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We re-analyse the perturbative radiative corrections to the Higgs mass within the Standard Model
in the light of the Taylor-Lagrange renormalization scheme. This scheme naturally leads to com-
pletely finite corrections, depending on an arbitrary scale. The formulation avoids very large indi-
vidual corrections to the Higgs mass. This illustrates the fact that the so-called fine-tuning problem
in the Standard Model is just an artefact of the regularization scheme. It should therefore not lead
to any physical interpretation in terms of the energy scale at which new physics should show up, nor
in terms of a new symmetry. We analyse the intrinsic physical scales relevant for the description of
these radiative corrections.
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I. INTRODUCTION

The experimental tests of the Standard Model of
particle physics are entering a completely new era
with the first pp collisions at LHC (CERN) in the
TeV energy range and the discovery of a Higgs-like
scalar boson [1]. It is commonly admitted that ex-
perimental evidences showing deviations from predic-
tions within the SM should be interpreted as signs of
new physics, thereby relegating the SM to the sta-
tus of an effective field theory (EFT). We know that
the renormalizable SM is at most valid up to an en-
ergy scale Λeff < MP , where MP is the Planck mass
(≃ 1019GeV ), for quantum gravitational effects be-
come relevant at that scale. However the way to treat
the SM as an effective theory at a much lower energy
scale of a yet unknown more fundamental theory is
rather elusive and demands certain careful guidance
from past experiences.

In any physical process, the theoretical consistency
requirement of the Standard Model demands that any
characteristic intrinsic momentum, denoted by Λk,
which is relevant for the description of this process
should be less or equal to Λeff . Otherwise, new con-
tributions of order (Λk/Λeff )

n
to the Lagrangian of

the Standard Model should start to be sizeable. At
tree level, this momentum can be defined for instance
by any typical kinematical variables of the process,

like
√

Q2 in Deep Inelastic Scattering (DIS). It is thus
under complete control. However, beyond tree level,

one has to deal with internal momenta in loop contri-
butions, that may be large.
How large are they really? To answer this question,

one has to enter into the renormalization procedure
in order to define the physical amplitudes in terms of
the bare ones calculated from the original Lagrangian
of the Standard Model.

While physical observables should be independent
of the renormalization scheme which is considered, the
use of a particular scheme (together with a regular-
ization procedure) may lead to unphysical interpre-
tations when non-observable bare quantities are con-
cerned. We shall address in this article the particular
case of radiative corrections to the Higgs mass.
Beyond tree level, the first radiative corrections to

the Higgs mass one has to consider in the Standard
Model are radiative corrections from a tt̄ loop as well
as Higgs and W,Z bosons loops. Using a näıve cut-off
to regularize the bare amplitudes, these corrections
immediately lead to a quadratic dependency of the
regulated amplitudes on the cut-off scale ΛC [2]. The
(square of the) physical mass, MH , defined at the pole
of the two-body Green’s function, can be schemati-
cally written as

M2
H = M2

0 + b Λ2
C + . . . , (1)

where M0 is the bare mass of the Higgs particle, and
b is a combination of the top quark, W,Z bosons and
Higgs masses. As it is, this equation has not much
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physical interest. It is just a definition of the bare
mass as a function of the physical mass, in the spirit
of the renormalization theory.

The so-called fine-tuning problem arises if one wants
to give some kind of physical interpretation to the bare
mass M0. Since ΛC should be much larger than any
characteristic energy scale relevant for the description
of the theoretical physical amplitude, a large cancel-
lation between M2

0 and bΛ2
C should be enforced by

hand - hence the name fine-tuning - unless b is zero
(the so-called Veltman condition [3]), or MH is very
large, which we now know is not the case.

Our concern in the following is twofold. We shall
first illustrate the above general remarks by the ex-
plicit calculation of the radiative corrections to the
Higgs mass in a finite field theory based on the
Taylor-Lagrange Renormalization Scheme (TLRS) [4],
in leading order of perturbation theory. Then we
compare the results with standard procedures using
a näıve cut-off or Dimensional Regularization (DR).
Since BPHZ can be recovered from TLRS, our con-
clusions do also apply to BPHZ [5]. In addition, in
analogy with DR, TLRS also contains an explicit ar-
bitrary scale. Secondly, we shall analyse our results
in terms of the characteristic scale Λk, and compare
its value for both types, finite or infinite, of renor-
malization schemes. This may in turn have impor-
tant consequences for the determination of the rele-
vant momentum and/or energy scales at which new
physics should show up. We stick in our study to the
Standard Model. The discussion of how the gauge
hierachy problem is formulated in TLRS when grand
unified theories are concerned is beyond the scope of
the present article.

The plan of the article is the following. The overall
settings for a consistent formulation of an EFT are
first discussed in Sec. II. Then we recall in Sec. III
the general features of TLRS. We apply this scheme
to radiative corrections to the Higgs mass in the Stan-
dard Model in Sec. IV. We discuss our results in the
light of the fine-tuning problem in Sec. V, and draw
our conclusions in Sec. VI.

II. INTRODUCTORY REMARKS ON THE

MEANING OF EFT

We are familiar with the EFT approach from
the early days of Quantum Electrodynamics (QED),
where a simple example of EFT valid at very low ener-
gies, Eγ ≪ me, with me the electron mass, is provided

by the Euler-Heisenberg Lagrangian [6]:

Leff =
1

4
FµνFµν +

a

m4
e

(FµνFµν)
2

+
b

m6
e

FµνFνσF
σρFρµ +O(

F 6

m8
e

). (2)

It is important to emphasize some key features
from this EFT analysis: i) the fundamental Gauge,
Lorentz, Charge Conjugation and Parity invariance
severely constrain the possible forms of EFT terms,
ii) the success of the full non-perturbative Euler-
Heisenberg expression of Leff is tied up to the sub-
traction of the (infinite) free-field effective action. It
was further realized that the other (logarithmically
divergent) subtraction terms can be seen as an em-
bryonic recognition of charge renormalization. iii) in
this low-energy regime, all the information of the full
renormalized QED dynamics is embodied in the val-

ues of the effective couplings a = α2

36
and b = 7α2

90
,

with α = e2

4π
.

The EFT describes then the low-energy physics, to
a given accuracy ǫ, in terms of a finite set of param-
eters. The successful ab-initio determination of these
effective couplings is tied up to the renormalizibility of
the full theory. To explore a domain of higher energies
still in EFT terms one has first to include operators
of higher dimensions and then re-adjust the values of
the initial effective couplings through renormalization
group (RG)-equations.
The consistency of the procedure is imposed by

matching conditions around the energy threshold re-
gion where physical predictions should be identical,
to a given accuracy, in the full and effective theories.
In this way if an energy domain shows up where the
matching conditions cannot be fulfilled with the de-
sired accuracy, the problematic is twofold: either the
successive addition of operators of higher dimensions
is not any more feasible due to fast increasing val-
ues of the effective couplings with energy -a verifiable
situation- or, more speculative, the full initial theory
is itself a renormalizable EFT of a deeper fundamental
description of the physics reality involving new degrees
of freedom in this energy domain.
Obviously, since the 1940’s, the accumulation of ex-

perimental evidences in particle physics continuously
supported the progression towards the SM formula-
tion. At the same time the seminal works of Euler-
Heisenberg heavily influenced similar successful EFT
developpments in non-abelian gauge field, SM and
string theories, as discussed in [7]. In this respect
it is often argued that, although effective field theo-
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ries contain an infinite number of terms, renormaliz-
ability is not an issue since, at a given order in the
energy expansion, the low-energy theory is specified
by a finite number of couplings and allows then for
an order-by-order renormalization. From the works
of Euler-Heisenberg and followers and the above dis-
cussion this is evidently not the case: an EFT-SM
approach cannot be considered without taking into
account the full renormalizibility of the underlying
theory in the determination of the effective couplings
even in the supposed energy threshold region for the
onset of new physics.
More recently the necessity for a mass-independent

renormalization scheme has clearly been emphasized
by A. Pich [8]: if one cuts without renormalizing loop
integrals at a scale Λ where new physics is supposed
to become important, one obtains erroneous depen-
dences for mass corrections which are not suppressed
by powers of 1

Λ
. This makes it impossible to reach con-

verging mass contributions from higher orders of per-
turbation theory so that the whole approach breaks
down. On the contrary, a mass independent renor-
malization scheme yields results where mass correc-
tions are suppressed by powers of µ

Λ
where µ is the

RG scale parameter. In addition, for a gauge invariant
theory like the SM, gauge invariance excludes renor-
malization schemes violating this invariance, e.g. all
cut-off methods.
We shall consider in what follows two kinds of renor-

malization schemes, depending on whether the renor-
malization of the bare amplitudes is finite or infinite.
The latter is the one which is widely used in standard
perturbation theory à la Feynman. In this scheme,
the choice of a regularization procedure is a neces-
sary prerequisite to give a mathematical sense to a-
priori divergent bare amplitudes. In the literature two
regularization methods are mainly used: i)The first
one exhibits a very large mass scale, denoted by ΛC .
This mass scale is either a näıve cut-off in (Euclidean)
four-momentum space, or the mass of Pauli-Villars
(PV) particles in the PV regularization scheme. This
explicit mass scale should be much larger then any
characteristic energy, or momentum, scale relevant in
the calculation of the theoretical physical amplitude.
ii)The second one, the so-called dimensional regular-
ization (DR) procedure, amounts to extending the
space-time dimensionD away from 4. The divergences
of the original amplitudes show up as singularities in
ε = 4 −D, with ε > 0. In this case, the bare ampli-
tudes depend on a finite, and arbitrary, mass scale µ
(the so-called ”unit of mass” [10]).
Using these regularization procedures, any bare

amplitude is thus made finite. However, the origi-
nal divergences are recovered in the limiting process
ΛC → ∞ or ǫ → 0. In this sense the renormaliza-
tion schemes using these regularizations procedures
are called ”infinite”. Of course, all fully renormalized
amplitudes are indeed equivalently finite irrespective
of the regularization method which has been used to
derive them, provided the symmetries of the system
are conserved.
The prototype of a finite renormalization scheme

is the well-known BPHZ procedure. In this scheme,
any bare amplitude is made finite by subtracting as
many terms as necessary from the Taylor expansion
at zero external momenta of the integrand. All Feyn-
man integrals being convergent, no further regulariza-
tion is required. In this context we shall focus on the
relevance of the TLRS. This scheme originates from
the well known observation that the divergences of
bare amplitudes can be traced back to the violation
of causality, originating from ill-defined products of
distributions at the same point [9, 11]. The correct
mathematical treatment, known since a long time, is
to consider covariant fields as Operator Valued Dis-
tribution (OPVD), these distributions being applied
on test functions with well-defined properties [12–14].
These considerations led to the development and ap-
plications of TLRS [15, 16].

III. THE TAYLOR-LAGRANGE

RENORMALIZATION SCHEME

Any quantum field φ(x) - taken here as a scalar field
for simplicity - should be considered as an OPVD [17–
20]. This has been known for a long time. However,
its full significance for practical calculations was not
fully recognized until recently [4, 9, 11, 13–15].
As any distribution, quantum fields should be de-

fined by their application on test functions, denoted
by ρ, with well identified mathematical properties [12].
The physical field ϕ(x) is thus defined by [4]

ϕ(x) ≡

∫
d4y φ(y)ρ(x− y) . (3)

If we denote by f the Fourier transform of the test
function, we can further write ϕ(x) in terms of cre-
ation and destruction operators, leading to

ϕ(x)=

∫
dD−1

p

(2π)D−1

f(ε2p,p
2)

2εp

[
a†
p
eip.x + ape

−ip.x
]
,

(4)
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with ε2p = p
2 +m2.

From this decomposition, it is apparent that test
functions should be attached to each fermion and bo-
son fields. Each propagator being the contraction of
two fields should be proportional to f2. In order to
have a dimensionless argument for f , we shall intro-
duce an arbitrary scale Λ to ”measure” all momenta.
Λ can be any of the masses of the constituents. To
deal with massless theories, we shall consider some
a-priori arbitrary value. The final expression of any
amplitude should be independent of Λ.
As recalled in Ref. [4], the test function f should

have peculiar properties. It is chosen as a super regu-
lar partition of unity (see [4] for more details on PU’s),
i.e. a function of finite support which is 1 everywhere
except at the boundaries. As a super regular test func-
tion (SRTF), it vanishes as well as all its derivatives,
at this boundaries, in the UV and in the IR domains.
The boundary conditions of the test function -

which in this study is assumed to depend on a one
dimensional variable X - should embody a scale in-
variance inherent, in the UV domain for instance, to
the limit X → ∞ since in this limit η2X also goes to
∞, where η2 is an arbitrary dimensionless scale. This
can be done by considering a running boundary con-
dition for the test function, i.e. a boundary condition
which depends on the variable X according to

f(X ≥ H(X)) = 0 for H(X) ≡ η2Xg(X) . (5)

This condition defines a maximal value, Xmax, with
f(Xmax) = 0 1. In order to extend the test function to
1 over the whole space, we shall consider a set of func-
tions g(X), denoted by gα(X), where by construction
α is a real positive number smaller than 1. A typi-
cal example of gα(X) is given in Ref. [4], where it is
shown that in the limit α → 1−, with η2 > 1, the run-
ning support of the PU test function then stretches
over the whole integration domain, Xmax → ∞ and
f → 1. In this limit gα(X) → 1−. This running con-
dition is equivalent to having an ultra-soft cut-off [15],
i.e. an infinitesimal drop-off of the test function in the
asymptotic limit, the rate of drop-off being governed
by the arbitrary scale η2. A similar scale invariance is
also present in the IR domain, when X → 0.

With these properties, the TLRS can be summa-
rized as follows, first in the UV domain. Starting from
a general amplitude A written for simplicity in a one

1 The square η2 in (5) is only here for later convenience

dimensional space as

A =

∫ ∞

0

dX T>(X) f(X) , (6)

where T>(X) is a singular distribution, we apply the
following general Lagrange formula to f(X), after sep-
arating out an intrinsic scale a from the (running) dy-
namical variable X

f>(aX) = −
X

akk!

∫ ∞

a

dt

t
(a− t)k∂k+1

X

[
Xkf>(Xt)

]
.

(7)
This Lagrange formula is valid for any order k, with
k > 0, since f is chosen as a SRTF. It is therefore equal
to its Taylor remainder for any k. After integration
by part in (6), and using (7), we can thus express the
amplitude A as

A =

∫ ∞

0

dX T̃>(X) f(X) , (8)

where T̃>(X) is the so-called extension of the singular
distribution T>(X). In the limit f → 1, it is given by
[4]

T̃>(X) ≡
(−X)k

akk!
∂k+1
X

[
XT>(X)

] ∫ η2

a

dt

t
(a− t)k .

(9)
The value of k in (9) corresponds to the order of singu-
larity of the original distribution T>(X) [4]. In prac-
tice, it can be chosen as the smallest integer, posi-
tive or null, which leads to a non singular extension

T̃>(X). If in the absence of the test function T>(X)
leads to a logarithmic divergence in (6), k is 0. It is
1 if the divergence is quadratic. With this choice for
k, the extension of T>(X) is no longer singular due
to the derivative in (9), so that we can safely perform
the limit f → 1 in (8), and obtain

A =

∫ ∞

0

dX T̃>(X) , (10)

which is well defined but depends on the arbitrary
dimensionless scale η. This scale is the only remnant
of the presence of the test function.

The extension of singular distributions in the IR
domain can be done similarly [4, 15]. For an homoge-
neous distribution in one dimension, with T<[X/t] =
tk+1T<(X), the extension of the distribution in the
IR domain is given by

T̃<(X) = (−1)k∂k+1
X

[
Xk+1

k!
T<(X)ln (η̃X)

]
, (11)
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with η̃ = η2 − 1. The usual singular distributions in
the IR domain are of the form T<(X) = 1/Xk+1. In

that case T̃<(X) reads

T̃<(X) =
(−1)k

k!
∂k+1
X ln (η̃X) , (12)

where the derivative should be understood in the sense
of distributions. Doing this, the extension T̃<(X) is
nothing else than the pseudo-function (Pf) of 1/Xk+1

[4, 12, 15]

T̃<(X) = Pf

(
1

Xk+1

)
. (13)

The extension T̃<(X) differs from the original distri-
bution T<(X) only at the X = 0 singularity.
For massive theories with a mass scale M , it is easy

to translate this arbitrary dimensionless scale η to an
arbitrary ”unit of mass” µ = ηM . For massless the-
ories, one can identify similarly an arbitrary unit of
mass µ = ηΛ, as we shall see in the next section.
This unit of mass, analogous to the unit of mass of
DR [10], should be kept arbitrary in order to check
that physical observables are indeed independent of µ
(or η) after proper renormalization, order by order in
perturbation theory.
Note that we do not need to know the explicit form

of the test function in the derivation of the extended
distribution T̃>(X). We only rely on its mathemati-
cal properties and on the running construction of the
boundary conditions.

IV. APPLICATION TO THE FINE-TUNING

PROBLEM

In leading order of perturbation theory, the radia-
tive corrections to the Higgs mass in the Standard
Model are shown in Fig. 1. We have left out, for
simplicity, all contributions coming from ghosts and
Goldstone bosons. Each diagram in this figure gives
a contribution to the self-energy −iΣ(p2), where p is
the four-momentum of the external particle, and we
have

M2
H = M2

0 +Σ(M2
H) . (14)

Using a näıve cut-off to regularize the amplitudes,
these radiative corrections lead to the well known mass

FIG. 1. Radiative corrections to the Higgs mass in the
Standard Model. For simplicity, we have not shown con-
tributions from ghosts or Goldstone bosons.

correction

M2
H = M2

0 +
3Λ2

C

8π2v2
[
M2

H + 2M2
W +M2

Z − 4m2
t

]
+. . . ,

(15)
where mt,MW,Z and MH are the masses of the top
quark, W,Z and Higgs bosons respectively, and v is
the vacuum expectation value of the Higgs potential
in the Standard Model. The dots include logarithmic
corrections in ΛC as well as contributions independent
of ΛC in the large ΛC limit.

The calculation of the four different types of contri-
butions shown in Fig. 1 is very easy in TLRS. Let us
first illustrate the calculation of the simple Higgs loop
contribution in Fig. 1.b. In Euclidean space one has

−iΣ1b,H = −
3iM2

H

2v2

∫ ∞

0

d4kE
(2π)4

1

k2E +M2
H

f

(
k2E
Λ2

)
,

(16)
where k2E is the square of the four-momentum k. As
already mentioned in Sec. III, Λ is an arbitrary mo-
mentum scale. The test function f provides the nec-
essary (ultra-soft) cut-off in the calculation of the in-
tegral.
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After an evident change of variable, we get

Σ1b,H =
3M4

H

32π2v2

∫ ∞

0

dX
X

X + 1
f

(
M2

H

Λ2
X

)
(17)

=
3M4

H

32π2v2

∫ ∞

0

dX

(
1−

1

X + 1

)
f

(
M2

H

Λ2
X

)
.

The first term under the integral, with no intrinsic
scale, can be reduced to a pseudo-function, using (12).
Indeed, with Z = 1/X, we have

∫ ∞

0

dXf(X) =

∫ ∞

0

dZ

Z2
f

(
M2

H

Λ2

1

Z

)
(18)

=

∫ ∞

0

dZ Pf

(
1

Z2

)

= −
1

Z

∣∣∣∣
∞

= 0 .

The notation f(u)|a simply indicates that f(u) should
be taken at the value u = a, the lower limit of inte-
gration being taken care of by the definition of the
pseudo-function. This result is reminiscent of the
property

∫
dDp(p2)n = 0, for any n, in DR [18].

The self-energy thus writes

Σ1b,H = −
3M4

H

32π2v2

∫ ∞

0

dX
1

X + 1
f

(
M2

H

Λ2
X

)
. (19)

The constant factor M2
H/Λ2 in the argument of the

test function has no physical meaning since it can be
absorbed by a rescaling of the arbitrary dimensionless
scale η. This can be easily seen by applying the La-
grange formula (7) with the intrinsic scale a = M2

H/Λ2

and k = 0. It can thus safely be removed 2.
We can now apply the Lagrange formula for k = 0.

Using the boundary condition on the support of the
test function

Xt ≤ H(X) = η2Xgα(X) , (20)

we finally get, in the limit f → 1

Σ1b = −
3M4

H

32π2v2

∫ ∞

0

dX∂X

(
X

X + 1

)∫ η2

1

dt

t

= −
3M4

H

32π2v2
ln
(
η2
)
. (21)

2 This could also be done more directly by choosing a particular
value for Λ.

It is easy to see that using a näıve cut-off on k2E one
would have obtained, in the large ΛC limit

ΣC
1b,H =

3M2
H

32π2v2

[
Λ2
C −M2

H ln

(
Λ2
C

M2
H

)]
. (22)

For completeness, we recall below the result of the
direct calculation of (16) in DR

ΣDR
1b,H =

3M4
H

32π2v2

[
−
2

ε
+ c− ln

(
µ2

M2
H

)]
, (23)

where c = γE −1− ln4π and γE is the Euler constant.
We can proceed further to the calculation of the

t̄t polarization correction indicated in Fig. 1.a (left
diagram). This one depends explicitly on the (square
of the) momentum p of the external particle. Similarly
to (16), in the Euclidean space, and using Feynman
parametrization, one gets

− iΣ1a(p
2) =

12im2
t

v2

∫ 1

0

dx

∫ ∞

0

d4kE
(2π)4

k2E − x(1− x)p2E −m2
t

[k2E + x(1− x)p2E +m2
t ]

2
f

(
k2E
Λ2

)
, (24)

We thus have,

Σ1a(p
2) = −

3m2
t

4π2v2

∫ 1

0

dx M2(x, p2)

∫ ∞

0

dX X

X − 1

(X + 1)2
f

[
X

M2(x, p2)

Λ2

]
(25)

with M2(x, p2) = x(1 − x)p2E + m2
t and X =

k2E/M
2(x, p2). The integral over X, which we shall

call I, can be decomposed into three parts, I =
I1 + I2 + I3, with

I1 =

∫ ∞

0

dXf

[
X

M2(x, p2)

Λ2

]
,

I2 = −3

∫ ∞

0

dX
1

X + 1
f

[
X

M2(x, p2)

Λ2

]
, (26)

I3 = 2

∫ ∞

0

dX
1

(X + 1)2
f

[
X

M2(x, p2)

Λ2

]
.

(27)

The first one is zero according to (18). The second
one can be calculated following the derivation of (19),
with an intrinsic scale M2(x, p2)/Λ2 in the Lagrange
formula (7) for k = 0. This gives, using Λ = MH ,

I2 = ln

[
η2

M2
H

M2(x, p2)

]
, (28)
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while the third one is trivial and gives I3 = 2 in the
limit f → 1.
The self-energy correction from the t̄t polarization

diagram is thus

Σ1a(p
2) = −

3m2
t

4π2v2

∫ 1

0

dx M2(x, p2)

[
−3 ln

[
η2

M2
H

M2(x, p2)

]
+ 2

]
. (29)

It is interesting to calculate directly (25) without
decomposing the integral I. To do that, we should
apply the Lagrange formula for k = 1. We thus
get for this integral, with an intrinsic scale a =
M2(x, p2)/M2

H ,

I = −

∫ ∞

0

dX X∂2
X

[
X2(X − 1)

(X + 1)2

]
1

a

∫ η2

a

dt

t
(a− t) .

(30)
The self energy calculated in this way, and denoted by
Σ1a(p

2), is given by

Σ1a(p
2) = −

3m2
t

4π2v2

∫ 1

0

dx M2(x, p2)

[
3η2M2

H

M2(x, p2)
− 3 ln

[
η2

M2
H

M2(x, p2)

]
− 3

]
. (31)

Comparing (29) and (31), we see that the calcula-
tion of the extension of a singular distribution is not
unique. However, the self-energies differ either by a
true constant (which depends on the arbitrary scale η,
and is thus irrelevant in the calculation of the physical
mass of the Higgs particle and more generally of any
physical observable), or by a redefinition of η. They
are thus said to be almost equivalent in the sense that
they give identical physical, i.e. fully renormalized,
amplitudes.
Using a näıve cut-off to calculate the self-energy

(24), one would have obtained

ΣC
1a(p

2) = −
3m2

t

4π2v2

∫ 1

0

dx M2(x, p2)

[
Λ2
C

M2(x, p2)
− 3 ln

[
Λ2
C

M2(x, p2)

]
+ 2

]
. (32)

For completeness, we recall below the result in DR

ΣDR
1a (p2) = −

3m2
t

4π2v2

∫ 1

0

dx M2(x, p2)

[
−
6

ε
+ 3c− 3 ln

[
µ2

M2(x, p2)

]
+ 1

]
. (33)

We can already see from these results that TLRS
and DR lead to a similar p2-dependent logarithmic
term, with the identification η2 = µ2/M2

H . They
both depend on a completely arbitrary constant. The
quadratic and logarithmic divergent terms using a cut-
off procedure are transmuted in TLRS into contribu-
tions depending on the arbitrary dimensionless scale
η.

The other contributions to the radiative corrections
to the Higgs mass indicated in Fig. 1 can be calculated
similarly. The final correction to the bare mass can
thus be written schematically as

M2
H = M2

0 + ā η2 + b̄ ln[η2] + cte . (34)

This should be compared with the corrections indi-
cated in Eqs. (1,15) when using a näıve cut-off. We
emphasize again that η in (34) has no reasons what-
soever to be very large. It is a completely arbitrary
real dimensionless parameter bigger than one. The
exact expressions of ā and b̄ are of no physical inter-
est since physical observables should be independent
of η. They are completely finite and depend only on
the masses of the top quark, W,Z and Higgs bosons
and on the vacuum expectation value v of the Higgs
field.

Away from the on mass shell condition p2 = M2
H ,

the constant term includes p2-dependent logarithmic
corrections which give rise to the well-known running
of the mass. These corrections are identical in all three
schemes, as expected.

V. DISCUSSION

We shall discuss our results in terms of the vari-
ous scales appearing in the calculation of the radiative
corrections to the Higgs mass, and more generally, to
any physical observable. Three of them are of physi-
cal origin, and depend on the dynamical content of the
underlying theory and on the kinematical conditions
of the physical process under consideration, one is of
mathematical origin, and two are completely arbitrary
and are linked to the renormalization procedure.

The first physical scale is of course Λeff which de-
fines the domain of validity of the underlying theory.
It fixes, in the Standard Model, the energy scale above
which new physics should show up. In that case, the
Standard Model Lagrangian, LSM , should be supple-
mented by effective operators, and one should work
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with the following effective Lagrangian

Leff = LSM +
∑

i>0

Oi

(Λeff )i
≡ LSM +∆L , (35)

where Oi is a set of local operators of dimension
(mass)i+4, compatible with the symmetries of the sys-
tem. This has been examplified in Eq.(2) for the case
of QED. For a given physical process, these new con-

tributions are proportional to (Λk/Λeff )
i
. These op-

erators originate from integrating out from the action
the degrees of freedom of mass greater than Λeff .
The second one corresponds to the kinematical scale

defined by the physical process under consideration. It

can be for instance
√
Q2 in DIS. We shall call it ΛQ for

simplicity. From a phenomenological point of view, in
a bottom-up approach, Λeff should correspond to the
value of ΛQ for which theoretical predictions within
the Standard Model are not corroborated by exper-
imental results. The last physical scale we have al-
ready mentioned is the characteristic momentum rel-
evant for the calculation of a given amplitude, called
Λk. As we shall see below, it is intimately linked to
the regularization procedure which are used. Gener-
ally speaking, we should expect ΛQ < Λk < Λeff .
The mathematical scale is simply the cut-off ΛC

used in the calculation of any integral over momenta
in internal loops. As mentioned above, it can not have
any physical interpretation. It should be chosen large
enough, and one should check that any physical ob-
servable is independent — within a given accuracy
ǫ - of the exact value of ΛC . In the literature, this
mathematical scale is often taken equal to Λeff . We
prefer here to separate clearly both scales since one
has a physical interpretation while the other has not.
As we shall explain below, this distinction is of par-
ticular interest for finite renormalization schemes like
TLRS.
The last two scales are related to the renormaliza-

tion procedure. The first one is the arbitrary scale
η introduced in (5) in TLRS. It is the analog of the
arbitrary mass scale µ of DR, with µ ≃ ηΛ. The
second one is the mass scale, called R, which is chosen
to fix the bare parameters of the original Lagrangian
in terms of physical measurable quantities3. This
is the so-called renormalization point. It appears

3 The scale R may in fact correspond to a set of many different
scales, if one chooses for instance to fix the coupling constants
at different momentum scales for all external particles [21].

of course in both finite or infinite renormalization
schemes. These two scales are closely related to the
RG analysis, in the sense that all physical observables
should be independent of both η (or µ) and R.

In order to determine Λk from a quantitative point
of view, we shall proceed in the following way. Writing
the self-energy as

Σ(p2) =

∫ Λ2

C

0

dk2E σ(k2E , p
2) , (36)

we shall define the characteristic momentum Λk by
requiring that the reduced self-energy defined by

Σ̄(p2) =

∫ Λ2

k

0

dk2E σ(k2E , p
2) (37)

differs from Σ(p2) by ǫ in relative value, i.e. with the
constraint

Σ̄(p2)

Σ(p2)
= 1− ǫ , (38)

provided we have |Σ̄(p2)| < |Σ(p2)|. In the Standard
Model, ǫ can be taken of the order of 1%.
We show in Fig. 2 the characteristic scale Λk cal-

culated for two typical expressions of the self-energy
of the Higgs particle, as a function of ΛC . The first
expression is the bare one given by Σ(M2

H) in (14),
while the second one is the fully (on-shell) renormal-
ized amplitude, i.e. with both mass and wave function
renormalization, defined by [21]

ΣR(p
2) = Σ(p2)−Σ(M2

H)−(p2−M2
H)

dΣ(p2)

dp2

∣∣∣∣
p2=M2

H

(39)
and calculated at two different values of p2, p2 =
−10 M2

H and p2 = −100 M2
H . The calculation is done

using a typical contribution to the self energy, namely
(32) for the cut-off regularization scheme, while (30)
is taken for the calculation in TLRS, with an upper
limit for the X integral given by Λ2

C/M
2(x, p2).

Note that the derivation summarized in Sec. III to
calculate the extension of the distribution T (X) in the
UV domain is valid for any test function with finite

support. Since T̃ (X) in (8) is not singular anymore,
all corrections from the finite support of f in the upper
limits of the integrals over X or t give a correction of
order 1/Xmax = M2

H/Λ2
C .

The results indicated in Fig. 2 exhibit two very dif-
ferent behaviors. If one considers first the calculation
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of the bare amplitude, the use of a näıve cut-off regu-
larization scheme does not allow to identify any char-
acteristic momentum Λk. Since Λk is always very close
to ΛC , all momentum scales up to ΛC are involved in
the calculation of the bare self-energy. This is indeed
a trivial consequence of the fact that the renormal-
ization of the bare amplitude is infinite in that case.
This would also be the case in any infinite renormal-
ization scheme using DR (in the limit of dimension
4). However, using TLRS, we can clearly identify a
characteristic momentum Λk, since it reaches a con-
stant value for ΛC large enough. Note also that in
this renormalization scheme, we can choose a value of
ΛC which is rather arbitrary, as soon as it is much
larger than any mass or external momentum of the
constituents. It can even be infinite, since it does not
have any physical meaning, the only requirement be-
ing that physical amplitudes should be independent,
within an accuracy ǫ, of the precise value of ΛC . This
behavior is typical of finite renormalization schemes.
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FIG. 2. Characteristic momentum scale Λk calculated
from the self-energy contribution Σ̄(M2

H) defined from the
condition (38), in two different schemes: with a näıve cut-
off (solid line) and using TLRS (dashed line). The calcu-
lation is done for MH = 125 GeV, with η2 = 100. We also
show on this figure Λk calculated with the fully renormal-
ized self-energy (39) for p2 = −10 M2

H (dotted line) and
p2 = −100 M2

H (dash-dotted line).

If we now consider the characteristic momentum
scale relevant for the description of the fully renor-
malized amplitude ΣR, we can also identify a finite
value for Λk since it saturates at sufficiently large val-
ues of ΛC compared to the typical masses and external
momenta of the system. This behavior is extremely
similar to the result obtained in the above analysis

of the bare amplitude Σ using TLRS. This is indeed
not surprising since the fully renormalized amplitude
is also completely finite. It depends only slightly on
the external kinematical condition ΛQ (given here by√

−p2). In any case, the characteristic momentum
scale is of the order of 10 times ΛQ, and, what is more
important, it is independent of ΛC . One can check
that ΣR is of course identical in all renormalization
schemes.

VI. CONCLUSIONS

We have analyzed in this article the fine-tuning
problem in the Standard Model of particle physics
in the light of the recently proposed Taylor-Lagrange
renormalization scheme. Since this scheme leads natu-
rally to completely finite bare amplitudes - in contrast
to a näıve cut-off regularization scheme which leads to
quadratic divergences - the so-called fine-tuning prob-
lem can not have any physical reality in this scheme.

In order to understand in more quantitative de-
tails the differences between the various schemes, we
have analysed the bare amplitudes, as well as the fully
renormalized ones, in terms of the characteristic mo-
mentum scale relevant for the description of radiative
corrections to the Higgs mass. In the case of the bare
amplitudes, we find that this characteristic momen-
tum scale is finite and independent of the cut-off ΛC ,
provided it is large enough, when using TLRS, while it
is as large as the cut-off scale in a cut-off regularization
scheme. This forcludes any physical analysis in terms
of a characteristic momentum scale when one uses
a näıve cut-off - or using DR near four-dimensional
space-time - on the bare amplitudes. The reason re-
sides in an infinitely large bare amplitude for both
regularization schemes.

On the contrary, we can clearly identify a charac-
teristic relevant momentum scale when using TLRS.
This scale is finite, while the value of ΛC can be very
large, independently of the precise value of Λeff . In
that case Λk is completely determined by the dynam-
ics of the underlying theory, as it should, and not
by the mathematical properties of an ill-defined in-
tegral. It should only satisfy the consistency condi-
tion Λk < Λeff . This condition can be interpreted in
two different ways. If Λeff is known (top-down ap-
proach), one should verify this condition in order to
check the consistency of the effective theory. If Λeff

is not known (bottom-up approach), one should use
this condition to induce a lower limit on Λeff , given
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by Λk. This is the case of the Standard Model.
As expected, the equivalence between the use of dif-

ferent schemes preserving gauge symmetry is restored
if one analyses the fully renormalized amplitudes. In
that case, one finds that the characteristic momen-
tum scale is equivalent for all such schemes, and it is
of the order of the masses, or external momenta, of
the constituents of the system.
A remarkable feature of TLRS is that the identi-

fication of this characteristic momentum scale in the
calculation of any amplitude can be done already at
the level of the bare amplitude, in four physical space-
time dimensions. This is at variance with both the
usual DR or cut-off regularization procedures.
Our analysis of radiative corrections to the Higgs

mass in the Standard Model has shown that the char-
acteristic momentum scale is of the order of the typi-

cal mass scale given, on the mass shell, by the physical
Higgs mass. Moreover, once the various relevant scales
have been clearly identified, one can not give, on the
sole consideration of radiative corrections to the Higgs
mass, any information on the energy/momentum scale
at which new physics should show up since this char-
acteristic momentum is independent of Λeff . It also
does not rely on any new symmetry.
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