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Abstract:  

We show that automatic determination of regularization threshold and pre-filtering of 3-

D fluorescence microscopic images improves the stability of deconvolution results 

when using the Linear Least squares Solution or the Maximum a Posteriori method. 

Doing so, the choice of the regularization parameter much less depends on a priori 

knowledge of the specimen or skills of the operator. This increases the reliability and 

repeatability of quantitative measurements on deconvolved images. 
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1. INTRODUCTION 

Fluorescence microscopy has proven to be an invaluable tool to study structures of living cells and 

tissues [1-3]. Recent developments in instrumentation [4-7] have permitted to beat the conventional Abbe 

limit, but for any acquisition instrument, each recorded image g(X) can be described by the following 

convolution equation: 

g(X) = h(X − X1 )f(X1

−∞

+∞

∫ )dX1 ⊕b(X)  (1)  

 where X and X1 are 3-D coordinates, h(X) is the Point Spread Function (PSF) of the acquisition system 

and f(X) is the original object. The term b(X) represents a random process. It is a combination of noise 

sources due to the fluorescence process and the acquisition electronics. This equation expresses the fact 

that the original object is recorded with distorsions and blurring due to the finite resolution of the 

instrument, plus a contamination by noise. As a result, the acquired image is only an estimation of the 

original object, and may not be of high quality enough for post-acquisition analysis. 

When the ultimate resolution is obtained from the instrument, it is still possible to sharpen the images 

by deconvolution of the data using the instrument point spread function. Deconvolution consists in 

inverting Eq. (1) in order to find a better estimate of the actual object f(X), knowing the image g(X) and 

the point spread function h(X). Deconvolution is known to be an ill-posed problem, the process being 

sensitive to initial conditions and noise. Furthermore, it can be very time consuming, especially for 3-D 

data sets and for iterative algorithms. A large amount of effort has been devoted to find new or improve 

existing deconvolution algorithms (Refs. [8-15] and references therein). 

Deconvolutions techniques use a model of degradation induced by the imaging system. This model 

can be formulated by a linear convolution as in Eq. (1), or can be Bayesian, considering the image in a 

probabilistic way [16]. Many techniques have been investigated to achieve the restoration in spite of the 

ill-posed nature of the problem [17]. In the linear formalism, minimum mean-squares error restoration and 

least-squares filters methods model the image formation by a translation-invariant blurring contaminated 

with additive Gaussian noise. These methods can be computed in a direct form by the mean of Fast 
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Fourier Tansforms (FFT) computations. A classical implementation of these techniques is provided by the 

widely applied Wiener filter [18]. Another example is the Tikhonov-Miller algorithm, which uses a linear 

restoration filter, found minimizing the Tikhonov functional [19]. Verveer and Jovin [20] proposed an 

iterative constrained form of the Tikhonov-Miller algorithm, by implementing a non-negativity condition. 

Carrington also used the Tikhonov functional, but incorporated another non-negativity constraint for 

which he proved the unicity of the solution [13]. In the Bayesian formalism, a fluorescent object can be 

modeled as a spatially inhomogeneous Poisson process. The Richardson-Lucy algorithm [21] computes 

the maximum likelihood of this process. This method is closely related to the Expectation-Maximization 

algorithm and the Maximum Likelihood, Expectation Maximisation (ML-EM) method (see [11], [22,23] 

and references therein). 

These methods are widely used by microscopists, as they are now available in commercial 

deconvolution packages, as well as some freely available softwares [24,25]. However, when large 

amounts of 3-D images are collected, the post processing of these data may constitute a bottleneck for the 

biologists if the computing time is too large. Unfortunately, the best deconvolution results are often 

obtained with time-consuming iterative algorithms like for example ML-EM and furthermore, not all 

deconvolved images appear to be of interest. A possible approach to this problem may be to implement a 

less accurate but rapid deconvolution method used to select the most interesting original images, which 

are then deconvolved with the better algorithms. This would limit the needed computation time. 

In this view, we propose two improvements to the Linear Least squares Solution and the Maximum a 

Posteriori algorithms, which are based on direct matrix inversions, and therefore are fast, but sometimes 

instable. As a consequence, a regularization of the system to be inverted is mandatory for these two 

methods. We have implemented an automatic determination of the optimal regularization parameters, 

combined with a pre-filtering of the original data. Doing so, deconvolution results would not rely on 

parameters manually introduced by the operator and should be much less sensitive to noise, therefore 

diminishing the sensibility to a priori knowledge of the specimen and improving post-deconvolution 

quantitative measurements. 
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2. DECONVOLUTION ALGORITHMS 

A large number of deconvolution methods have been described in the literature [8-9]. In this paper, 

we focus our attention on methods which suppose the knowledge of the image formation process, namely 

the Point Spread Function and are supposed to be well adapted to fluorescence microscopy: the LLS 

("Linear Least Square" as implemented by C. Preza [10]) and the Maximum a Posteriori methods, which 

are based on direct inversion algorithms, and are therefore rapid compared to iterative algorithms like the 

ML-EM method ("Maximum Likelihood-Expectation Maximization" from Holmes [11-12]) or the 

algorithm of W.A. Carrington [13].  

2.1 LLS : Linear Least Square 

This algorithm [10] implies linear systems and restores data, which are contaminated by additive 

white gaussian noise. The reader interested in the mathematical foundations as well as the numerical 

implementation of this method will find more informations in [10,14,15]. We recall here only the 

fundamental concepts relative to this method.  Equation (1) can be rewritten in discrete form as:  

G= H F + B (2) 

where G is the recorded image, F is the object, B represents the noise and [H] is a Toeplitz matrix 

representing the PSF. The system being singular or quasi-singular, the inversion of such a matrix is an ill-

posed problem. Therefore regularization is needed. With the LLS algorithm, the lowest eigenvalues are 

simply discarded, and the operator has to manually introduce the regularization threshold β. Then Eq. (2) 

can be rewritten as:  

 F= H' t H' -1 H' t G (3) 

in which H' is the regularized H matrix.  

2.2 MAP : Maximum a Posteriori 

The photon statistics as detected by a CCD camera or a photomultiplier obeys the Poisson statistics 

[16]. Statistical image formation models therefore consider that the image is a convolution of the object 
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f(x) by the PSF h(x) of the imaging system, but is formed randomly and therefore an acquired image is 

only a sample of this process taken at a given time t. The Bayesien model is based on the conditional 

statistics. The problem consists in maximizing the Probability Density Function of the object f with the 

knowledge of the image g. Conchello [26,27] proposed the following solution: 

( ) g
vH

H
gf

zyx

MAP 2222

*ˆ

ωωω +++
=Φ= (4) 

with f̂ being the reconstructed estimate of the original object, g the acquired image, H the Optical 

Transfer Function (the Fourier transform of the PSF); ωx, ωy, ωz represent spatial frequencies in the image 

and ν is a regularization parameter to be introduced by the operator. The main difference with the LLS 

algorithms is that the smallest eigenvalues, which are simply discarded in LLS, are modified with ν in the 

MAP algorithm. 

3. AUTOMATIC DETERMINATION OF REGULARIZATION PARAMETERS 

 

Both LLS and MAP algorithms require a manual intervention to give these algorithms their 

respective regularization parameter. As a consequence, the results may greatly vary with the type of image 

or the signal to noise ratio, and therefore good deconvolution results strongly depends on the knowledge 

of the operator, and the result is judged qualitatively only. 

At the Hematology Laboratory of Emile Muller Hospital (Mulhouse-France), a study of CD34+ cells 

from cord blood samples has been undertaken. Different populations appear during maturation of these 

cells and we would like to improve their classification method. This require the processing of relatively 

large populations (a few hundreds of cells) and therefore, use of fast deconvolution algorithms is 

mandatory. However, the quality of the image may vary, and automating the choice of the regularization 

parameter would greatly improve the quality and the reliability of the measurements, by discarding the 

necessity of a human intervention for choosing the “best” regularization parameters. 
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When optimizing deconvolution algorithms, one work first with synthetic image obtained by 

numerical convolution of a well-known reference object with a computed PSF. Then the result of the 

deconvolution may be compared with the original object.  

When working on biological images, such a method cannot be used, as the original object is by 

definition what one would like to know. We have therefore introduced the following process, described 

by Figure 1. A known object O is numerically convolved with a PSF H to give an image I. This image is 

deconvolved with the regularized PSF H’ to give an estimate of the object O’. Usually comparison of O

and O’ is used to perfect the choice of the regularization parameter. We propose to reconvolve O’ with H’ 

to give an estimate of the image I’. The original image I is compared with this simulated image. Doing so, 

we better mimic the real conditions of deconvolving an acquired image. Noise can also be added to test 

the robustness of the method. 

Then, one varies the regularization parameter in order to obtain the best deconvolution results. We 

propose to use the Joyce and Root jauge [28,29] in order to get the best compromise (in the least square 

sense) between variance and bias. The variance and the bias error are linked to the eigenvalues, which are 

used for the inversion operation of the matrix system. When knowing the original object O, one 

minimizes the jauge: 

F=Σ(O-O')
2

+ σ2Σ(1/λi) (5) 

in which σ represents the power of the noise, which is usually estimated in a dark region of the original 

image, and the sum is computed with those eigenvalues, which have not been discarded (LLS) or 

modified (MAP). In practice, the original object is the unknown, and one starts with the deformed image 

of the object. Following Preza et al. [10], we use the same jauge but on the original image I and the 

estimated image I’ in order to minimize: 

F=Σ(I-I')
2

+ σ2Σ(1/λi) (6) 

Alternatively, one can also use for F the quadratic error calculated between the original and restored 

object (when known), or between the original and the recomputed image (for biological images). 

When working on noise-free synthetic images, we found these two criteria to work very well, giving 
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very similar results than the conventional method using Eq. (5). However, the deconvolved image is very 

sensitive to noise, and applying this method on biological images often fails to give exploitable results. In 

order to use our automatic criterion on noisy images, we propose to use a pre-filtering of the original data. 

 

4. PRE-FILTERING OF DATA 

The original data as acquired on a microscope are always noisy. This noise is also responsible of 

instabilities in the inversion process. As a consequence, a trade-off between precision and stability has to 

be chosen. Pre-filtering the data permits to decouple the noise reduction process and the inversion process 

[30]. Pre-filtering increases the signal to noise ratio, and therefore simplifies the regularization process. 

One advantage of this approach is that one could consider an adaptative deconvolution scheme, in which 

the pre-filtering is adapted to the noise, and the inversion method is tuned with respect to the 

characteristics of the images and the type of measurements to be done, as some deconvolution algorithms 

give better results for shape reconstruction, and others for intensity measurements [31-33]. 

Using simulations we have first studied the influence of noise on the stability and precision of the 

solution, varying the level of noise to mimic typical images acquired on our fluorescence microscope. 

We have built a synthetic object with 9 solid beads of same diameter but with different intensities 

(disposed in a cubic centered configuration). This object is convolved with a computed microscope PSF. 

We used the scalar Gibson and Lanni model of image formation [34], with parameters adapted to our 

microscope objective (see Annex 1, which details the parameters used in the Gibson and Lanni model as 

implemented in the XCOSM package for details [24]). More accurate vectorial models do exist [35,36], 

but this model has the advantage of clearly separating the various parameters characterizing the 

acquisition system: index of refraction of the immersion medium, coverslip index and thickness etc… For 

a more realistic simulation Gaussian noise is added. It corresponds to electronic noise due to the 

acquisition process. The fluorescence emission mechanism also implies Poissonian noise [37], for which 

better suited algorithms than MAP or LLS have been developed, however, when the signal to noise ratio 

is not too bad, LLS and MAP have proven to give good results. The relatively high noise level of 40% has 
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been chosen as to mimic the noise observed in some biological images we acquired, and for which the 

LLS and MAP give useless results, as they fail to reconstruct the original data because of the noise. For 

such images, ML-EM gives good results. Our idea is to prefilter these images so as to render them usable 

with LLS or MAP, as they are faster methods, to permit a rapid screening of all images in order to select 

only the most interesting ones, which will then be treated with the more precise, more time consuming 

algorithms. 

Figure 2 shows that the quadratic error curve with LLS deconvolution is very strongly depending on 

the regularization parameter β (note that the y-axis is on log scale): a small variation on the regularization 

parameter, as it would be manually introduced by the operator, would induce a large variation in the final 

result. Furthermore, according to the quadratic error criteria, even the best regularization parameter 

β=10−2.7
 fails to give a satisfactory result, as shown on Figure 3. The information is smeared out in the 

entire deconvolved image (Figure 3(a)), and no gain is obtained by deconvolution, for example for 

segmenting the image. Figure 3(b) shows the profile of a bead as measured on the deconvolved image 

(solid line) and compared to the original profile (dashed line). The restored intensity profiles are very 

different from the original one. This unsatisfactory result is due to the level of noise present in the original 

image. We propose to adapt to our 3-D images the approach proposed by Sekko [30], consisting in pre-

filtering the original data in order to improve the quality of the deconvolution results. 

The original data are pre-filtered with the transfer function: 

W =
1

1+ α ⋅ Pn(u,v,w)

Ps (u,v, w)

(3) 

with Ps(u,v,w) being the power spectrum of the signal and Pn(u,v,w) being the power spectrum of the 

noise. The parameter α gives the level of filtering: for α=0 no filter is applied, α=1 corresponds to Wiener 

filter. Large values of α filter the noise but also the original data, therefore leading to loss of information. 

These filtered data are then deconvolved using the MAP or LLS method. We have compared the 

results of without- and with pre-filtering restorations. To estimate the quality of deconvolution we 

compute the difference in the least-squares sense between the final data and the original object, which in 

9 of 29

Monday , August  09, 2004

Elsevier



Rev
ie

w
 C

op
y

10 

that case is known. 

To study the benefit of pre-filtering, we vary both parameters α (pre-filtering) and β (regularization 

threshold) and plot the 2-D corresponding error surface. As can be seen on Figure 4, a valley of stability is 

observed for a pre-filtering value of α=10−0.4
 when using the LLS algorithm. In this valley (indicated by 

the arrow), the restoration error is much less sensitive to the choice of the regularization parameter, which 

can now vary over several decades without large changes in the deconvolved data. This result confirms 

for 3-D data the work of Sekko on 2-D images [21]. The minimum is observed for this image near 

α=10−0.4
 and β=10−4.3

 and the deconvolution result for these values is shown on Figure 5. A 45% 

segmentation level shows that volumic measurements are affected by an error of 23% and intensity 

measurements are affected by an error of 20% with respect to the original image, indicating a good 

restoration despite the noise level, contrary to deconvolution without pre-filtering, which gives 

meaningless results (289% error on volume and 93% on intensity measurements) as one could foresee 

from Figure 3. Similar results are obtained using the MAP algorithm. 

The proposed pre-filtering method is a common one, and because pre-filtering mutes the high 

frequency unstable components, it is not very surprising that the regularization is more stable. This is 

however precisely the goal of our method, to be applied to biological images (see next section). In that 

case, a common underlying hypothesis for deconvolution is that the biological object does not present 

sharp transitions (because of the diffusion of the fluorophores in the specimen) and as a consequence, its 

image shall not contain high frequencies, except for those due to the noise, which we want to suppress. 

One can observe on Fig. 5 that some reconstructed profiles for the flat spheres present some dips. 

This is easily explained by the regularization process, which mutes the high frequency unstable 

components, which are precisely those necessary to reconstruct a square profile. 

In order to investigate the effect of our method on the spectrum of the images, we have also 

considered an object composed of 9 spheres of same intensity, but different diameters. Figure 6(a) shows 

(with perspective) the object under study, composed of the 9 spheres located in a centered cubic 

configuration. Figure 6(a’) shows the spectrum of this object. Frequencies along the x- and z-axis are 
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represented. The frequencies are displayed with a logarithmic scale, in order to enhance the lower, high-

frequency components, following the equation: Slog=log10(1+30*abs(S)), where S (for spectrum) is the 

FFT of the object. 

Same PSF and noise level as for Fig. 5 have then been used to mimic the acquisition process. Figure 

6(b) shows the object, convolved with the PSF. Blurring and z-elongation are clearly visible. On 

Figure 6(b’), the effect of the missing cone is clearly visible, the frequencies along the z-axis being cut-

off, and the spectrum exhibiting the classical butterfly shape for a conventional microscope [33]. Figure 

6(c) and 6(c’) are Figure 6(b) and 6(b’) with the addition of noise, respectively. The effect of noise is to 

blur even more the image, which translates itself in the spectrum as a relative decrease of the higher 

components, namely a loss of contrast in the spectrum. 

Figures 6(d) to 6(f) show the results of LLS, MAP and ML-EM deconvolutions, respectively, with 

Figures 6(d’) to 6(f’) displaying the associated spectrums. Because of the noise, regularization for LLS 

and MAP deconvolution must be kept at a high level by discarding or lowering the unstable, higher-

frequencies starting at a relatively low frequency. As a consequence, the z-elongation is weakly corrected 

only. This is clearly visible on the associated spectrums, as those frequencies which are present, but 

attenuated, in Figure 6(b’) are indeed partially restored, but the missing cone is still clearly visible. 

Deconvolution with ML-EM gives slightly better results, as can be seen on Figure 6(f), for which the z-

elongation is better corrected. On Figure 6(f’), one can clearly see this effect, as the missing cone present 

in Figures 6(b’)(c’) is now partially filled. 

Figures 6(g) to 6(i) display the results of LLS, MAP and ML-EM deconvolutions, respectively, but 

now including our pre-filtering, technique, with Figures 6(g’) to 6(i’) displaying the associated spectrums. 

Comparing Figures 6(g) to 6(i) with Figures 6(d) to 6(f) shows that for the three deconvolution methods 

considered in this paper, a noticeable gain in the deconvolution results quality is obtained. 

First, the objects (the 9 solid spheres) are better separated from the fuzzy background due to the 

noise, thanks to the pre-filtering. This results in an easier segmentation of the deconvolved images. 

Second, because much of the noise is suppressed, the deconvolution algorithms can now better 
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restore the higher frequencies, which permits a better reconstruction of the shapes. For our automatized 

LLS and MAP programs, this results in the inversion processes now being able to take into account more 

higher frequencies, which without filtering would otherwise contribute to amplify the noise to a 

catastrophic level, rendering the deconvolution useless. 

The better quality of the results is clearly visible on Figures 6(g’) to 6(i’), which compared to Figures 

6(d’) to 6(f’), show an extended reconstructed spectrum, ML-EM with pre-filtering being able to almost 

fully reconstruct the original spectrum. 

Table 1 shows some quantitative measurements done on the deconvolved images presented in 

Figure 6. The nine solid spheres are presented in increasing size order. We focused our attention onto the 

volume, total (integrated over volume) intensity and maximum intensity for each sphere. All images are 

segmented in the same way, by applying a 15% threshold level, relatively to the maximum intensity in the 

image. The first lines (entitled Original) give the reference data for each sphere, which are supposed to be 

recovered after deconvolution. We considered LLS, MAP and ML-EM deconvolution, without- and with 

pre-filtering (called LLS+, MAP+ and ML-EM+ in Table 1), respectively. All results for deconvolved 

images are presented as variations in percentage with respect to the original spheres. 

First, one should note that for the two smallest spheres, no relevant measurements could be done after 

deconvolution. The reason is that these smaller spheres are not properly segmented and are considered as 

smeared-out in the background. Note that in this work, we focus our attention onto improving the quality 

of the quantitative measurements, and not onto getting the highest possible separation or identification of 

small sources (resolution). 

For volume measurements, pre-filtering increases the final results quality for all the three considered 

methods. For example, volume measurements with LLS+ show a typical 40% improvement over LLS. 

LLS+ and MAP+ give similar results in terms of sites identification and volume measurements. The best 

results in term of volume measurements are obtained with ML-EM+ with pre-filtering. Particularly 

interesting is that with this method, contrary to LLS+ or MAP+, the error on the volume not only is the 

lowest, but also shows little variations from one bead to the next. This also shows that ML-EM+ properly 
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reconstructs the shapes, a conclusion which is supported by the fact that the object reconstructed with 

ML-EM+ has the closest spectrum to the original object made out of the 9 spheres (see Figure 6(a’) and 

Figure 6(i’)). 

Integrated intensity measurements show a similar improvement for LLS+, MAP+ and ML-EM+ as 

well. The best results for the integrated intensity of each sphere are obtained with LLS+ (neglecting the 

bead ∅2), then MAP+. ML-EM+ with pre-filtering gives in that case worst results than ML-EM alone. 

This may be explained by the fact that ML-EM+ the best reconstructs the spheres with a correct shape and 

(almost) flat profile, but with a lower intensity than in the original object, which naturally translates as a 

similar error on the integrated intensity. Note however that the variations of the errors on the integrated 

intensity and the maximum intensity are also the lowest for ML-EM+, showing that this methods gives 

results which quality is almost independent of the size of the object. 

For our biological applications, we are interested in identifying fluorescent sites on cells, for which 

we want to measure the integrated intensity of each fluorescent site, and its shape. One peculiar point of 

interest is to identify whether several types (in term of size and intensity) of fluorescent sites do exist, 

which may indicate different cell population. Consequently, making errors on the absolute level of 

fluorescence is not the most problematic, while correctly measuring the size and relative intensity of the 

fluorescent sites on the same cell is important. 

As a conclusion of these simulations, we can choose either LLS+ or MAP+ for a first, rapid 

evaluation of the results, and then use ML-EM+ for a more precise estimation of (even) the absolute sizes 

(as ML-EM+ the best reconstructs the volumes) and relative maximum or integrated intensity (as ML-

EM+ exhibits the lowest variations for this measurements). 

 

5. APPLICATION TO BIOLOGICAL IMAGES 

 

We then applied our pre-filtering method to biological images of CD34+ blood cord cells acquired 

with our BX51 epifluorescence microscope (Olympus), equipped with a CellScan 3-D acquisition device. 
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Images are acquired using a 12 bit, TE-1317-K Princeton CCD camera. Pixel size is 6.8x6.8 µm2. A

100x, oil immersion (noil=1.515), NA=1.4 objective has been used in conjunction with coverglasses of 

design parameters (nglass=1.525, 170 µm thickness). The PSF has been measured using TetraSpeck 

fluorescent latex beads of 0.2 µm diameter (Molecular Probes) (See Ref. [38] for details of the PSF 

acquisition protocol). The biological work on this cell line is to study possible population differentiation 

during the cell maturation. For this, one needs to study both the global fluorescence of the cell (for which 

deconvolution may be superfluous, because a conventional microscope, as opposed to a confocal 

microscope, transmits all the fluorescence light emitted by the cell, even in a fuzzy image) as well as the 

repartition of this fluorescence along some specific cell sites (for which deconvolution is mandatory) [39]. 

Figure 7 shows the results when deconvolving the data with and without pre-filtering and varying the 

regularization parameter for MAP deconvolutions. Figure 7(a) shows the original image. The level of 

noise in this image is compatible with a deconvolution without pre-filtering (α=0), as shown by Figures 

7(b) and 7(c). However, changing the regularization parameter from β=10−4
to β=10−7

greatly changes the 

final result. This means that quantitative measurements (size of fluorescent sites for example) may greatly 

vary depending on the operator skills in fixing the value of β, which is best suited for a given image. On 

the contrary, when using a Wiener pre-filtering with α=1 and changing the regularization parameter β in 

the same range, the result of the deconvolution is much more stable, as shown by Figures 7(c) and 7(d). 

We tested our method on several images for which, without pre-filtering, deconvolution failed or 

gave very different results with respect to the regularization parameter β and found it very reliable: in 

each case, the result of the deconvolution with pre-filtering is very insensitive to a large variation of β.

For biological samples, the level of noise is estimated from the data by analyzing a supposedly signal-free 

region of the image. 

We therefore can say that using a Wiener pre-filtering improves the deconvolution process with LLS 

and MAP in two ways. First, images one otherwise cannot deconvolve with a satisfactory result may now 

be used for biological measurements. Secondly, by eliminating the manual adjustment of the 

regularization parameter by the operator, the reliability and repeatability of the quantitative measurements 
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on the deconvolved image is greatly improved. We believe this is an important step for having 

deconvolution methods more widely adopted for routine use by non-specialists of image processing. 

When it comes to speed, our pre-filtering method combined with automatic determination of the 

optimal parameters for LLS or MAP also presents some advantages. The ML-EM deconvolution 

algorithm always gives the best results for our simulated as well as real biological images. However this 

method being iterative, it is rather time consuming, especially for large images. This is not real problem 

when only few images are to be treated. For our study of CD34 cells maturation [39], and in order to 

obtain statistically significant results, we have to process a few hundredths raw 3-D images, out of them a 

few dozens being biologically relevant are selected. Processing all images with ML-EM would be 

unrealistic in that case, as processing is much more longer than the sample preparation and data 

acquisition. Our methods give slightly lower quality results, but are faster. 

Typically, for our CD34 images correct deconvolution results are obtained with ML-EM after about 

100 iterations, which take about 35 mn per image on a 700Mhz Pentium III computer with 768 Mbytes of 

RAM. Our method permits to preprocess one 3-D image within 4 mn with LLS after 35 iterations and 

8 mn with MAP after 27 iterations, in order to find the optimal regularization thresholds. We therefore 

use our improved LLS or MAP algorithm for a first, rapid screening of the deconvolved data, which 

permits to eliminate most of the biologically irrelevant images. Only the best raw candidates are then, in a 

second step, deconvolved with ML-EM before the biological analysis. Doing so greatly speeds up and 

facilitates the analysis work for the biologists. 

 

6. CONCLUSION AND PERSPECTIVES 

 

We have extended the technique proposed by Sekko [30] to 3-D biological images. We have shown 

that using a Wiener filter to pre-filter fluorescence images from an optical microscope greatly enhances 

the quality of the deconvolution and the reliability and repeatability of quantitative measurements. The 

result is then much less dependent on the regularization parameter used in the LLS or MAP deconvolution 
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methods. This should help the biologists to use deconvolution techniques for their work. 

Our method applied to the LLS and MAP deconvolution techniques recalls the results obtained by 

Van Kempen et al. on the Richardson-Lucy algorithm [40].  

The method we propose has been tested on images from a classical microscope, but should also help 

to process images from confocal or bi-photon microscopes. The Wiener filter, which has been used in this 

work, is best suited for additive Gaussian noise. However, fluorescence emission is known to be also 

affected by Poissonian noise, so other type of pre-filtering may be used. 

Finally, we have shown that pre-filtering can also improve deconvolution of noisy data sets with 

other algorithms like Maximum Likelihood-Expectation Maximisation (ML-EM). The Projection onto 

Convex Sets (POCS) method could also take benefit of this technique. 
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ANNEX 1 

 

List of the parameters used to compute the PSF of a classical (non-confocal) fluorescence microscope 

with the XCOSM package: 

 

Nxy: 128  size of the image in x and y 

deltaxy: 0.068 pixel size in image space in µm

Nz: 64 size of the image in z (optical axis) 

deltaz: 0.068 pixel size in z in µm

mag: 100 lateral magnification 

NA: 1.4 numerical aperture of the objective 

workdist: 0.16 working distance of the objective in mm 

lamda: 0.000530 fluorescence wavelength in mm 

slipdesri: 1.525 coverslip design refractive index 

slipactri: 1.525 coverslip actual refractive index 

slipdesth: 0.170 coverslip design thickness in mm 

slipactth: 0.170 coverslip actual thickness in mm 

medesri: 1.515 immersion oil design refractive index 

medactri: 1.515 immersion oil actual refractive index 

specri: 1.33 specimen refractive index 

specthick: 0.0 specimen depth in mm 

desot: 160 design tube length in mm 

actot: 160 actual tube length in mm 
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TABLE CAPTIONS 

 

Table 1: Quantitative measurements relative to the results presented in Figure 6. The 9 objects of 

increasing size are segmented, and their volume, total (integrated) intensity and maximum intensity are 

measured after LLS, MAP and ML-EM deconvolution, without- and with pre-filtering, respectively. All 

results for deconvolved images are presented as variations in percentage with respect to the original 

objects. 
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Bead ∅1
(0.068µm
)

Bead ∅2
(0.136µm
)

Bead ∅3
(0.204µm
)

Bead ∅5
(0.340µm
)

Bead ∅6
(0.408µm
)

Bead ∅7
(0.476µm
)

Bead ∅8
(0.544µm
)

Bead ∅10
(0.680µm
)

Bead ∅11
(0.748µm
)

Volume 
(voxels) 

1 7 27 81 115 251 341 515 739 

Σ(I) 100 700 2700 8100 11500 25100 34100 51500 73900 
Original 

Max(I) 100 100 100 100 100 100 100 100 100 

∆Volume x x 266.7 232.0 226.0 157.0 157.7 162.3 133.8 

∆Σ(I)  x x -21.4 2.7 7.6 3.0 3.9 8.5 7.0 LLS 

∆Max(I) x x -63.3 -39.4 -26.7 -1.6 7.6 -0.6 -3.3 

∆Volume x x 207.4 258.0 247.8 211.6 186.7 168.8 148.7 

∆Σ(I) x x -39.6 -6.1 -0.5 7.2 7.2 8.0 7.4 MAP 

∆Max(I) x x -72.4 -47.2 -36.6 -15.7 -6.1 -4.0 -1.4 

∆Volume x x x 0 69.6 96.0 88.9 84.9 87.7 

∆Σ(I) x x x -74.0 -47.7 -26.6 -23.8 -19.6 -15.1 MLEM 

∆Max(I) x x x -56.7 -23.2 -7.4 8.4 9.5 18.9 

∆Volume x 171.4 174.1 155.6 131.3 107.6 103.8 87.0 79.7 

∆Σ(I) x -49.9 -8.7 -1.9 -5.1 -0.4 -1.4 -0.9 -0.7 LLS+ 

∆Max(I) x -73.7 -33.3 -3.4 -6.6 -6.5 -5.5 -2 1.6 

∆Volume x x 174.1 155.6 153.9 117.1 121.1 106.0 96.5 

∆Σ(I) x x -31.3 -10.4 -9.7 -5.1 -3.0 -1.9 -1.1 MAP+ 

∆Max(I) x x -58.0 -19.8 14.3 -5.5 -3.2 -4.6 -2.7 

∆Volume x x -7.4 -8.6 7.8 9.6 4.1 14.0 9.1 

∆Σ(I) x x -52.3 -39.8 -29.7 -23.6 -23.8 -18.4 -19.3 MLEM+ 

∆Max(I) x x 30.1 78.2 46.6 39.8 38.1 43.8 40.8 

Table 1 
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FIGURE CAPTIONS 

 

Fig. 1: Scheme of automatic determination of the regularization parameter of the LLS or MAP algorithms. 

The original image is compared with a simulated image, which is obtained by re-convolution of the 

deconvolution result by the regularized PSF. Minimizing a functional F permits to choose the optimum 

regularization parameter without a priori knowledge of the operator. The figure shows x-y (top) and x-z 

(bottom) cuts of the 3-D data sets. 

 

Fig. 2: Quadratic error curve computed between the original test data set and the deconvolved data set as a 

function of the regularization parameter β for the LLS algorithm. The error varies very fast with β.

Fig. 3: Best deconvolution result for our test data set computed at the minimum of the error curve of 

Figure 2. (a) deconvolved image (x-y and x-z cuts): the information has been smeared out in the noise. 

(b)-(c) profile cuts in the deconvolved image (solid lines) compared to profiles in the original images 

(dashed lines). 

 

Fig. 4: Quadratic error surface computed between the original test data set and the deconvolved data set as 

a function of the regularization parameter β and the Wiener pre-filtering parameter α. Note the deep 

valley close to α=10−0.4
 : for this pre-filtering value, the deconvolution result is much less sensitive to β.

Fig. 5: Best deconvolution result for our test data set computed at the minimum of the error surface of 
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Figure 3. (a) deconvolved image (x-y and x-z cuts). (b)-(c) profile cuts in the deconvolved image (solid 

lines) compared to profiles in the original images (dashed lines). The quality of the reconstruction is 

greatly improved by pre-filtering. 

 

Fig. 6: Application of LLS, MAP and ML-EM to a simulated image of an object consisting of 9 solid 

spheres of same intensity and different diameters. (a) original object viewed in perpective. (a’) spectrum 

of the original object along the x- and z-axis. (b)  object convolved with the PSF computed using the 

parameter of Annex 1. (b’) spectrum of image (b). (c) et (c’) same as (b) and (b’) after addition of noise. 

(d) and (d’) deconvolution of (c) with LLS and its spectrum. (e) and (e’) deconvolution of (c) with MAP 

and its spectrum. (f) and (f’) deconvolution of (c) with ML-EM and its spectrum. (g) and (g’) 

deconvolution of (c) with LLS with pre-filtering and its spectrum. (h) and (h’) deconvolution of (c) with 

MAP with pre-filtering and its spectrum. (i) and (i’) deconvolution of (c) with ML-EM with pre-filtering 

and its spectrum. 

 

Fig. 7: Application to a typical 3-D biological image. (a) original data. (b) without pre-filtering MAP 

deconvolution with β=10−4
. (c) without pre-filtering MAP deconvolution with β=10−7

. (d) Wiener pre-

filtering with α=1 and MAP deconvolution with β=10−4
. (e) Wiener pre-filtering with α=1 and MAP 

deconvolution with β=10−7
. Pre-filtering stabilizes the deconvolution process and measurements on 

Figure 6(d)-(e) are more reliable than measurements on Figure 6(b)-(c). The figures show x-y (top) and x-

z (bottom) cuts of the 3-D data sets. 
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Figure 1 

 

Figure 2 
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Figure 4 
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Figure 7 
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