:

∀λ > 0, λe0‖w̃λ‖L2(ΩT ) ≤




1

2

d∑

j=0

‖∂j (Aj(εb)) ‖∞ + ‖B(εb)‖∞



 ‖w̃λ‖L2(ΩT ) + ‖gλ‖L2(ΩT ) (21)

Then assuming that λ > λ0(R) = 2
e0

(
1
2

∑d
j=0 ‖∂j (Aj(εb)) ‖∞ + ‖B(εb)‖∞

)

λ‖w̃λ‖L2(ΩT ) ≤
2

e0λ0(R)
‖g‖L2(ΩT ) (22)

About the estimate on the term ‖χPw̃λ‖L2(ΩT ), the same process as above is applied:

1√
ε
‖χPw̃λ‖L2(ΩT ) ≤








1

2

d∑

j=0

‖∂j (Aj(εb)) ‖∞ + ‖B(εb)‖∞



 ‖w̃λ‖2L2(ΩT ) + ‖g‖L2(ΩT )‖w̃λ‖L2(ΩT )





1

2

≤ C1(R)√
λ

‖gλ‖L2(ΩT ) using λ‖w̃λ‖L2(ΩT ) ≤
2

e0
‖g‖L2(ΩT ) (λ > λ0(R))

Finally, defining C(R) = 2
e0

+ C1(R), we obtain the energy estimate:

√
λ‖w̃‖0,λ +

1√
ε
‖χPw̃‖0,λ ≤ C(R)√

λ
‖g‖0,λ

4.2.3 Estimates for the tangential derivatives of wk+1:

The goal of this subsection is to extend the estimate of the proposition 4.1 to the tangential derivatives of
wn+1.

Proposition 4.2. We choose R > 0, b ∈ A(] − T0, T [×R
d) and w̃ ∈ A(] − T0, T [×R

d) the solution of the
problem (17). The following properties are assumed:

• ‖b‖∞ + ‖∇b‖∞ ≤ R

• 0 < ε < ε1(R)

• λ > λ0(R) > 1
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There exists Q(R) (which does not depends on w̃,b, λ, ε) such that w̃ satisfies the estimate:

√
λ‖w̃‖m,λ,ε +

1√
ε
‖χPw̃‖m,λ,ε ≤

Q(R)√
λ

(‖b‖m,λ,ε (‖T w̃‖∞ + ‖χPw̃‖∞ + ‖g‖∞) + ‖g‖m,λ,ε) (23)

Proof of the proposition 4.2: Let us note α ∈ N
d such that |α| ≤ m. In this proof, we consider that cst(R)

is a constant which does not depends on w̃,b, λ, ε.
For two operators S and Q, the commutation operator [S,Q] is defined by the formula:

[S,Q]Φ = S (Q(Φ))−Q (S(Φ))

After applying the tangential derivative operator
√
ε
|α|T α to (17), the new hyperbolic problem reads:







∑d
j=0 Aj(εb)∂j

(√
ε
|α|T αw̃

)

−B(εb)
(√

ε
|α|T αw̃

)

+ 1
ε
χP
(√

ε
|α|T αw̃

)

=

Ad(εb)



−
d−1∑

j=0

[

A−1
d (εb)Aj(εb)∂j ,

√
ε
|α|T α

]

w̃ − 1

ε

[

χA−1
d (εb)P,

√
ε
|α|T α

]

w̃ +
√
εT α

(
A−1

d (εb)g
)





√
ε
|α|T αw̃]−T0,0[ = 0

(24)

We will apply the proposition 4.1 to the hyperbolic problem (24), with the unknown
√
ε
|α|T αw̃, and so,

we need to estimate the ‖.‖0,λ norm of the right hand side. For the terms composed of a product, the lemma
presented below gives a useful inequality (for a proof of this lemma, see [7]):

Lemma 4.2 (Gagliardo-Niremberg-Moser inequality). Let us consider Φ1, . . . ,Φp ∈ Hm
tan(ΩT ) ∩ L∞(ΩT ),

α.,1, . . . , α.,p ∈ Nd (α.,l = (α0,l, . . . , αd,l)
t) and k ∈ N, such that

∑p
l=1

∑d
i=0 αi,l ≤ k ≤ m. So, there exists

r > 0, independent of ε, λ,Φ1, . . . ,Φp such that:

λm−k
√
ε
∑p

l=1

∑
d
i=0

αi,l‖T α.,1Φ1 . . .T α.,pΦp‖0,λ ≤ r

p
∑

l=1




∏

q 6=l

‖Φq‖∞



 ‖Φl‖m,λ,ε

Let us begin with the second term in the right hand side of (24), which is the more delicate to estimate
because of the ε−1.

It is necessary to provide an estimate for
[

χA−1
d P,

√
ε
|α|T α

]

w̃. First, this term is expanded by this way

(Lβ.,γ.,δ are matrices):

[

χA−1
d P,

√
ε
|α|T α

]

w̃ = χ
∑

∑
βp +

∑
γq

+δ ≤ α

Lβ.,γ.,δ(εb)T β1va . . . T βkvaT γ1(εb) . . .T γl(εb)T δPw̃ (25)
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where |δ| < |α|. Considering the ‖.‖0,λ norm of
[

χA−1
d P,

√
ε
|α|T α

]

w̃ gives the estimate below:

λm−|α|

ε

∥
∥
∥

[

χA−1
d P,

√
ε
|α|T α

]

w̃

∥
∥
∥
0,λ

=
λm−|α|

ε

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

χ
√
ε
|α| ∑

∑
βp +

∑
γq

+δ ≤ α

Lβ.,γ.,δ(εb)T β1va . . .T βkvaT γ1(εb) . . . T γl(εb)T δPw̃

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
0,λ

≤ λm−|α|

ε

(
∑

(γ1,... γl)=0

cst(R)
∥
∥
∥
√
ε
|α|

χT β1va . . . T βkvaT δPw̃

∥
∥
∥
0,λ

+
∑

(γ1,... γl) 6=0

cst(R)
∥
∥
∥
√
ε
|α|

χT β1va . . . T βkvaT γ1(εb) . . .T γl(εb)T δPw̃

∥
∥
∥
0,λ

)

≤
(

∑

(γ1,... γl)=0

cst(R)
√
ε
|α|−|δ|

λ|δ|−|α|λm−|δ|‖√ε
|δ|
χT δPw̃‖0,λ

+
∑

(γ1,... γl) 6=0

εcst(R) (‖b‖m,λ,ε‖χPw̃‖∞ + ‖χPw̃‖m,λ,ε)

)

(Gagliardo-Niremberg-Moser estimates)

Finally, we obtain:

λm−|α|

ε

∥
∥
∥

[

χA−1
d P,

√
ε
|α|T α

]

w̃

∥
∥
∥
0,λ

≤ cst(R)

(
1√
ελ

‖χPw̃‖m,λ,ε + (‖b‖m,λ,ε‖χPw̃‖∞ + ‖χPw̃‖m,λ,ε)

)

Let us note that the role of the coefficients
√
ε
|α|

in the definition of the norm ‖.‖m,λ,ε appears in this
estimate: indeed, these coefficients avoid the presence of a ε−1, replacing it by a 1/

√
ε.

For the first term of the right hand side of (24), the treatment is more classical because it only has
derivative orders less or equal to |α|. So, using the Gagliardo-Niremberg-Moser inequality (lemma 4.2):

∀j ∈ {0, . . . , d− 1}, λm−|α|
∥
∥
∥

[

A−1
d (εb)Aj(εb)∂j ,

√
ε
|α|T α

]

w̃

∥
∥
∥
0,λ

≤ cst(R) (‖εb‖m,λ,ε‖T w̃‖∞ + ‖w̃‖m,λ,ε)

≤ cst(R) (‖εb‖m,λ,ε‖T w̃‖∞ + ‖w̃‖m,λ,ε)

Applying the Gagliardo-Niremberg-Moser estimate to the last term of the right hand side of (24), there
exists cst(R) which does not depends on b,g, λ, ε such that:

‖√ε
|α|T α

(
A−1

d (εb)g
)
‖0,λ ≤ cst(R) (‖b‖m,λ,ε‖g‖∞ + ‖g‖m,λ,ε)

Finally, the combination of the three estimates leads to the result of the proposition 4.2.

4.2.4 L∞ estimates

In order to obtain the induction property, it is necessary to prove that ‖w̃‖∞ + ‖∇w̃‖∞ ≤ R, for some λ,
and some ε sufficiently small.

Lemma 4.3. Remember that m0 = ⌊d
2⌋ + 2. Assume that ‖g‖m,λ,ε ≤ ζm(λ)εM−1 (with ζm(λ) > 1),

‖g‖∞ ≤ cεM−1, ‖b‖m,λ,ε ≤ εM−1 and ‖b‖∞ + ‖∇b‖∞ ≤ 1. There exists λ0(1), ε0(λ) (which does not
depend on b, w̃) such that, for λ ≥ λ0(1) and 0 < ε ≤ ε0(λ) the following estimates holds:

‖w̃‖∞ + ‖∇w̃‖∞ ≤ 1
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‖w̃‖∞ + ‖T w̃‖∞ ≤ ζm(λ)εM− 1
2
m0−

5
2

‖w̃‖m,λ,ε ≤ ζm(λ)εM−1

‖√ε∂dw̃‖m−1,λ,ε ≤ D(λ)εM− 3
2

Where D(λ) is a positive function which does not depend on b, w̃, ε.

Proof of the lemma 4.3: To prove this lemma let us consider the equality:

∂dw̃ = A−1
d (εb)



−
d1∑

j=0

Aj(εb)∂jw̃ +B(εb)w̃ − χ

ε
Pw̃ + g



 (26)

For sake of simplicity, let us consider again, for each inequality, that cst is a constant real value, i.e. which
does not depends on ε, λ,b, w̃. Thanks to the Gagliardo-Niremberg-Moser estimate, we obtain:

‖√ε∂dw̃‖m−1,λ,ε ≤ cst
(√

ε (‖T w̃‖m−1,λ,ε+‖w̃‖m−1,λ,ε+‖b‖m−1,λ,ε(‖T w̃‖∞+‖w̃‖∞+‖g‖∞)+‖g‖m−1,λ,ε)

+
1√
ε
(‖χPw̃‖m−1,λ,ε+‖b‖m−1,λ,ε‖χPw̃‖∞)

)

Recall that 0 < ε ≤ ε1(1) and λ ≥ λ0(1). Comparing the norms ‖.‖m−1,λ,ε and ‖.‖m,λ,ε:

‖√ε∂dw̃‖m−1,λ,ε ≤ cst

((

1 +

√
ε

λ

)

‖w̃‖m,λ,ε +

√
ε

λ
‖b‖m,λ,ε(‖T w̃‖∞ + ‖w̃‖∞ + ‖g‖∞) +

√
ǫ

λ
‖g‖m,λ,ε

+
1

λ
√
ε
(‖χPw̃‖m,λ,ε + ‖b‖m,λ,ε‖χPw̃‖∞)

)

Adding the term ‖w̃‖m,λ,ε leads to:

‖w̃‖m,λ,ε + ‖√ε∂dw̃‖m−1,λ,ε ≤ cst

(

‖w̃‖m,λ,ε+
1

λ
√
ε
‖χPw̃‖m,λ,ε+

√
ε

λ
‖b‖m,λ,ε(‖T w̃‖∞+‖w̃‖∞+‖g‖∞)

+
1

λ
√
ε
‖b‖m,λ,ε‖w̃‖∞+ζm(λ)

εM− 1
2

λ

)

‖w̃‖m,λ,ε + ‖√ε∂dw̃‖m−1,λ,ε ≤ cst

(

1√
λ

(√
λ‖w̃‖m,λ,ε+

1√
ε
‖χPw̃‖m,λ,ε

)

+
1

λ
√
ε
‖b‖m,λ,ε (‖T w̃‖∞+‖w̃‖∞+‖g‖∞) + ζm(λ)

εM− 1
2

λ

)

According to the proposition 4.2,

‖w̃‖m,λ,ε + ‖√ε∂dw̃‖m−1,λ,ε ≤ cst

(

1

λ




 ‖b‖m,λ,ε
︸ ︷︷ ︸

≤ζm(λ)εM−1




‖T w̃‖∞ + ‖w̃‖∞ + ‖g‖∞

︸ ︷︷ ︸

≤cεM−1




+ εM−1






+
1

λ
√
ε
‖b‖m,λ,ε (‖T w̃‖∞ + ‖w̃‖∞ + ‖g‖∞) + ζm(λ)

εM−1

λ

)

Remembering that limλ→∞ ζm(λ) = +∞ and that ε ≤ 1, we define ξ (independent of λ, ε), satisfying:

ξ ≥ 1 + ζm(λ)
λ

(1 + 2c)

ζm(λ)
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‖w̃‖m,λ,ε + ‖√ε∂dw̃‖m−1,λ,ε ≤
cst

λ
εM− 3

2

(
‖T w̃‖∞ + ‖w̃‖∞ + ξ ζm(λ)

√
ε
)

(27)

Thanks to the Cauchy-Schwartz and Parseval equality, we can prove the lemma below (see [7] for more
details):

Lemma 4.4. Let us define d ∈ N∗,m ≥ m0 = ⌊d
2⌋+ 2, 0 < ε < 1 and λ > 0. There exists a number κ ≥ 0

(which only depends on d,m0, T0 and T ) such that for all Φ ∈ Hm
tan(ΩT ) ∩ L∞(ΩT ):

‖Φ‖∞ ≤ κ
eλT

λm−m0

√
ε
m0+1

(
‖Φ‖m,λ,ε + ‖√ε∂dΦ‖m−1,λ,ε

)

Applying the lemma 4.4 to w̃, leads to:

‖w̃‖∞ ≤ cst
eλT

λm−m0

√
ε
m0+1

(
‖w̃‖m,λ,ε + ‖√ε∂dw̃‖m−1,λ,ε

)

As
√
ε‖T w̃‖m−1,λ,ε ≤ ‖w̃‖m,λ,ε and

√
ε‖√ε∂dw̃‖m−2,λ,ε ≤ ‖√ε∂dw̃‖m−1,λ,ε.

‖T w̃‖∞ ≤ cst
eλT

λm−1−m0

√
ε
m0+1

(
‖T w̃‖m−1,λ,ε + ‖√ε∂dT w̃‖m−2,λ,ε

)

≤ cst
eλT

λm−1−m0

√
ε
m0+2

(
‖w̃‖m,λ,ε + ‖√ε∂dw̃‖m−1,λ,ε

)

So, as λ ≥ λ0(1) and 0 < ε ≤ ε1(1), we obtain:

‖w̃‖∞ + ‖T w̃‖∞ ≤ cst
eλT

λm−1−m0

√
ε
m0+2

(
‖w̃‖m,λ,ε + ‖√ε∂dw̃‖m−1,λ,ε

)

Thanks to the inequality (27), we have:

‖w̃‖∞ + ‖T w̃‖∞ ≤ cst
eλT εM− 3

2

λm−m0
√
ε
m0+2

(
‖T w̃‖∞ + ‖w̃‖∞ + ξ ζm(λ)

√
ε
)

Setting λ and considering ε2(λ) ∈]0, ε1(1)] such that cst eλT

λm−m0

√

ε2(λ) ≤ 1
2 leads to:

‖w̃‖∞ + ‖T w̃‖∞ ≤ ζm(λ)εM− 1
2
m0−

5
2

As M − 1
2m0 − 5

2 > 0, there exists ε3(λ) ∈]0, ε2(λ)] such that for all ε ≤ ε3(λ), ‖w̃‖∞ + ‖T w̃‖∞ ≤ 1
2 . Using

the equality (26) with M > 1
2m0 +3, we can assert that there exists ε0(λ) ∈]0, ε3(λ)] for ε sufficiently small,

‖∂dw̃‖∞ ≤ 1
2 .

Thus, for λ ≥ λ0 and ε ≤ ε0(λ): ‖w̃‖m,λ,ε ≤ ζm(λ)εM−1.

4.3 End of the proof of Theorem 2.1

The first term w0 = 0 satisfies the initial assumptions (w0 ∈ A(]−T0, T [×Rd)) and the estimates necessary
to perform the induction. Besides, consider a fixed value of λ ≥ λ0(1) (i.e. R = 1) and ε ∈]0, ε0(λ)], if
‖wk‖m,λ,ε ≤ ζm(λ)εM−1 (for any m ≥ m0), and ‖wk‖∞ + ‖∇wk‖∞ ≤ 1, the previous results let us assert
that:

‖wk+1‖∞ + ‖∇wk+1‖∞ ≤ 1

‖wk+1‖m,λ,ε ≤ ζm(λ)εM−1

‖√ε∂dw
k+1‖m−1,λ,ε ≤ D(λ)εM−1

We conclude, by induction, that the sequence (wk) is bounded for the norm ‖.‖m,λ,ε and thus for the L2

norm.
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In order to obtain the convergence of (wk), we will prove that this is a Cauchy sequence. Let us remind
the iterative scheme:

d∑

j=0

Aj(εw
k)∂jw

k+1 −B(εwk)wk+1 +
χ

ε
Pwk+1 = −εM−1Rε

Let us take the difference between the two systems for wk+1 (see above) and for wk+2 :





d∑

j=0

Aj(εw
k)∂j −B(εwk)+

χ

ε
P




(
wk+1−wk+2

)
=−

d∑

j=0

(
Aj(εw

k+1)−Aj(εw
k)
)
∂jw

k+2+
(
B(εwk+1)−B(εwk)

)
wk+2

As λ ≥ λ0(1), the energy estimate of the proposition 4.1 gives, for ε small enough (cst is a constant):

‖wk+2 −wk+1‖0,λ ≤ cst

λ

∥
∥
∥
∥
∥
∥

d∑

j=0

(
Aj(εw

k+1)−Aj(εw
k)
)
∂jw

k+2−
(
B(εwk+1)−B(εwk)

)
wk+2

∥
∥
∥
∥
∥
∥
0,λ

As the matrices Aj and B have continuous coefficients regarding the variables (y,v) and as ‖wk‖∞ ≤ 1,
‖wk+1‖∞ ≤ 1, ‖wk+2‖∞ + ‖∇wk+2‖∞ ≤ 1, we can prove that, for ε sufficiently small:

‖wk+2 −wk+1‖0,λ ≤ 1

2
‖wk+1 −wk‖0,λ

So (wk) is a Cauchy sequence for the norm ‖.‖0,λ (thus also for ‖.‖L2(ΩT )). Hence, the sequence (wk)
converges towards w ∈ L2(ΩT ).

To finish the proof of Theorem 2.1, it remains to claim that w ∈ A(ΩT ) and that w is a solution of the
hyperbolic problem 4.1.

First, notice that, according to the distributional sense, T wk → T w and ∂dw
k → ∂dw.

As (wk) is bounded for the norm ‖.‖m,λ,ε, this sequence has a subsequence which converges weakly in
Hm

tan(ΩT ) and in H1(ΩT ) (because ‖∂dwk‖0,λ is also bounded). So w ∈ Hm
tan(ΩT ) ∩H1(ΩT ).

Thanks to the Lebesgue’s dominated convergence theorem, vε = va + εw is a solution of the penalized
hyperbolic problem (5). Besides L2 energy estimates let us ensure the uniqueness of vε.

By induction on p ∈ N, we can prove that, for each p ≤ m, ∂p
dvε| xd>0 ∈ Hm−p

tan (] − T0, T [×Rd
+) and

∂p
dvε| xd<0 ∈ Hm−p

tan (]− T0, T [×Rd
−).

• The case p = 0 has already been proven.

• Assume that p ≤ m and that for all k ∈ {0, . . . , p − 1} , ∂k
dvε is in Hm−k

tan (] − T0, T [×Rd
+) and in

Hm−k
tan (]− T0, T [×Rd

−). We have

∂p
dvε = ∂p−1

d



A−1
d (vε)



−
d−1∑

j=0

Aj(vε)∂jvε −
χ

ε
Pvε + f(vε)









So, according to the induction hypothesis and the regularity of the coefficients, we can prove that, for
any m ∈ N, ∂p

dvε is in Hm−p
tan (]− T0, T [×Rd

+) and in Hm−p
tan (]− T0, T [×Rd

−).

Finally vε is in H∞(]− T0, T [×Rd
+) and in H∞(]− T0, T [×Rd

−). So vε ∈ A(ΩT ).
The error estimate is simply obtained considering (va + εw)|xd>0 − v = εV1,+ + · · ·+ εMVM,+ + εw in

]− T0, T [×Rd
+.

This finishes the proof of Theorem 2.1.
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5 A first example

This section contains a simple application of the main result for a one-dimensional and linear hyperbolic
problem. The fact that the system is linear enables us to compare with others penalty methods such as
[6, 14] obtained for this case.

For this simple example, Ā is a constant symmetric matrix of size N ×N and C is a constant matrix of
size p×N whose the rank is p ≤ N .







∂tu(t, x) + Ā∂xu(t, x) = f̄(t, x) (t, x) ∈]− T0, T [×R
1
+

Cu(t, 0) = 0 t ∈]− T0, T [
u|t<0 = 0

Assume that all hypothesis of the section 2 are satisfied. Besides, the submatrix Cp×p composed of the p
first columns of C is supposed to be invertible.

The first step is the change of unknown. For the change of unknown of the lemma 2.1, we choose:

v =













Cp×p






u1

...
up






up+1

...
uN













In this case, the change of unknown H and its gradient are the following linear maps:

H : v 7→













C−1
p×p






v1
...
vp






vp+1

...
vN













and ∇vH(v) =

(
C−1

p×p 0

0 IN−p

)

where IN−p is the identity matrix of RN−p.
Finally the penalty matrix is

M =

(
C⊤

p×p 0

0 IN−p

)(
Ip 0

0 0

)(
Cp×p 0

0 IN−p

)

=

(
C⊤

p×pCp×p 0

0 0

)

and the penalized problem writes, in the original unknowns:

{
∂tuε + Ā∂xuε +

1
ε
Muε = f̄ in ]− T0, T [×R

uε |t<0 = 0

In the results of Rauch [14], the generation of the penalty matrix needs to find a positive definite matrix
E such that kerC is the subspace of the eigenvectors associated to the negative or null eigenvalues of EĀ.
In this case, the penalization matrix is Ψ⊤Ψ where Ψ = OE

1
2 and O represents any orthogonal matrix.

Theorem 2.7 of the paper of Fornet and Guès [6] proposes a penalization matrix of the form
(
Ψ−1

)⊤
PΨ−1

where P is the projector of RN onto Ψ−1 kerC. Finally, for the use of this two penalty methods (Rauch and

Fornet-Guès), the more difficult point is to find a suited matrix E and to compute E
1
2 .

Our method is more direct, even in the linear case, and has been extended to the quasilinear case. The
main difficulty is the change of unknown, which is provided by the proof of the lemma 2.1. Moreover, for
this example, the expression of the penalty matrix is simple.
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6 An example of application in plasma physics

This section shows quickly how the penalty method presented in this paper can be applied for the numerical
simulation of the edge plasma transport, for more details see [1]. In the toy model presented below, the first
equation stands for the mass conservation and the second one for the momentum conservation. N represents
the plasma density, Γ the plasma momentum and M = Γ/N the Mach number. The space variable x stands
for the curvilinear coordinate along a magnetic field line.







∂tN + ∂xΓ = SN

∂tΓ + ∂x

(
Γ2

N
+N

)

= SΓ

(
M0 −1

)
(

N(t, 0)
Γ(t, 0)

)

= 0

Where SN and SΓ are source terms of the hyperbolic problem.
Notice that the system is very similar to shallow water equations. The change of variable used to

reformulate the system is:

ũ(t, x) = ln (N(t, x))

ṽ(t, x) =
Γ(t, x)

N(t, x)
−M0

Hence, only ṽ is affected by the boundary condition.
Finally, the penalization obtained thanks to the results presented above is:







∂tN + ∂xΓ = SN

∂tΓ + ∂x

(
Γ2

N
+N

)

+ χ
ε

(
Γ

M0
−N

)

= SΓ

The main advantage of this method is the absence of spurious boundary layer: the error due to the
penalization decreases with an optimal rate when the penalization parameter ε tends to 0. The main
drawback is due to the fact that the penalization is incomplete. Thus, at the boundary of the computational
domain, we need to provide transparent boundary condition, at least for the non-penalized field ũ, which
is not easy. Besides, non compatible initial boundary condition may generates artefact, see for intance, the
numerical results of [1].

7 Conclusion

This paper provides a penalty method to take into account of the boundary conditions of a non characteristic
quasilinear hyperbolic problem which is in fact quite natural: after a change of unknown, one penalizes only
the fields concerned by the boundary condition. An interesting feature of this method, is that the error
due to the penalization has an optimal rate of convergence, i.e. ‖u − uε‖Hm = O(ε). To focus our work
on the penalization, we consider regular functions and solution null in the past to avoid initial condition
compatibility issues.

This method has already been tested numerically in a one-dimensional non linear hyperbolic problem.
For further works, it might be interesting to extend this results to characteristic problems, such as in [6].
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Appendix: Some recalls about notations

Object Definition or explanations
∇u,∇v Partial derivatives relative to the vector u or v (respectively).
∇ Gradient relative to the variables t,x.
a A function representing the dependence on (t,x) of the coefficients of the hyper-

bolic problem.

Aj(εb)
Aj(εb) = Aj(va + εb) = Aj(., .,va + εb)

= (∇vH(., .,va+εb))−1
S (., .,H(., .,va+εb)) Ãj(., .,va+εb)∇vH(., .,va+εb)

A(ΩT ) Functional space, see definition 4.2.
cst, cst(R) Constant which does not depend en w̃,b, ε, λ.
Hm

tan(ΩT ) Hm
tan(ΩT ) =

{
Φ ∈ L2(ΩT ), ∀α ∈ Nd, |α| ≤ m =⇒ T αΦ ∈ L2(ΩT )

}

Hm(ΩT ) Hm(ΩT ) =
{

Φ ∈ L2(ΩT ), ∀β ∈ N, ∀α ∈ Nd, β + |α| ≤ m =⇒ ∂β
d T αΦ ∈ L2(ΩT )

}

L2(ΩT ) L2(ΩT ) = {Φ : ΩT → RN ,
∫

ΩT
〈Φ(t,x),Φ(t,x)〉dtdx}

MN (R) The set of square matrix of size N ×N .
P Projection matrix of rank p, Pvxd=0 = 0.
t Time variable.
T Tangential derivatives.
u Solution of the initial hyperbolic problem.
uε Solution of the penalized hyperbolic problem.
U,V,W Any element of RN , eventually in a chosen neighbourhood of 0.
v Solution of the hyperbolic problem with the new unknown (to have the boundary

condition Pv = 0).

va First terms of the asymptotic expansion: va =
∑M

n=0 V
n±

vε Solution of the penalized hyperbolic problem with the new unknown.
w w = 1

ε
(v − va)

W 1,∞(ΩT ) W 1,∞(ΩT ) = {Φ ∈ L∞(ΩT ),∇Φ ∈ L∞(ΩT )}
x,x′ x = (x1, . . . , xd) = (x′, xd) ∈ Rd space variable.

y Any element of RN ′

.

ε Penalization parameter (normally next to 0).
Θ(., ., . . . , .,u)=0 Boundary condition for the original hyperbolic boundary value problem.
ΩT ΩT =]− T0, T [×Rd

Ω+
T Ω+

T =]− T0, T [×Rd
+

Ω−
T Ω−

T =]− T0, T [×Rd
−

⊤ Matrix transposition.
∂0 = ∂t Time derivative.
∂j ∂j = ∂xj

= ∂
∂xj

Rd
+ {(x1, . . . , xd) ∈ Rd, xd > 0}

R
d
− {(x1, . . . , xd) ∈ R

d, xd < 0}
〈., .〉 Euclidean scalar product on RN .
〈., .〉R2N Euclidean scalar product on R2N .
‖.‖ Euclidean norm on RN .
〈., .〉L2(ΩT ) Usual inner product on L2(ΩT ).


