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interactions between the users and the vehicles, and
Abstract— This paper deals with the Dial and Ride Problem  uncertainty about fore coming demands.
(DARP), while using randomized greedy insertion techniques So, what is done inside this paper is to consider a generic
together with constraint propagation techniques. Though it DARP model with time windows and a mix
focuses here on the static version of Dial and Ride, it takesinto  goS/Economical-Cost performance criterion, and propose
account the fact that practical DARP has to be handled 45 rithms for this model which are based upon randomized
according to a dynamical point of view, and even, in some case, insertion techniques and constraint propagation, and so,

in real time contexts. So, the kind of algorithmic solution which . . . .
is proposed here, aim at making easier to bridge both points of which will easily adapt themselves to dynamic contexts,

view. The model is a classical one, and considers a performance ~ Where demand package has to be inserted into (or eventually
criterion which is a mix between Quality of Service (QoS) and removed from) current vehicle schedules, in a very short
economical cost. We first propose the general framework of the  time, while taking into account some probabilistic
model and discuss the link with dynamical DARP, next describe  knowledge about fore coming demand packages.

the algorithm and end with numerical experiments. The paper is organized as follows: we first introduce the
problem and discuss the link between static and dynamic

. INTRODUCTION formulations, next describe our formal model, together with
L iterature in the field of urban systems and geomatidge performance criterion which we use. Then we present the
hint a trend to a surge of new “on demand” flexible general insertion mechanism together with the constraint

transportation systems (ODT): ad hoc shuttle fleetpropagation techniques which we use in order to filter

vehicle sharing (AUTOLIB...), co-transportation (see foinsertion parameters and to select the demands to be
instance [3], [9]). This trend reflects from bothinserted. We conclude with experimental experiments and
environmental (climate change, overcrowded megalopglis comparison with [7] and [8].
and economical concerns (surge of energy prigedt has
also to be associated with technological advances: internet, [I. THE STANDARD DIAL A RIDE PROBLEM
mobile communication, gelocalization..., which allow ] .
efficient monitoring of complex mobility system and large A- General Dial a Ride Problem
sets of heterogeneous requests. We can find in literature several mathematical formulations

An important Operations Research model for théor the DARP. But, the complexity of all these linear
management of flexible reactive transportation system is theéograms doesn't allow finding an exact solution with a
DARP, which tries to optimize the way a given fleet okplver, the operation is too time consuming. In fact, it mixes
vehicles meet mobility demands emanating from people, Qf,lot of booleans and plenty of fractional numbers. Refer to
in some cases from some combination of people and gool§;, [7] for the principal formulations.

DARP is a complex problem, which admits several o pjg) a Ride Problem instance is essentially defined by:
formulation, most of them NP-Hard. It usually does not fit  _ 5 Transit network G = (V, E), which contains at

well the Integer Linear Programming framework [2] and one least some specific nodepot, and whose arcs e
must try do handle it through heuristic techniques: Tabu E are endowed with riding ti,mes Ie) > 0, and

search [4], genetic algorithms [7], partial branch/bound [2], eventually, with other technical characteristics;
Simulated Annealing [6], VNS techniques ],[8[10], a vehicle fleet s

Dynamic Programming [2]-[3], Insertion techniques [11]- _ : .
[12]. Moreover, a basic features of DARP is that it usually ZDf.emznd Seté)__ l@"_l €D arg demam?} being
derives from a dynamic context. So, algorithms for static € |ne. as a 6-uple) = (9, d, A, #0), #(d), Q),
DARP should be designed in order to take into account the where: ) .

fact that they will have to be adapted to dynamic and reactive o 0 €Vis theorigin node of the demandg;
context, which means synchronization mechanisms,



o d eV is the destination node of the ability of the system to efficiently deal with fore coming
demandp; demands, that means with demands which are likely to be
o A >0 is an upper bound (transit bound) formulated after the instamtwhenP is launched. This point
on the duration of demarnm’s processing; is the key one which motivates the approach which is going
o o) is a time window related to the time t0 be described here. We want an algorithmic framework
@, starts being processed; which is gging to be natqrally gompatible vyith thi§ context:
o ®d) is a time window related to the time the use of insertion te'chnlques is clearly going to fit the input
®, ends being processed; (E, D) of the dyngmlc context, and the use .of constraint
o @ is a description of the load relatedap propagation techniques is going to make easier uncertainty

Dealing with such an instance means planning th%boutfore coming demands handling. .
handling demands ob, by the fleet1#, while taking into 'Also, one should notlce.tha.t, ur!der this prospect, the
account the constraints which derive from the technic%|rtual complete n.etwork which is going to pe the key .'npl.ﬂ
characteristics of the network G, of the vehicle ftef and ata'for thg static model (gee next section II.A), is, in
of the 6-uplesd, = (a, d, A, #0), ®d), Q), and while practice, going to be a dynamic network.
optimizing some performance criterion which is usually a m
mix of an economical cost (point of view of the fleet '
manager) and of QoS criteria (point of view of the users). A The Considered Network
All along this work, we are going to deal with

THE FRAMEWORK

We treat here the general Dial a Ride Problem described

homogeneous fleets and withnominal demands, and we bove. It is known that we do not need to consider the whole
shall limit ourselves to static points of view but our insertiof 0 Ve - .
transit network G = (V, E), and that we may restrict

process allows flexibility for using it in a dynamic context. rselves to the nodes which are either the origin or the

Still, we shall pay special attention to cases when tempo j{rseive . S
constraints are tight. I%‘estlnatlon of some demand, while considering that any

vehicle which visits two such nodes in a consecutive way
B. Discussion: Dynamic versus Satic DARP does it according to a shortest path strategy. This leads us to

DARP is essentially a problem which arise in dynamigonsider the node seDgpot, o, d, i € I} as made with
contexts, and the trend is about reactivity delays whidppirwise distinct nodes, and provided with some distance
become smaller and smaller [5]. Basically, one shouliinction DIST, which to any pair x, y inOepot, 0, d, i €
consider a system which is identified by a vehicle\sead 1}, makes correspond the shortest path distance from x to y
user communityC, and a supervision systei® which, inthe transit network G.
because of advances in the field of geo-localization, mobileAs a matter of fact, we also split tBepot node according
communications and remote monitoring, permanentlip its arrival or departure status and to the various vehicles of
disposes of a full knowledge about the current state of tiiee fleet?}#, and we consider th@put data of a Standard
vehicles (position, load, roadmap...) and maintain@ial a Ride Problem instance as defined by:
communication with both users and vehicles. All along the - the set {1..K = Card{#)} of the vehicles of the
time, the system (centralized or decentralized) receives user homogenous fleet;
request, which, in the simplest case, are characterized by a the common capacitga® of a vehicle im;
load, an origin and a destination node, and time windows the node set X =QepotD(k), DepotA(k), k = 1..K}

related load and unload transactions, as well as about trip u{o;, d,iel}

duration. At some instanf supervisolS decides to launch a - the distance matrix DIST, whose meaning is that,
scheduling procedB, which consider as its input the current for any x, y in X, DIST(x, y) is equal to the length,
state E of the vehicles ofV, together with the currently in the sense of the length function I, of a shortest
waiting demand seb, and which, for any demardiin D, path which connect x to y in the transit network G:
either rejects it or insert it into the current schedule of some we suppose that DIST, satisfies theiangle
vehicle @ in V, without modifying in a significant way the inequality.

way v is supposed to meet previous demands. RunRing Moreover the following characteristics, which, to any
require a¢ computing time, and, at tinte+ 5, propositions node x in X, make correspond:

are transmitted to users and updated schedules are - its statusStatus(x): Origin, Destination, DepotA,
transmitted to the vehicles, which apply them until instant Depot D; we setDepot = DepotD U Depot A;
when the whole process takes place again. Meanwhile, it - itsload Cc#(X):
may occur that some demands are dropped or that vehicles o if Status(x) € Depot thenC#(x) = O;
register failure (delays or user fault...) [14]. o if Status(x) = Origin thenc#(x) = Q;

In any case, one see that, in case vehicles are moving o if Status(x) = Destination thenc#(X) = -Q;
inside a small area (a urban area) and deal with a large size _ i twin nodeTwin(X):

set of demands, proce$s has to insert in a fast way a
demand seb into a current schedulg, and that it has to do
it in a way which keeps most featurespfand preserves the

o if x =DepotA(k) thenTwin(x) = DepotD(K)
and conversely;
o if x =0; thenTwin(x) = d and conversely;



- its time window #Xx): for any k = 1.K,
HDepotA(k)) = [0, + [ = ADepotD(K)). Also, we
suppose that any(x), x € X, is an interval, which
may be writtenf(x) = [F.min(X), F.max(x)];

- its transit bound\(x): if x = ¢, or d, thenA(x) = A,
andA(x) = A else, where\ is an upper bound which
is imposed on the duration of any vehicle tour.

According to this construction, we understand that th
system works as follows: vehicle k& {1..K}, starts its
journey fromDepotD(k) at some time BepotD(k)) and ends
it into DepotA(k) at some time BepotA(k)), after having
taken in charge some subggk) = {®D, i € I(k)} of ®@: that
means that for any i in I(k), vehicle k arrived inat time
t(o) € Ho0), loaded the whole load;Qand kept it until it
arrived in ¢ at time t(¢) € #(o;) and unloaded Qin such a
way that t(¢) - t(g) < A;. Clearly, solving the Standard Dial a
Ride Problem instance related to those data (X, DIST, K,
CAP) will mean computing the subseték) = {®;, i € I1(k)},
the routes followed by the vehicles and the time values t(x),
X € X, in such a way that both economical performance and
quality of service be the highest possible.

F.Min(x]

B. Discussion: Durations and Waiting Times

Many authors include what they cabrvice durations in
their models. That means that they suppose that loading and
unloading processes related to the various nodes of X require
some time amound(x), (service time) and, so, that they
distinguish, for any node x X, time values t(x) (beginning
of the service) and t(x) +3(x) (end of theservice). By the

FP.Min(x)  FP.Max(x)

« Real » « Real » 8(succ(x))
departure arrival

F.Max(x) F.Min F.Max

{succ(x)) {succix}}
e o
Early

Arrival FP.Min | FP.Max
(sucex)) (succlx)

Service time (...) DIST{x,succ(x)) (...) Waiting Time Wehicle

DIST(x,succ(x)) updated

Fig. 1 Considered times between two nodes

C. Modeling and Evaluation Techniques

The model described in this section needs some
definitions, we set:

First(l") = First element of’; Last(") = last element
of I;
forany z inl":

o Succl, z) = Successor of z In;

o Pred(, z) = Predecessor of zIh

foranyz,z’  inT:

o z2<<z ifzislocated before z’ in T

o z<< zifz<<rz orz=2".

o Segment(, z, z’) = the subsequence
defined by all z” in " such that z << z”
<<t z’. If z = Nil, then Segment(G, Nil,
z’) denotes the subsequence defined by all
z” in I such that” <<~ z’.

same way, some authors suppose that the vehicles are alwayg any algorithmic description, we use the symbelin
running at their maximal speed, and make a differenggder to denote the value assignment operater:, means

between the time t*(x), % X, when some vehicle arrives in that the variable x receives the vakue Thus, we only use
X, and the time t(x) when this vehicle starts servicing th§mpol = as a comparator.

related demand (loading or unloading process). We do notin order to provide an accurate description of aheput

do it. Taking into account service times, which tends t@ata of our standard Dial a Ride Problem instance (X, DIST,
awment the size of the variables of the model and to makedt 45, we need to talk abotburs and relatedime value
more complex it, has really sense only if we suppose that tggs

service times3(x) depend on the current state (its current a tour T is a sequence of nodes of X, which is such that:

load) of the vehicle at the time the loading or unloading Status(First)) = DepotD:; = Status(End(C)) =
process has to be launched. Making explicitly appear waiting ’

. - . DepotA,
tlme_s t(x)— t*(x) is really useful if we make appt_aar_the speed For any node X iff', x # First(T'), End(), Status(x)
profile as a component of the performance criterion. In case ¢ Depot:

none of the situation holds, the knowledge of the routes of
the vehicles and of the time value t(x)exX, is enough to
check the validity of a given solution and to evaluate its
performance, and then it turns out that ensuring the
compatibility of the model with data which involve service
times and waiting times t(x) t*(x), x € X, is only a matter

of adapting the times windowgXx), the transit bounda(x),

x € X, and the distance matrix DIST (€fig. 1).

No node xe X appears twice ifr;
For any node x =;qresp. ¢ which appears i,
the nodeTwin(x) is also inl', and we have: x <
Twin(X) (resp.Twin(X) <<r X).

This tourT is said to béoad-valid iff:

- forany xinI', x# First(), we haveZ y < x CH(Y)

< CA®.

Moreover, this tourl” is said to betime-valid iff it is

possible to associate, with any node X'jrsome time value

t(x), in such a way that:

(E1)

- for any x inT", x = Last(), t(Succ(, x)) > t(x) +

DIST(x, Succrl, x)); (Distance Constraints)
- forany xinl, [t(Zwin(x)) — t(X)| < A(X);



- forany xinrl, t(x) e HX). are first going to provide ourselves with a package of
In case the toul is time-valid, any time value set t = constraint handling tools for testing the valid tours.
{t(x), x eX}, which satisfies (E1) is said to be wlid  First, checking the load validity of is easy. In order to be
related time value set. We denote byvalid{I) the set of the able to test the impact of the insertion of some demand into

related time value set t. the tourT” on the charge-validity of this tour, we associate,
In case we need to considems a variable, we say thatis  With any such a tour, the quantitied”, x), x e I', defined
time-valid in relation to . by:
The tourT is said to bevalid if it is both time valid and - foranyxin 75 A7 X) = 2yy<<rory=x CHY).
load valid. Then it comes thaf is load-valid iff for any x inl", (T,
For any pair I(, t) defined by some time-valid tolirand X) < CA®.
by some valid related time value set t, we may set: Second, checking the time validity ®f according to a
- Glo&T, t) = t(End()) — t(First()): this quantity current time window setzs = {FS(x) = [Z£S.min(x),
denotes the global duration of the tdyr Fs.max(x)], x e I'} may be performed through propagation

- ®Ride(T, 1) = ;i (t(d)-t(0) ; this quantity may be of the following inference rules;R = 1..5:
viewed as a QoS criterion, and denotes the sum of
the duration of the individual trips of the demanderfule Ry y = Succl, x); £S.min(x) + DIST(x, y) >
which are taken in charge by tdoy Fs.min(y) |= FS.min(y) < Fs.min(x) + DIST(x, y); NFact
- Wait(T, t) = GbT, 1) — (X xx » tasy DIST(X, <V
Succ(l, x))) : this quantity denotes the «waitingRule Rz 'y = Succl, x); #s.max(y) - DIST(x, y) <
time » of the vehicle involved iR, the waiting time ~ £5.maxXX) |= FS.max(x) « #s.max(y) - DIST(x, y); NFact
related to some node x being the time the vehicle ts- X;
supposed to wait before loading or unloading x ifRule Rs: y = Twin(x); X <<p y; FS.min(x) < Fs.min(y) —
case it runs full speed on the route which connects(x,y) | £s.min(x) « #s.min(y) - A(x,y); NFact«— x;
Pred(, x) to x. Rule Ry y = Twin(X); X <<r y; FS.max(y) > £s.maxXx) +
If A, B, C are three multi-criterion coefficients, we maya(x,y) |= #s.max(y)«— &s.maxx) + A(x,y) ; NFact— y;
define the performance criterion Cosf (', t) as follows: RuleRg: x e T; #.min(X) > Es.max(x) |= Fail.
Cosh g c([, t) = A.Glob(T", t) + BRide(T, t) + CWait(T, t).
In section V, we use different coefficients in order to Propagating these rules may be performed as follows:
compare with other techniques found in literature. Our
insertion techniques allow some flexibility for this change. Procedure Propagate
So, let us suppose that we deduced from the data G = {Mput: (I": Tour, L: List of nodes#s: Time windows set
E), 1= (K, c19), © = (D = (a, d, A, 7o), Hd), Q). i € related to the node set bf;
1), a 4-uple (X, DIST, K49), and that we are also providedQutput: (®es: Boolean, #&, Time windows set related to
with 3 multi-criterioncoefficients A, B and C > 0. Then we  pode set of);
see that solving the relateflandard Dial a Ride Problem Nt Stop;

instance means computing: While L =Nil and Not Stop do
- for any vehicle index k in 1..K, a valid tour T(k); Z « First(L); L « Tail(L);
- - atime value set t = {t(x), xX}; For i = 1..5 do Compute all the pairs (x, y) which make
in such a way that: _ possible an application of the rulg @d which are such
- the restriction of t to any T(k), k = 1.K, defines a  thatx=zory=z;
valid time value set related to T(k); For any such pair (x, y) do
- thetour set T = {T(k), k = 1..K} induces a partition Apply the rule R
of X; _ If NFact is not in L then Insert NFact in L;
- the quantityPerfa g o(T, 1) Z k=1.x Cosh, g, (T(K), If Failthen Stop;
t) is the smallest possible. Propagate— (Not Stop,S);
IV. AN INSERTIONALGORITHM Proposition 1

The tour 7”istime-valid according to the input time window
_ _ _ set Fsif and only if the ®Res component of the result of a call
Let I' a tour. The algorithm which we are going topropagate(#S, 7) is equal to 1. In such a case, any valid

describe in this section will essentially be based upon the Y§@e value set t related to 7"and s is such that: for any xin
of insertion techniques. Thus, we must be able to check inl-a,[(x) e FS(X).

fast way, whether the insertion of some demanéhsidel’

will maintain the validity ofl", and to get an evaluation of the
quality of this insertion. Since we want to pay a special
attention to the case when temporal constraints are tight, we

A. Handling Constraints



Proof Stop;
The part (only if) of the above equivalence is trivial, as well EVAL2 — (8 = {8(xX), X € X(G)}; Val = Cosh s
as the second part of the statement. As for the part (if), we (T, 5));
only need to check that if we set, for any Xin Else
- ES(X) = [ES.min(x), Es.max(X)]; If (E2) thend(x) « Inf(b(x), §(Succl, xX) — DIST(X,
- t(x) = ES.min(x); Succ(, x)));

then we get a time value set t ={t(x), ¥ X(I')} which is

Else if (E3) then x) « Sup(a(x),d(Pred(, x) +

compatible with and €.
End-Proof.

DIST(Pred(, X)), X));
EVAL2 — (Cosh, g, o(T, 8), 9);

We denote byrAI') the time window set which result from Proposition 2
a call Propagate(T’, L, F). 7AI') may be considered as theBoth EVAL1 and EVAL2 yield a time value set 6 which is
largest (in the inclusion sense) time window set which igompatible with 7~and & (with 7"and #A(7)). Besides, if B =
included intoF and which is stable under the rules R= C = 0, then EVAL1 yields an optimal value Val, that means
1..5, and is called theindow reduction of & throughr'. yields the smallest possible value Costs g o(Z; 9), 6 €

B. Evaluating a Tour Valid(I'; T).

Let us consider now the toll, provided with the window prggf
reduction setrA("). We want to get some fast estimation of As in the description of both procedures EVAL1 and
the best possible value Cgst (', t) = A.Glo6(I', t) + EVAL2, we suppose that for any x in, the time window
B.Ride(T, t) + Cwai(T, t), t e Valid(T'). We already noticed #p(I') may also be writte®(I") = [a(x), b(X)];
that it could be done through linear programming or throughhe first part of the above statement is trivial. In case B and
general shortest path and circuit cancelling techniques. Std}, = 0, minimizing Cost s (I', §) means minimizing

since we want to perform this evaluation process in a fasfLast()) — §(First()). We must deal with two cases:
way, we design two ad hoc procedures EVAL1 and EVALZ2: First Case: there exists  I' and x# Last(") such

first assigning to the node FirE)( its largest

possible time value, and by next performing a

Bellman process in order to assign to every node
in T its smallest possible time value.

the EVAL2 procedure starts from a solution
produced by EVALL, and improves it by

performing a sequence of local moves, each move

involving a single value t(x), x T'.

Procedure EVAL L(I": Tour): (Val: Numberp: value set)
For any x inl, let us set set: [a(X), b(x)] #AT);
S(First(")) «— b(First(I')); x « First(I');
While x= Last(") do

y < Succf}, x); 3(y) < Sup(a(y)3(x) + DIST(x, y));

X —y; 0« {8(X), x e T'}; Val «— Cosh g, (T, 8);
EVAL1 « (Val, 8);

Procedure EVAL2(T: Tour): (Val: Numberp: value set)
For any x inl, let us set: [a(x), b(X)] #A();

For any x inl" do 8(x) <« EVALL(T", 5).5; Not Stop;
While Not Stop do

the EVALL procedure works in a greedy way, by

that:
@]
(@]

8(x) = a(x);

For any y such that x <Xy << Last(),
we have:d(Succ(, y)) — 8(y) = DIST(y,
Succ(, y));

Then the stability ofF(I')(xX) under the inference
rule R, allows us to deduc&Last(")) = a(Lastl)),
and the result sinc&First(')) = b(First()).
Second Case: for any x in XY, x # Last(’), we
haves(Succ(, x)) — 8(x) = DIST(X, Sucd(, x)).
Then the result comes in an immediate way.
End-Proof.

X

I' being some valid tour, we denote by VAL)(and
VAL2(T") the values respectively produced by
application of EVAL1 and EVAL2 td'.

the

C. TheInsertion Mechanism

It works in a very natural way. L& be some valid tour, let
D =(q, d, A, 7o), Fd), Q) be some demand whose origin
and destination nodes are noflinand let x, y be two nodes
in T, such that x << y. Then we denote by INSERIT,(X, Y,

Search the node x in such that one of the two statements) the tour which is obtained by:

(E2) or (E3) below is true:

o (E2): (\x < 0)A (Status(x) € {Origin, DepotD}) A
(B(x) = Inf(b(x), 8(Succ(’, x) — DIST(x, Succl,
X)));

(E3): @« > 0) A (Status(x) € {Destination,
DepotA}) A (8(x) = Sup(a(x), d(Pred(, x) +
DIST(Succl, x)), X));

If Fail{Search) then

locating @ between x and Sudg(x);
locating d between y and Suod’, y).

We say that the tour INSERIT( X, vy, i) results from the
insertion of demand D; into the tour 7" according to the
insertion nodes x and y. The tour INSERTI, X, vy, i) may not
be valid. So, before anything else, we must detail the way the
validity of this tour is likely to be tested.



Testing the L oad-Admissibility of INSERT (T, X, v, i).

We only need to check, that for any z in Segnient(y) = {
z such that x << z <<~ y} we have,((T, z) + Q < CA®.
It comes that we may set:

Procedure Test-Load(T, X, Y, i):
Test-Load < {For any z in Segmerii(x, y), (T, z) + Q <
CA®;

Testing the Time-Admissibility of INSERT(T, X, y, i).
It should be sufficient perform a cdbropagate(T’, {0;, d},
#A(I)), while using the list {§ d} as a starting list. Still,

If Test = 1 then (Testr1) « Propagate(T, {0, d}, FAI);
If Test = 1 then Valk— EVALL(INSERT(, X, y, i),
F1).Val;
Else Val— Undefined;
Test-Insert < (Test, Val Vall());

D. The Insertion Process

So, this process takes as input the demanad sefp, = (0,
d, A, Ho), Hd), Q), i € I), the 4-uple (X, DIST, Kc4®),
and 3 multieriterion coefficients A, B and C > 0, and it
works in a greedy way through successive insertions of the
various demand>, = (g, d, A, Ho), ®d), Q) of the

such a call is likely to be time consuming. So, in order tg€mand setd. The basic point is that, since we are
make the testing process go faster, we introduce sevetgncerned with tightly constrained time windows and transit

intermediary tests, which aim at interrupting the testinB

process in case non-feasibility can be easily noticed:
- the first test Test-Node aims at checking the

ounds, we use, while designing the INSERTION algorithm,
Several constraint propagations tricks. Namely, we make in
such a way that, at any time we enter the main loop of this

feasibility of the insertion of a node u, related tc!gorithm, we are provided with: _
some load Q, between two consecutive node z and - the seti c | of the demands which have already

z’ of a given tour I'. It only provides us with a
necessary condition for the feasibility of this
insertion.

- the second tesTest-Nodel aims at checking the
feasibility of the insertion of an origin/destination

been inserted into some tour T(k), k = 1..K;

current tours T(k), k = 1..K: for any such a tour
T(k), we know the related time windows
FAT(K))(X), X € T(k), as well as the load values
AT(K), x), x € T(k), and the values VAL1(T(Kk))

node u, v, related to some load Q, between two and VAL2(T(k));

consecutive node and z’ of a given tour I'. Again,
it only provides us with a necessary condition fo
the feasibility of this insertion.

Procedure Test-Node(T', z, z’: nodes in I', u: node ouf’, Q:
load): Boolean

Let us set, for any x if, [a(x), b(X)] = F7AT)(X);

Let us set:¢,p] = F (u);

Test node « (a(z) + DIST(z, u) < B) A(a + DIST(u, z°) <
b(z”)) A(a(z) + DIST(z, u) + DIST(u, z’) < b(z’)) A (C(, 2)
+Q < CAP);

Procedure Test-Nodel(T, z, z’: nodes in I', u, v: hodes out
I', Q: load): Boolean

Let us set, for any x i, [a(x), b(X)] = FAT)(X);

Let us set, for any x in {u, v}:d(x), B(X)] = ®#I)(u);

Test nodel < (a(z) + DIST(z, u) < B(u)) A(a(u) + DIST(u,
v) £ B(V)) A(ou(v) + DIST(v, 2’) <b(z’)) A (a(z) + DIST(z, u)
+ DIST(u, v) < B(v)) A(a(z) + DIST(z, u) + DIST(u, V)
DIST(v, z’) < b(z")) A (o(u) + DIST(u, v) +DIST(v, z’) <
b(z")) A (AT, 2) + Q < CAP);

So, testing the admissibility of a tour INSERT(, v, i)
may be performed through the following procedure:

Procedure Test-Insert(I', X, vy, i): (Test: Boolean, Val:
Number);

If x =y then Test— Test-Node(T', X, Succl, X), q, Q) A
Test-Node(T', y, Succl, y), d, Q);

Else Test— Test-Nodel (T, x, Succl, x), q, d, Q);

If Test = 1 then Test Test-Charge(T, X, v, i);

- the knowledge, for any i in J = (I 1)lof the set

r FREE() of all the 4-uple (k, X, y, V), k=1..K, X, ¥
€ T(k), v e Q such that a callest-Insert(T(k), x,
y, i) yields a result (1, v). We denote by N-FREE(i)
the cardinality of the set V-FREE() = {k = 1..K,
such that there exists a 4-uple (k, X, y, v) in
FREE(i)}: N-FREE(i) provides us with the number
of vehicles which are still able to deal with demand
D.

Then, the INSERTION algorithm works according to the

following scheme:

- First, it picks up some demanglin J, among those
demands which are the most constrained, that
means which are such that N-FREJE(@s small:
more specifically, if there exists such that N-
FREE(i) = 1, thenyiis chosen in a random way
among those demand indices i in J which are such
that N-FREE(i) = 1; else we select randomily a
set of demands j with N-FREE(j) inside ,{&-
FREEMAX }. N-FREEMAX becomes a parameter
of the INSERTION. (E4)

- Next, it picks up (i Xo, Yo, Vo) in FREE(p) which
simultaneously corresponds to one of the smallest
values v, and to one of the smallest values
EVAL2(INSERT(T(K), X, v, i)).Val — VAL2(T(K)):
more specifically it first builds the list-Candidate
of the N (up to five) 4-uples (k, X, y, V) in
FREE(p) with best (smallest value v). For any such
a 4-uple, it computes the value w =
EVAL2(INSERT(T(K), X, ¥, )).Val — VAL2(T(K)),
and it orderst-Candidate according to increasing
values w. Then it randomly chooses, (k, Yo, Vo)



among those N< N; first 4-uples inc-Candidate. Ny

Since the above (11) and (12) instruction may be written in a

and N become two parameters of the INSERTION1on deterministic way, the whole INSERTION algorithm

procedure. (E5)
- Next it inserts the demand into T(ky) according

to the insertion nodes Xy, which means that it

replaces T(§) by INSERT(T(k), Xo, Yo, io);
- Next it defines, for any & J, the sefA(i) as being

becomes non deterministic and may be used inside some
MONTE-CARLO framework:

RANDOM-INSERTION(N4, N,, P: Integer)Scheme;
Forp=1..Pdo

the set of all pairs (x, y) such that there exists some Apply the INSERTION(N, N,) procedure;

4-uple (k, x’,y’, v) in FREE(i), which satisfies:
o (X’ =x)or((x’=X)and x’ = Pred(T(ko),
X)) or (K = X = Y) and & =

Pred(Pred(T(®,x))));

o (y=yor((y=Y)andy = Pred(T(ko),
y) or (¥ = X = Yo) and (y° =
Pred(Pred(T(®.y)))); (E6)
- Finally, it performs, for any pair (x, y) in(i), a call
Test-Insert(T(ko), X, Y,
and N-FREE(i) consequently.
This can be summarized as follows:

Procedure INSERTION(N; and N: Integer): (T: tour set, t:
time value set®erf induced®erfa g (T, t) value, Reject:
rejected demand set);
Forany k=1..Kdo

T(K) < {DepotD(k), DepotA(K)};

t(DepotD(k)) = t(DepotA(K)) < O;
[ Nil ; I« I ; Reject — Nil;
For any ie J do

N-FREE(i) < K;

FREE(i) < all the possible 4-uple (k, X, y, v), k = 1..K,

X,y E{DepOtD(k), DepOtA(k)}, X <<t ¥, V =
EVAL2({ DepotD(K), 6, d, DepotA(K)}).Val;
While J= Nil do
Pick up some demangin J as in (E4); Removgfrom
J;
If FREE(ip) = Nil then®Rgject «— Reject L {i o}
Else
Derive from FREE() the £-Candidate list and Pick
up (k, Xo, Yo, Vo) IN L-Candidate as in (E5);
T(ko) < INSERT(T(K), X0, Yo io);
6 — EVAL2(T(kg)).5; Insert pinto Iy ;
For any x in T(k) do t(x) < 8(x);
For any ie J do

A(i) < {all pairs (x, y) such that there exists

some 4uple (ky, x’, y°, v) in FREE(i), which
satisfies (E6);
For any pair (X, y) im(i) do

(Test, Val)— Test-Insert(T(ko), X, v, i);

Keep the best result (the pair (T, t) such thafed] is

the smallest possible, and which is such that, among
those pairs which minimizerdject|, it yields the best
@eth, B, C(T, t) Value).

V. COMPUTATIONAL EXPERIMENTS

Our experimentations deal with the randomly generated
instancesof Cordeau and Laporte [4]. To analyse the

1), and it updates FREE() behavior of our solution, we used the same objective

function used in [7] and adapted in [8]. The instances have
between 24 and 144 requests which have to be supported by
a fleet of 3 to 13 vehicles. The maximum route duration is
480 for each vehicle and for each instance. The capacity is
equal to 6 and the maximum ride tinse0.

[7] used the objective function givan equation (4), the
terms penalizing the violations have been removed. Thus, we
minimize travel distance (c), excess ride time (r, cf.,(1))
passenger waiting (I, cf. (2)), the total duratigfé (g) and
early arrival (e, cfFig. 1 & (3)). We set the weight like in [7]
and [8] to w=8, w,=3, ws=1, wy=1, W= |D|.

r=>" > (Ride(i)-DIST(0,d)) B
K pred(last(I) ]

= > Wait, (C(T},¥) -q,) @)
k=1 x=succ(First(T}))
K pred(pred(last(I)) FMIn succ(x)) —

% (suee(x) "
1 xra@y (0¥ +DIST (X succ(x)))

Cost = w,c+ W, +wW,l +w,g+w.e 4)

Table | gives the values of theosT obtained with the
proposed insertion techniques using constraint propagation

Remove (k, x, y, v) from FREE() in case We take best results over 25*¥@plications with a variation

such a 4-uple exists and update N-FREE(i

consequently;

If Test = 1 then insert (kx, y, Val) into
FREE(i) and update N-FREE(i)
consequently;

Perf«— Perfa, s, (T, 1);
INSERTION « (T, t, Perf, Reject);

?h the values of N-FREEMAX, N1 and N2 (each lower than
4). We noted only the objective function of the two works
So we compare our Insertion Techniques (IT) with the

Variable Neighborhood Search (VNS) and the Genetic
Algorithm (GA). Refer to [13] and [8] for the other values.

As with the VNS technique, we obtained results always
better than the GA. Moreover, we often obtained better
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TABLE 1.
INSERTION TECHNIQUES (IT) COMPARED TO GA ([7]) AND VNS ([8])
Total Costf | Total Costf | Total Costf Travel Excess Passenger TO@ Ear.ly
Instances Customers (GA) (VNS distance ride (IT) wait. (IT) duration Arrival
(" (7 ' (7 (a7
Rla 24 4696 3234.60 3371.41 272.81 145.55 0.00 752.28 0.00
R2a 48 19426 14640.16 8152.32 495.29 71118 46.75 162571 8.00
R3a 72 65306 15969.08 10361.79 861.78 388.59 0.00 2301.78 0.00
R5a 120 213420 23852.00 14006.79 1054.57 705.22 0.00 3454.57 0.00
R9a 108 333283 13806.40 14081.01 1056.17 805.16 0.00 3216.17 0.00
R10a 144 740890 25016.46 43889.79 1517.66 1568.67 85.74 4553.24 155.58
R1b 24 4762 2825.53 2809.75 235.80 69.16 0.00 715.81 0.00
R2b 48 13580 5003.11 5066.46 449.26 21.04 0.00 1409.26 0.00
R5b 120 98111 12360.50 12528.93 1001.21 372.68 0.00 3401.21 0.00
R6b 144 185169 16499.44 16005.12 1321.22 411.38 0.00 4201.22 0.00
R7b 36 9169 4601.71 4480.11 395.98 65.43 0.00 1115.98 0.00
R9b 108 167709 13412.76 13586.04 1062.19 622.11 0.00 3222.19 0.00
R10b 144 474758 16420.00 17546.52 1411.27 655.03 0.00 4291.27 0.00




