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We consider the growth rate of the height of the connecting bridge in rapid surface-

tension-driven coalescence of two identical droplets attached on a partially wetting

substrate. For a wide range of contact angle values, the height of the bridge grows

with time following a power law with a universal exponent of 2/3, up to a threshold

time, beyond which a 1/2 exponent results, that is known for coalescence of freely-

suspended droplets. In a narrow range of contact angle values close to 90◦, this

threshold time rapidly vanishes and a 1/2 exponent results for a 90◦ contact angle.

The argument is confirmed by three-dimensional numerical simulations based on

a diffuse interface method with adaptive mesh refinement and a volume-of-fluid

method.

Droplet coalescence is an important problem from both a fundamental and an applied points of

view. Industrial applications include sintering,1 two-phase separation,2 and microfluidic actuators.3

The coalescence of droplets on a partially wetting substrate (illustrated in Fig. 1) has been studied

mostly in a slow, viscous regime, corresponding to a sufficiently large value of an Ohnesorge number,

Oh = µ/(ργ R)1/2 (where µ is the liquid viscosity, γ the coefficient of surface tension, and R a drop

radius). There, the width of the liquid bridge (W in Fig. 1) grows as t1/2 for infinitesimal contact

angles, which has been demonstrated to result from a simple mass balance model that assumes a

constant velocity into the liquid bridge and that the effect of the increase in bridge height on the

width is negligible.4 Experimental studies have confirmed this result5, 6 and show that the result

carries over to large contact angles6 and to low-viscosity liquids.7 The corresponding rate at which

the height of the liquid bridge for slow coalescence is generally different, Narhe et al.5 observed

experimentally and predicted from a force balance that in an early stage of slow coalescence the

bridge height increases linearly with time, and that the proportionality factor scales quadratically

with the contact angle. Lee et al.6 identified from their experiments a power-law exponent with the

value in the range 0.5–0.9 that increases (as does the proportionality factor in the power law) with

the contact angle, and at late times a deviation from a single power law altogether.6 Hernández-

Sánchez et al.8 identified a unity-value exponent, consistent with Narhe et al.,5 but they found that

the proportionality factor scales with the fourth power of the contact angle. We investigate herein

rapid coalescence instead, with the main objective of studying the rate at which the height of the

liquid bridge grows.

The growth rate of the height of the liquid bridge in an inertial regime can be predicted by

considering the symmetry (x, z) plane depicted in Fig. 1, crucially extending an analysis of Eggers

et al.9 for coalescence of freely suspended inviscid droplets. The pressure jump across the interface
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FIG. 1. Coalescence of two droplets on a flat solid substrate.

is estimated on one hand as ρ(dH/dt)2, and on the other as γ /L, where L is the radius of the interface

curvature in the middle cross sectional (x, z) plane and can be estimated by the distance between the

symmetry (y, z) plane to the surface of the initial droplet, resulting in

L(z) = Rsinθ − (R2 − (z + Rcosθ )2)1/2, (1)

here we have defined R as the radius of curvature of the initial drops, and θ as the contact angle

(shown in Fig. 1). Equating the dynamical pressure ρ(dH/dt)2 and the capillary pressure γ /L, we

obtain
⎛

⎝1 −

(

1

sin2θ
−

(

ζ +
1

tanθ

)2
)1/2

⎞

⎠

(

dζ

dτ

)2

= 1, (2)

in terms of ζ = H/Rsinθ and τ = (t − tc)(γ /(ρR3sin3θ ))1/2, where tc is the time at the instance of

coalescence. The main trends in the behaviour of the solution can be identified from a Taylor series

expansion (truncated after the first two terms) for small ζ of the first part in brackets in Eq. (2),

(

ζ

tanθ
+

ζ 2

2

(

1 +
1

tan2θ

)) (

dζ

dτ

)2

= 1. (3)

Although this equation can be solved analytically, the result is an implicit nonlinear equation for

ζ (τ ), but the main conclusions are readily drawn from Eq. (3). Evidently, at θ = 90◦, the analysis

coincides with that for coalescence of freely suspended droplets (without a wall) and gives ζ ∼ τ 1/2,

which is consistent with that of Eggers et al.9

In the generalization to arbitrary contact angles, however, the first-order term in the Taylor

series (in Eq. (3)) dominates to give ζ ∼ τ 2/3 until ζ ∼ sin2θ when the second-order term becomes

important, well beyond which the τ 1/2 regime is expected. Hence, the 2/3 regime contracts to zero at

θ = 90◦ but is otherwise dominant over a large part of the coalescence process. In fact, the maximum

value of ζ (corresponding to the bridge height reaching the top of the drops) is (1 − cosθ )/sinθ ,

which is reached before a transition to the 1/2 regime at ζ ∼ sin2θ if θ < 68.53◦. So the exponent

in a power law is not dependent on the contact angle, but the time range over which an exponent of

1/2 or 2/3 can be observed. This is confirmed by the numerical solution of the full model, Eq. (2),

as is seen in Fig. 2: the result for 90◦ serves as an upper bound for other angles. It is also seen from

these results that at late times, the slope drops somewhat below 1/2; higher-order contributions (of

order n) to the above-mentioned Taylor series give rise to a reduction in the power to (2/(2 + n)).

For this inertial regime to commence, the instantaneous Reynolds number ρH(dH/dt)/µ should

be ≫1. The result ζ = tan1/3θτ 2/3 obtained from Eq. (3) is therefore consistent with inertia/capillary-

dominated flow as long as τ ≫ Oh3/(sin3/2θ tan2θ ) until ζ ∼ sin2θ ; the regime ζ = (2τ /b)1/2 (with

b ≡ (1 + 1/tan2θ )1/2/
√

2) requires Oh2 ≪ 2sinθ /(1 + 1/tan2θ ).

To test this model, we first compare against prior experiments for rapid coalescence,7 in

Fig. 3. Of course, these prior experiments are necessarily limited from the point of view of the
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FIG. 2. Numerical solutions of Eq. (2) for (from top to bottom) θ = 90◦, 89◦, 87◦, 80◦, 45◦, and 5◦. The top of the drops has

been reached (L = Rsinθ corresponding to ζ = (1 − cosθ )/sinθ ) at the end point of each curve.

present analysis, in that they do not include the range of contact angles that are now of main interest

here, which is close to 90◦. Nevertheless, it is encouraging to see the experimental data agree well

with the present theory, which contains no adjusted parameter, although the uncertainty in the data

is such that precise confirmation is not possible.

We have therefore also conducted tests against numerical simulations of droplet coalescence on

a substrate that are based on the full 3D Navier-Stokes equations. The approach resolves the flow in

the liquid as well as in the surrounding fluid. Although computational methods for two-phase flows

are generally well-established, the physical modelling of the vicinity of moving contact lines and its

accurate numerical representation remain challenging subjects.10 We present here results obtained

with two independent methods that allow us to assess the sensitivity of the simulation results to the

contact-line model. One of these approaches is based on a diffuse-interface (DI) method,11, 12 with

newly incorporated adaptive mesh refinement function;13, 14 in the following, we shall indicate by

“n levels of refinement” that the finest grid spacing is 1/2n−1 times the coarsest grid spacing. The DI

method naturally regulates the stress singularity at the contact line by considering the fluid interface

as a diffused layer. The second method used adopts a volume-of-fluid (VOF) approach.15, 16 In the

version of the VOF method employed in the present study, there is no interface reconstruction but

the interface is limited to 2 to 3 grid cells, thanks to an accurate flux-corrected transport algorithm.

The shear stress singularity at the wall is removed by using the Navier slip boundary condition.

The sensitivity of the results of these simulations to the mesh resolution and numerical method

is first investigated in Fig. 4. The dimensionless neck height is shown versus dimensionless time
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FIG. 3. Comparison of Eq. (2) (solid line) against the experiments of Ref. 7 (symbols) for the bridge height versus time. The

theoretical curve is terminated when the bridge height reaches the top of the droplet as explained in the text. In the experiments

distilled water droplets with density of 1000 kg/m3, viscosity of 1.07 mPa s, surface tension coefficient of 0.074 N/m, and

contact angle of θ = 64◦ were used. Droplet footprint radius is R = 1.61 mm (triangles), 2.3 mm (squares), corresponding

to Oh = 0.0029 and 0.0025, respectively.
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FIG. 4. Simulation results from a DI method and a VOF method for Oh = 0.0025, θ = 70◦. Coloured solid curves labelled

with numbers represent time evolution of the bridge height and are from a DI method with different levels of adaptive mesh

refinement (mesh resolutions close to the interface are 2: 1/40, 3: 1/80, 4: 1/160, 5: 1/320). Purple curve marked VOF: VOF

method with mesh resolution of 1/50; dashed-dotted black curve: theoretical result from Eq. (2), found to have a slope very

close to 2/3. Red dashed line represents temporal evolution of the bridge width (ω = W/Rsinθ ) obtained from a DI method

using a level-5 mesh, found to have a slope close to 1/2.

for four simulations using the DI method with different numbers of level of refinement. The bridge

height in early coalescence is seen to relatively insensitive to mesh resolution after a very short

transient that is caused by the finite numerical resolution used, but the duration and significance

of which reduce upon grid refinement. We also find that the result obtained from the VOF method

agrees very well with the DI results. We present the theoretical result from the simple force-balance

model (Eq. (2)) in Fig. 4, which shows a slope of 2/3. A 1/2 regime is almost not visible for θ = 70◦

for the reason discussed above. It is seen that the results obtained with the two 3D methods are all

close to the theoretical prediction (Eq. (2)), and both exhibit a ζ ∼ τ 2/3 range of at least one decade.

It is also noteworthy that Eq. (2) does not contain any adjustable parameter except for the initial

value of ζ , which, if sufficiently small, does not affect the result shown in the figure. But this is

under the assumption that the dominant curvature radius is exactly equal to L. A horizontal shift of

the solution of Eq. (2) in Fig. 4 to capture the 3D simulation results would require a proportionality

constant for the driving curvature radius that is well within the range 1–5 for various contact angles.

We have also investigated the corresponding growth rate of the width of the bridge during rapid

coalescence. A prior experimental study7 has confirmed that at low values of Oh, results for the

growth of the width are consistent with those from Ref. 4 for coalescence of near-perfectly wetting

droplets under creeping-flow conditions: W ∼ t1/2, on the viscous/capillary timescale µR/γ . In

Ref. 4, this result is demonstrated to follow from a mass balance over the liquid bridge. This

argument does not require input regarding the bridge height vs time. But it does assume that the

velocity at which liquid is drawn into the bridge remains constant, and uses Tanner’s law17 to

determine the time constant. In Fig. 4, we also present the time evolution of the bridge width and

find that it grows as τ 1/2, which is consistent with Ref. 7. We have verified that the average flow

speed into the liquid bridge remains unchanged during a considerable time span, which suggests that

the mass balance model for the bridge width also applies very well even for inertial coalescence.

Although there would here be an opportunity to extend the analysis of Ref. 4 to non-flat droplets by

using an extension of Tanner’s17 law, the curvature radius of the moving contact line is very small,

the effect of which on the contact-line dynamics still remains unclear.

We have conducted simulations for droplet coalescence with different contact angles and find

that the width of the connecting bridge grows according to ω ∼ τ 1/2 for all cases during the inertial

regime over which we have studied the growth of the bridge height in the above. For a wide range of

contact angles (but well below 90◦), the bridge height always grows as ζ ∼ τ 2/3 in an early stage of

coalescence, which is evidenced by the results obtained from the two independent methods, shown

in Fig. 5. The theoretical results from Eq. (2) are not included to keep the figure easily readable; the

agreement between the simulation results and Eq. (2) is similar to that in Fig. 4.
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FIG. 5. Temporal evolution of bridge height for different contact angles. The dashed-dotted curves are from a DI method for

θ = 30◦, 45◦, and 80◦ (from bottom to top: blue, red, and green, respectively) with Oh = 0.0018. The (red) solid line is from

a VOF method with θ = 45◦ and Oh = 0.0025.

From the theoretical model Eq. (2), a transition from a 2/3 to a 1/2 slope is only visible when

the contact angle is close to 90◦ (Fig. 2). To confirm this with the full numerical simulations is

challenging, because the large initial curvature must be resolved. But in Fig. 6, the results are seen

to be consistent with the change in slope predicted by the model, albeit that quantitative agreement

between the numerical simulation and the theory is achieved only for a rather narrow time range.

Thus, we can conclude on this basis together with Fig. 5 that for most contact angle values, in the

inertial regime, the height of the liquid bridge grows at an early stage according to a power law in

time with a universal exponent of 2/3.

We have also carried out simulations for a larger Ohnesorge number value, Oh = 0.1, where

viscous effects become important. The numerical simulation results obtained from both methods

show significant deviation from the theoretical prediction for inertial coalescence as in Fig. 7: the

power-law exponent becomes considerably larger than 2/3 and is approximately 0.88, falling in the

range measured by Lee et al.,6 and is also close to the predictions of Narhe et al.5 and Hernández-

Sánchez et al.8

Different power-law time dependencies have been identified for the height and width of a liquid

bridge during inertial coalescence of two identical droplets on a horizontal partially wetting substrate.

The liquid bridge height generally exhibits two power-law regimes with different exponents, wherein

one regime vanishes for a contact angle of 90◦. A simple model has been proposed that is supported

by fully 3D numerical simulations using two independent numerical methods.
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FIG. 6. Transition from a 2/3 regime to 1/2 regime. The solid lines represent simulations using the DI method, the dashed

lines Eq. (2); blue (upper two) curves are for θ = 90◦, red (lower two) lines are for θ = 85◦. Horizontal line labels ζ = sin2θ

for θ = 85◦. Oh = 0.0018.
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FIG. 7. Simulation results for Oh = 0.1, θ = 70◦. Lower (black) solid line is from a DI method with 3 levels of adaptive

mesh refinement; the upper (red) solid line is from a VOF method with mesh resolution of 1/50. The dashed-dotted (blue)

line represents a numerical solution of Eq. (2). The green dashed line represents τ 0.88.

The disparity in growth rates of the width and height of the liquid bridge between coalescing

droplets on a partially wetting substrate has implications on subsequent flow behaviour. The end state

observed in experiments of a “peanut” shape7 may readily be attributed to contact-angle hysteresis:

the parts of the contact line furthest removed from the liquid bridge does not recede to allow the

formation of the otherwise expected single spherical cap end state. But the present results suggest

a further mechanism that arises from competition between the two radii of curvature of the liquid

bridge. The radius of curvature in the (x, z) plane Rxz drives the coalescence as long as it is smaller

than that in the (y, z) plane Ryz.

During the inertial coalescence regime, Rxz evolves on the inertial/capillary timescale. It can

be estimated by first noticing that the first term in brackets in Eq. (2) is proportional to L. In

Eq. (3), this has been approximated by two leading terms in a Taylor series expansion, which has

been used in the above to establish power-law regimes for the bridge height as a function of time:

retaining only the linear term ζ /tanθ results in H ∼ Rτ 2/3, which then leads for consistency to Rxz

≈ L(H) ∼ H/tanθ . Conversely, if the O(ζ 2) dominates in the first term in brackets in Eq. (3), we

have seen that H ∼ Rτ 1/2, which results in Rxz ≈ L(H) ∼ (H2/R)(1 + 1/tan2θ ). Ryz can be estimated

from instantaneous values of H ≈ Rτα and Y ≈ R(τ /Oh)1/2 by fitting a parabolic interface shape at

x = 0, z ≈ (1 − (y/Y)2)H, which gives Ryz ≈ Y2/H ≈ Rτ 1−α/Oh, with α = 1/2 (at late times or if

θ = 90◦, as per our results presented above) or 2/3. We expect the coalescence process to be

interrupted once Rxz is about to overtake Ryz. Based on the above curvature estimates, this would

occur when τ > O(1/Oh3) if the bridge height grows following τ 2/3, and when τ > O(1/Oh2) if the

height is growing in the 1/2 regime. This indicates that at relatively large values of Oh, the coalescence

process is terminated due to the resisting curvature in the (y, z) plane becoming dominant. We have

indeed found in our 3D numerical simulations that a peanut shape can be obtained at a large value

of Oh for a fixed window of contact-angle hysteresis: for a contact-angle hysteresis window of [50◦,

71◦], a spherical cap was obtained at Oh = 0.0025, whereas a peanut-type shape was observed

for Oh = 0.01 (in both cases, a DI method was used). Evidently, further detailed computational or

experimental studies would be required to establish the precise relation between the initial stages

of coalescence investigated here and the final droplet shape, as well as the relative importance of

contact-angle hysteresis and the mechanism proposed here.

We have extended Eq. (2) to the asymmetrical coalescence of two droplets with different sizes

R1 and R2 on a substrate. The radius of interface curvature L can be evaluated by

L(z) =
1

2
[R1sinθ − (R2

1 − (z + R1cosθ )2)1/2

+R2sinθ − (R2
2 − (z + R2cosθ )2)1/2]. (4)



Using R1sinθ as the length scale, we arrive at a normalized pressure-balance equation that generalizes

Eq. (2). After a Taylor series expansion, keeping the first and second order terms of ζ , we have

(

ζ

tanθ
+

ζ 2

2

(

1 +
1

tan2θ

)

R1 + R2

2R2

)(

dζ

dτ

)2

= 1. (5)

It is seen that the leading order result does not depend on the size ratio of the two droplets, which

means the 2/3 regime reported above is still expected for the coalescence of non-equal sized droplets.

Finally, the main validation of the theory presented herein is through numerical simulations. A

comparison against prior experiments has also been made, but these data from prior studies turn out

to be for a range of contact angles that is too limited, as these do not include results (over several

orders of magnitude of the bridge height and width) for contact angles close to 90◦, which would be

essential, in view of the results obtained herein.
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