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Three-dimensional organic/inorganic perovskiteshave recently been suggested as a novel class of 

materials for dye-sensitized solar cells (DSSC) with improved photo-conversion efficiency.These 

compounds are modeledin this work within the density functional theory (DFT). The band-gaps 

aredominated by a giant spin-orbit coupling (SOC) in the conduction-band, which has been 

largely overlooked so far. Direct and isotropic optical transitions at room temperature are 
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associated to a spin-orbit split-off band related to a triply degenerated conduction-band of the 

cubic lattice without SOC. It is shown that, due to the strong SOC, the electronic states involved 

in the optical absorption are only slightly perturbed by local distortions of the lattice. In addition, 

band offset calculations confirm that CH3NH3PbX3/TiO2 (X=Br, I) is a reference material for 

driving electrons toward the electrode in dye-sensitized solar cells. Two dimensional hybrid 

perovskites are also suggested to reach further flexibility for light conversion efficiency. This 

study is a major step towards the understanding of the optoelectronic properties of these novel 

class of DSSC at the level of knowledge already achieved in the field of conventional 

semiconductors. 
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Photovoltaic (PV) solar electricity is one of the key technologies of the 21st century to reduce the 

world’s reliance on fossil fuels for energy generation. Reduced costs and higher conversion 

efficiencies are of crucial importance to make PV-based technologies economically more 

competitive. The quest for quality and performances of future solar cells has attracted a vast 

research effort over the last decade in the field of semiconductor heterostructures, nanostructured 

materials, and thin films. Various approaches ranging from high-cost/high-performance III-V 

technologies, multiple junctions and concentrator systems, to low-cost thin-films technologies
1-4 

have been investigated. Obviously, the design of novel and/or efficient PV devices requires a 
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realistic modeling of underlying material’s properties including chemical composition, 

mechanical, electrical and optical features. This can be gained with state-of-the-art ab-initio 

approaches. In addition, such knowledge is desirable to reach PV cells composed of earth-

abundant elements based materials. 

Three-dimensional organic/inorganic perovskites, based on relatively small organic cations, have 

recently been suggested as a novel class of materials for dye-sensitized solar cells (DSSC) with 

improved photo-conversion efficiency.
5-17

Indeed, with a nanoporous TiO2 electrode, ultra-high 

light power conversion efficiencies have been demonstrated. Compared to alternative strategies 

based on inorganic semiconductor quantum dots (QDs) or extremely thin absorbers coated upon 

the internal surface of a mesoporous TiO2 electrode, hybrid perovskites offer several benefits. In 

particular, the ease of synthesis, tailoring of the optical absorption by chemical substitution, 

electronic transport, and high stability in dry air, are among the most featured properties of these 

systems. Interestingly, whereas conduction-band and valence-band alignments between 

absorbers and TiO2 are of crucial importance in understanding charge transfer and charge 

transport,
7,8,16,18

 their modeling is still scanty. 

Conversely, two dimensional hybrid organic/inorganic materials have attracted increasing 

interest over the past decade due to their potential optoelectronic applications.
19

 Once more, the 

versatility of the organic part affords the possibility of fine tuning material’s properties. For 

example, it has been shown that the optical spectra of lead halide organic/inorganic perovksites 

can be easily tailored by varying the organic cation, which improves the optical efficiencies and 

tuning of the emission wavelength.
19

 Among them, self-assembled layered structures have 

recently shown enhanced non-linear optical properties in microcavities.
20

 Interestingly, in these 

materials DFT calculations predict reversed ordering of band-edge states as compared to 
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tetrahedrally-bonded semiconductors.
21

 Consistently with important relativistic effects expected 

for lead, such calculations have also evidenced the major role of spin-orbit coupling (SOC) that 

significantly reduces the band-gap by inducing a large splitting of the first degenerated 

conduction levels.
21

 

Surprisingly, for the hybrid 3D materials recently proposed as efficient DSSC,
5,7,8,14-16 

the effect 

of SOC has been largely overlooked, especially from the theoretical point of view. Optical 

absorption
22

and reflectivity
23

 measurements brought clear experimental evidence of sizeable 

SOC splittings in such materials more than a decade ago. Even so effects of SOC have been 

stressed in a recent computational work,
15  

to the best of our knowledge they have not yet been 

accounted for in calculated band structures reported in the literature.  

This paper aims to investigate the role of SOC on the electronic band structure of two 3D hybrids 

recently investigated for PV-devices, namely MAPbX3 compounds where X=Br,I and MA stands 

for methylammonium (CH3NH3). Moreover, as the design of efficient DSSC requires a good 

understanding of VB alignments, we suggest a protocol to derive the band alignment between the 

MAPbX3 absorbers and TiO2. It involves calculations on a slab of a related 2D hybrid, namely 

2(C4H9NH3
+
)(PbI4

2-
).

24
 Such analogs also allow further comparison and offer complementary 

routes for band gap engineering. Actually, by mixing the composition of halogen atoms in 

MAPb(I1-xBrx)3 structures, it has recently been shown that the band gap can be controllably tuned 

to cover the entire visible spectrum.
14

 

These mixed compounds exhibit an averaged disordered cubic phase (space group Pm3m) at 

room temperature.
25

The structural disorder is both associated to the rotation of ammonium 

cations and tilt of lead halide octaedra. At low temperature, MAPbBr3 and MAPbI3 present an 
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ordered orthorhombic structure of space-group Pnma, with a cell doubling when compared to the 

room temperature phase(Figure 1).
15,26

 

 

Figure 1.Overview of the crystal structures of MAPbI3(left) and MAPbBr3(right) at low 

temperature. The structures are both orthorhombic (space group Pnma),
15,26

with a cell doubling 

when compared to the room temperature cubic phase. 

 

These ordered crystalline structures are used to perform the present theoretical study. Figure 2 

shows the band structures of MAPbBr3 and MAPbI3 with and without the SOC interaction.  



 7 

 



 8 

 

Figure 2.Electronic band structures of MAPbI3 (top) and MAPbBr3 (bottom), without (a) and 

with (b) the spin-orbit coupling interaction. The origin of the energy scale is taken at the top of 

the valence band (VBM). 

Let us first analyze the results obtained without SOC. Consistently with earlier results on the 

room temperature cubic phase,
27

the ground state transitions are of direct type but at the -point 

instead of the R point.
15

 Our study shows that they mainly involve eight active Bloch levels: two 

levels for the valence-band maximum (VBM1-2) and six levels for the conduction-band 

minimum (CBM1-6). This apparent complex sequence at -pointis associated to the low 

temperature symmetry breaking which leadsboth to unit cell doubling and strain.
26

In fact, a 

symmetry analysis indicates that the CBM1-6 states are related to the conduction-band minimum 
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(CBM)at the R point in the room temperature Pm3m cubic phase which corresponds to a triply-

degenerate level associated to the vectorial representation of the simple group.
25

The same 

electronic band structure is obtained around the band gap for the related CsPbI3compound where 

the organic part of MAPbI3is replaced by a Cs atom in the low temperature Pnma phase (figure 

S1). We canfurther develop the analysis of the electronic states using the complete phase 

sequence ofMAPbI3 and CsPbI3structures (vide infra). Similar energy dispersions occur at low 

temperature along the -U (1/2,0,1/2), -Y and -U’ (1/2,0,-1/2) directions in figure 2, which is 

inherent to the small distortion of the perovskite lattice. The direct band-gap calculated at -

pointis in agreement with the strong absorbance observed at room temperature.
7,22

 The six 

CBM1-6states correspond to anti-bonding hybridizations of 6p-orbitals of lead and belong to the 

irreducible representations of the D2h point group (factor group for the Pnmaspace group at  

point).  VBM1-2consist in anti-bonding hybridizations of the 6s-orbitals of lead and 5p-orbitals 

of iodine and are associated to non-polar irreducible representations of the point group. Optical 

activity is related to the dipolar matrix elements between the first valence and conduction-band 

states as defined by: 3131, 



 CBM

i

VBMCBMVBM
x

iM    where ix  represents the crystal 

axis.
21

These matrix elements take similar values for the CBM states in the MAPbX3 family. A 

strong and almost isotropic optical activity is expected from symmetry and enhanced at room 

temperature by the disorder of the cubic phase. Similar results are obtained for MAPbI3, although 

the strain-induced conduction-band splitting is larger. We point out that a strain effect was also 

reported in related MASnX3 compounds.
32

 

Figure 2 reveals large changes of the electronic band structure when accounting for SOC. Indeed, 

the fundamental transitions of MAPbI3 and MAPbBr3 lower to 0.5eV and 0.8eV respectively. 
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While the VB are nearly unaffected, the sixfirst CB undergo a dramatic splitting. The band gap 

remains direct and located at the center of the Brillouin zone. These findings are consistent with 

the value reported for a related 2D organic–inorganic hybrid, 2(pF-C6H5C2H4–NH3)PbI4, for 

which the correction is of about 1eV, leading to a band-gap reduction by a factor of two.
21

This 

2D perovskite crystalizes similarly to the 2(AA)PbX4 family (AA= CnH2n+1NH3)
24,29,30

 for which 

we have employed the same level of theory. For n=4-12 and X=I, the spin-orbit coupling induces 

a large band-gap correction of about 0.8eV, again mainly localized on the CB levels. Moreover, 

when applied to related inorganic structures such as CsPbX3, comparable corrections are 

obtained, as illustrated figure 3(top) for the inorganic cubic phase of CsPbI3(a similar result 

(figure S2) is obtained for the cubic phase of CsPbBr3.
25

) 
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Figure 3..Electronic band structures of CsPbI3 in the cubic phase (top) and tetragonal phase 

(bottom), without (a) and with (b) the spin-orbit coupling interaction. The origin of the energy 

scale is taken at the top of the valence band (VBM). 

One can notice that the calculated band-gap at the GGA-PBE level is equal to 1.3eV in good 

agreement with previous simulations.
36

. The calculated band-gaps at the LDA level are equal to 

1.2eV for CsPbI3and 1.3eV for CsPbBr3, and the spin-orbit coupling induces a large band-gap 

correction of about 1.1eV in both cases (figure 3(top)).  All these results demonstrate that the 

effect of SOC on band gaps is huge and cannot be reasonably disregarded. Even if comparison 

with available experimental data is not straightforward, our results are in qualitative good 

agreement with evidence of SOC effects in the optical absorption
22

 and reflectivity
23

 spectra 
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reported for MAPbX3. Furthermore, the optical transition occurs at the R point in the room 

temperature Pm3m cubic phase. For the Pm3msymmorphic space group, it is possible to directly 

analyzethe irreducible representations at R point using the Oh point group.
31

 The triply-

degenerate (CBM1-3) (figure 3-a (top)) statesare associated to the vectorial representation of the 

simple group commonly described
21,32

 by the X , Y , Z  symbols. In the corresponding 

double groupincludingspinors, it is splitted by SOC into twofold degeneratestates and fourfold 

degenerate states (figure 3-b (top)). This situation is usually encountered in the valence band of 

cubic conventional semiconductors.
21,31

 The conduction band minimum of CsPbX3 and MAPbX3 

at room temperature are associated to the twofold degenerate spin-orbit split-off (SO) states 

   ZiYX
3

1

3

1
2/1,2/1  and    ZiYX

3

1

3

1
2/1,2/1  (figure 

3-b (top)).The SO states lead to a strong
21

 and isotropic
32

optical transition with the even S -like 

VBM states.To understand the influence of the cubic-tetragonal (Pm3m-I4mcm) transition of 

MAPbI3
33

 on its optoelectronic properties, we have also performed DFT calculations on CsPbI3in 

the tetragonal phase of MAPbI3including the SOC. Without SOC, the triply degenerate CBM 

states and the VBM state are folded back from the R point at the  pointcases (figure 3a, 

bottom). In addition and according to the D4h point group, the strain along the z axis inducesa 

small splitting of the CBM and the band gap reduces to 1.0eV. The CBM vectorialrepresentation 

splits into a non-degenerate Z  state at lower energy and twofold degenerate X , Y  states. 

The SOC effect is however much larger than the effect of strain, and leads to a very small band 

gap (figure 3b(bottom)). The state ordering including SOC at the  point of the I4mcm phase 

remains similar to the one of the Pm3m cubic phase, the CBM states being again related to the 

twofold degenerate SO states 2/1,2/1  and 2/1,2/1  . 
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Based on the band structure of CsPbI3, we can also investigate the cubic-orthorhombic (Pm3m-

Pnma) transition. This transition is associated to a cell doubling and folding back from the R 

point to the  point. The triply degenerate CBM are doubled and splitted by the strain along the 

three directions. The six CBM states correspond to one dimensional representations of the simple 

D2h point group which yield two-fold degenerate representations of the corresponding double 

group. The strain effect is no more negligible when compared to the SOC effect, but the CBM 

state of lowest energy has an electronic density similar to the one of cubic SO state.  

Now, one can wonder why the fundamental transitions calculated without SOC for the low 

temperaturePnma structures, 1.5 eV and 1.9 eV respectively for MAPbI3 and MAPbBr3 (figure 

2) compare nicely with the values obtained experimentally, i.e. 1.5eV and 2.3eV respectively for 

MAPbI3 and MAPbBr3.
5,14,22,23

 This agreement is fortuitous and stems from large error 

cancellations. Indeed, the band gap is known to be underestimated in the DFT ground-state 

computations. This can be corrected by including many-body effects by means of GW self-

energy correction for the band gap
34

 or using the Bethe Salpeter equation resolution for the 

exciton.
35

Unfortunately, such calculations are beyond available computational resources for 

large systems. In order to gauge the importance of the GW corrections, we have considered the 

cubic phase of CsPbI3.  A one-shot GW self-energy correction on the LDA level amounts to a 

0.6 eV increase of the band gap. This value, although not self-consistent, shows that GW 

corrections are large and in the opposite direction to SOC effects. Unfortunately, a full treatment 

including both SOC and many-body effects is far beyond available computational resources.  

Efficient electrical power generation relies on the quality of the absorber and the band-gap 

energy. These conditions appear to be fulfilled and understood from the theoretical point of view. 

This efficiency also relies on the ability of the PV device to drive the carriers toward the 
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electrodes. A correct band alignment between the sensitizer and the electrode materials is thus a 

key parameter to predict performances of PV devices. In the case of DSSC, with a TiO2 

electrode, hybrid MAPbX3perovskites appear to greatly improve the electron transport.
8
 To 

evaluate the valence-band alignment between the anatase structure of TiO2
8 

and hybrid 

perovskites, a slab calculation
37

 was performed for the 2(AA)PbI4 with  n=4. This allows 

estimating the offsets between the vacuum level and its bulk potential (figure 4).  

 

Figure 4.Potential profile in an alkyl ammonium (AA) 2D hybrid perovskite crystal (dark line) 

and in a slab (red dotted line) with the same crystallographic structure
24

 surrounded by 

vacuum.An upward energy shift equal to 0.93eV has been applied to the crystal profile in order 

to match the slab profile. When the same shift is applied to the computed VBM, an absolute 

VBM of -5.6eV is found. 
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It leads to an absolute valence-band energy of -5.6 eV. Moreover, one can use the position of the 

5d levels of lead as a common electronic marker both for 3D and 2D hybrid perovskites. The 

relative position of the 5d-orbitals with respect to their VBM amount respectively to -16.4 and -

16.2 eV. This leads to an absolute valence-band energy of -5.4 eVfor both MAPbX3 crystals that 

nicely agrees with the absolute valence-band energy levels deduced from the experimental work 

functions: -5.44 and -5.38 eV for X=I and X=Br, respectively.
5
 The complete band alignment 

diagram is given figure 5, based on the absolute valence-band energy (-7.3eV) commonly used 

for TiO2.
8
 

 

Figure 5.Energy level diagram derived from the position of Pb-5d orbitals, computed VBM 

(figure 4) and experimental band gaps of MAPbI3 (1.5eV), MAPbBr3 (2.3eV)
5,14

 and an alkyl 

ammonium (AA) 2D hybrid perovskite (2,5 eV).
24

 Commonly accepted values for TiO2 electron 

affinity of -4.1eV and absolute valence band energy of -7.3eV are used. 
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It clearly demonstrates that the conduction-band offsets are favorable for the electron injection 

from absorber to electrode. In addition, this diagram suggests that combining 2D and 3D hybrid 

perovskites may provide an alternative way for the design of colorful solar cells that cover the 

entire visible spectrum.  

 In summary, based on DFT calculations, the electronic properties of 3D lead halide 

organic/inorganic perovskites used as absorbers in DSSC
5,7,8

 have been thoroughly investigated. 

Their band-gap is dominated by a giant SOC effect acting mainly on the conduction band, as was 

already demonstrated for related 2D hybrids.
21

 At room temperature, their remarkable optical 

properties can be related to direct and isotropic optical transitions between a triply degenerated 

conduction-band and a single valence-band in a simple group representation. Valence band 

offsets
5
 confirm that the gathering of MAPbX3 hybrids and TiO2 is a relevant choice for driving 

the electrons toward the electrode. Our calculations on alkyl ammonium based 2D hybrids also 

suggest a complementary route to the chemical tuning
14

 recently proposed for the design of 

colorful solar cells with enhanced light conversion efficiency.  

The present theoretical study was performed using the DFT implementation available in the 

ABINIT package,
38

 with the LDA or the GGA-PBE gradient correction for exchange-

correlation
39

 and relativistic, norm-conserving, separable, dual-space Gaussian-type 

pseudopotentials of Goedecker, Teter, and Hutter for all atoms
40

or Fritz-Haber-Institute’s 

pseudpotentials.
41

The SIESTA code was used for the simulation of slabs at the DFT-GGA 

level.
42 

We have verified that the band structures near the band-gap do not depend on the 

inclusion of 5d-orbitals for Pb. The electronic wave-functions are expanded onto a plane-wave 

basis set with an energy cut-off of 950 eV. 4x4x4 and 4x4x1 Monkhorst-Pack grids are used for 
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reciprocal space integration in 3D and 2D structures respectively. Calculations were performed 

with and without SOC.  
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