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Vignes, 92290 Chdtenay-Malabry, France
b Institut Technique de la Betterave, 45 rue de Naples, 75008 Paris

Abstract

A wide range of models have been proposed and developed for modelling sugar beet
growth, each of them with different degrees of complexity and modelling assumptions.
Many of them are used to predict crop production or yield, even when they were not
originally designed for this purpose, and even though their predictive capacity has never
been properly evaluated.

In this study, we propose the evaluation and comparison of five plant growth models
that rely on a similar energetic concept for the production of biomass, but with different
levels of description (individual-based or per square meter) and different ways to describe
biomass repartition (empirical or via allocation): Greenlab, LNAS, CERES, PILOTE and
STICS. The models were all programmed on the same modelling platform, calibrated on
a first set of data, and then their predictive capacities were assessed on an independent
data set. First, a sensitivity analysis was carried out on each model to identify a subset
of parameters to be estimated, to reduce the variability of the models. We were able
to reduce the number of parameters from 10 to 4 for Greenlab, and from 16 to 1 for
STICS. Three criteria were then used to compare the predictive capacities of the models:
the root mean squared error of prediction and the modelling efficiency for the total dry
matter production and the dry matter of root, and the yield prediction error.

All the models provided good overall predictions, with high values of the modelling
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efficiency. The use of sensitivity analysis allowed us to reduce the variability of the
models and to enhance their predictive capacities. Models based on an empirical harvest
index gave good yield predictions, and similar results compared to allocation models for
the total dry matter, but the harvest index might not be very robust. The crucial role
of initiation was also pointed out, as well as the need for an accurate estimation and
modelling of this early phase of growth.

Keywords: sugar beet; prediction; model evaluation; model comparison; RMSEP;

modelling efficiency

1. Introduction

A wide range of plant growth models are available in the literature, either generic
ones, that can be applied to different species, or more specific ones built for given plants or
trees. Some of them are designed to predict yield or biomass production at field scale, and
help management decisions, while some others are built for descriptive purposes, to en-
hance our understanding of plant functioning and simulate plant architecture (Fourcaud
et al., 2008). One can also be confronted with the need to compare and choose between
different versions of the same model, corresponding to different biological assumptions,
for example, or to decide whether a given biological process should be accounted for or
not.

Depending on their initial objective, these models can have different levels of com-
plexity. For example, descriptive models would tend to be more complex than purely
predictive ones as they would integrate more underlying eco-physiological processes (e.g.
allocation processes, reaction to environmental stresses, ...). Often, this increase in the
model complexity results in a higher number of parameters, and consequently in a de-

crease of the predictive capacity of the model due to a higher variability. This is the
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well known bias/variance compromise. However, a lot of models are used as prediction
tools even though they were not originally designed for this purpose. It is thus necessary,
when using a model, to define precisely the context in which it will be used, and even
more importantly, to evaluate properly its performance according to the objective of the
study.

In this context, we propose a methodology to build and evaluate different models in
a predictive perspective. We apply this approach to five plant growth models for sugar
beet crops, with different levels of description and modelling scales: Greenlab (de Reffye
and Hu, 2003; Yan et al., 2004), CERES (Jones and Kiniry, 1986; Leviel, 2000), Pilote
(Mailhol et al., 1997; Taky, 2008), STICS (Brisson et al., 1998, 2008) and a fifth model
named LNAS (Cournéde et al., 2013), based on a global allocation of biomass to the
leaves compartment or root. First elements of comparison for Greenlab, CERES and
Pilote are available in Lemaire (2010).

The five models rely on a similar formulation for the production of biomass, based
on Monteith’s equation (Monteith, 1977) and on an extension of the Beer-Lambert law.
The accumulated dry matter production is linearly related to the fraction of intercepted
radiation, which can generally be expressed according to the leaf area index (LAI) or to
the leaves biomass. From this common basis, the models then differ in their formulations
of the LAI curve, either based on allocation processes (Greenlab, LNAS) or on empirical
relationships (PILOTE, CERES). STICS can be seen as an intermediate between these
two approaches, since the LAI is computed from an empirical function, but modulated
by a source-sink ratio. Two modelling scales were also compared, with either individual-
based models (CERES, Greenlab) in which the LAI was computed from the development
of each individual leaf, or more classical crop models (PILOTE, STICS, LNAS) where
the LAI was computed per square meter at field scale. The differences between the five

models are summarized in Table A.1.
[Table 1 about here.]

All these models have already been tested and calibrated in the case of sugar beet, but
3
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the purpose here is to evaluate their predictive capacities. In this perspective, to reduce
the variability of the models which included a large number of parameters, a sensitivity
analysis was computed for each of them. The parameters were ranked according to their
influence on the model outputs, and then, the best subset of parameters to be estimated
was identified, according to AIC and BIC criteria. They were first calibrated on the
same set of data, and their predictive capacity was then evaluated and compared on
an independent data set using three classical criteria: the root mean squared error of
prediction (RMSEP), the modelling efficiency (EF), and the yield prediction error.

In the second section, we present the five models, along with the data and the criteria
used for the calibration and the evaluation of their predictive capacity. The calibration
process, and in particular the sensitivity analysis performed on each model, is described
in section 2.3. Results from this sensitivity analysis are given in section 3.1, those from
the comparison between the different versions of STICS, in section 3.2.1, and between

the two data sets (calibration and validation sets), in section 3.2.

2. Material and methods

2.1. Models

The five models rely on the same concept for the energetic production of biomass,
based on an extension of the Beer-Lambert law (Monteith, 1977). The biomass produc-
tion in grams per square meter on day ¢, Q(¢) is proportional to the incoming photosyn-
thetically active radiation PAR(¢) (in MJ/m?), to the fraction of intercepted radiation
I(t) (which depends on the leaf area index or on the dry matter of leaves) and to the

radiation use efficiency RUE (in g/MJ) (Damay and Le Gouis, 1993):

Q(t) = 0.95 - RUE - PAR(t) - I(t). (1)

The leaf area index is defined as the one-sided green leaf area per unit ground surface
(Watson, 1947), thus some adjustments were necessary for the two individual-based mod-
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els Greenlab and CERES. In Greenlab, as the biomass production is computed at the
individual plant level, a ‘local’ LATI (Cournéde et al., 2008) was defined, corresponding
to the leaf surface of the plant multiplied by a coefficient related to the two-dimensional
projection of the space occupied by the plant on the ground (see 2.1.1). In CERES,
as the biomass production is computed at the square meter level, a ‘global’ LAI was
constructed from the individual leaf surfaces of the plant, by multiplying by the crop

density (see 2.1.5).

2.1.1. GreenLab

GreenLab is a generic functional-structural plant model (FSPM), combining the de-
scription of the plant architecture and its physiological functioning (Vos et al., 2007;
Sievinen et al., 2000). The model in its discrete version was introduced by de Reffye and
Hu (2003), and was studied in the case of sugar beet by Lemaire et al. (2008).

In its first version, the time step chosen to compute the organogenesis and the eco-
physiological processes was the growth cycle (i.e. the thermal time elapsing between the
appearance of two successive metamers). However, for a better accuracy in the handling
of continuous variations of environmental conditions, and consistency with the usual
daily collection of climatic data, a continuous version of the Greenlab model was used,
discretized with a daily time step (Li et al., 2009). Such formulation is also more con-
sistent with the other plant growth models studied in this paper and that provide daily
outputs (Mailhol et al., 1997; Guérif and Duke, 1998; Spitters et al., 1989).

In Greenlab, the biomass production on day ¢ is computed at the individual plant
level, thus some adjustments were made from equation (1):

Qpi(t) = 0.95 - RUE - %R(t) : <1 — exp (—kB sb(;i» ,

with Qp;(t) the biomass production of an individual plant (in g/pl), d the plant density
(in pl/m?), kp the Beer-Lambert law extinction coefficient, Q;(¢) the accumulated blade

mass (in g/pl) at day ¢, e, the mass per unit area of blade (in g/m?), and S, an empirical
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coefficient related to the two-dimensional projection of the space occupied by the plant (in
m?/pl). The biomass production per square meter Q(¢) can be obtained by multiplying
Qpi(t) by the crop density d. The biomass is then allocated to the different organs of the
plant according to source-sinks relationships (we refer the reader to Yan et al. (2004);

Lemaire et al. (2008) for more details).

2.1.2. LNAS

A simplified model called LNAS (Cournéde et al., 2013) was elaborated, where the
biomass allocation is done globally for the whole leaves compartment, instead as leaf by
leaf as in the Greenlab model. The leaf area index was obtained by dividing the biomass
of leaves by the mass per unit area. It is a generic daily time-step model, presented here
in the case of sugar-beet, but that can be easily extended to other plants.

The biomass production on day ¢ is given by (1), with:

I(t) =1—exp (—kB . Qg(t)) 7

€g

where Q,(t) is the dry matter of green leaves at day ¢ (in g/m?), kp the extinction
coefficient and e, the mass per unit area of leaf (in g/m?). Note that here, the quantity
eg is different from the quantity e, used in the Greenlab model, as in LNAS we are
dealing with the dry matter of leaves, considering blades and petioles together, whereas
in Greenlab we are only dealing with the dry matter of blade.

Then, the produced biomass is allocated to the different organs compartments. Only
two compartments are considered in the case of sugar beet: leaves and root. We denote
by Q;(t) and Q,(t) respectively the total mass of leaves and the total mass of root on

day t. At the beginning of day ¢ + 1, the masses of leaves and root are given by:

Qut+1) = Qit)+~(t) Q1)
Qrt+1) = Qn(t)+ (1 —~()) Q)
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where function ~y is defined as:

() =0 + (vF — ) - Ga(T(?)),

with G, the cumulative distribution function of a log-normal law, parametrized by its
median /i, and its standard deviation o,, 7(t) the thermal time on day ¢, and v and ~;
respectively the initial and final proportion of biomass allocated to the leaves.

The proportion of non-senescent leaves is given according to the following equation:

Qg(t) = (1 - GS(T(t) - Tsen)) Ql(t)

where G is the cumulative distribution function of a log-normal law, parametrized by
its median pus and its standard deviation o, and 7se, is the thermal time at which the

senescence starts.

2.1.3. STICS

STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard (Brisson et al.,
1998, 2008)) is a generic daily time-step model, which has already been applied to a
large variety of crops (maize, tomato, wheat, sugarbeet, ...). It is organized into seven
modules corresponding to the different mechanisms involved in plant growth.

In the original formulation of STICS, the relation between biomass production and
intercepted radiation is not linear as in (1), but quadratic, with the introduction of a
saturation coefficient, and a radiation use efficiency that could vary according to the
development stage s(t). However, since the main differences between the models con-
cern the modelling scale and the biomass repartition, we choose a simplified version of
the production function, with a constant RUE and a linear relationship with radiation
interception, so that the five models share the same formulation for biomass production.
A complementary study is conducted in 3.2.1 in order to check if such simplifications

alleviate the predictive capacity of STICS, and actually shows that the simplified version
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performs better in our case.

The leaf area index is modelled with an empirical function as the net balance between
growth and senescence, and is supposed to evolve in three phases: a first phase of logistic
growth (from emergence to the maximal LAI point), a stability phase, and a senescent

phase in which the LAT decreases linearly (Brisson et al., 2008). We have:
I(t) = (1 — exp(—kp LAI(1))) ,
with kp the Beer-Lambert law extinction coefficient, and:

t
LAI(t) = Z (ALAI(j) — ALALen (7))
j=te
where t. is the day of emergence, ALAI(j) is the net leaf area growth on day j and
ALAI, (j) is the leaf area senescence on day j.
The net leaf area growth on day j depends on the leaf development unit on day j,
u(j), which varies from 1 at emergence to 3 when the leaf area index is maximal. From

emergence to the maximal LAI point, the LAI growth follows a logistic curve:

A = e Bl w0 T o0)Hor S ulg) <3

where up,y is the leaf development unit at the end of the juvenile stage, d is the
plant density and f; a density factor related to the competition between plants, fr
is the effective crop temperature, and s is a trophic stress index. This trophic stress
is determined by a source-sink ratio, and thus induces a retroaction of the allocation
process on the LATI curve. With this formulation, the leaf area index stops growing all at
once after having reached its maximal point, but it is possible to introduce a progressive
decline of the LAI. We refer the reader to Brisson et al. (2008) for more detailed equations.

A lot of parameters are required for the model, but a list of recommended values for
different crops are available in Brisson et al. (2008).

8
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As explained previously, in the original formulation of STICS, the relationship be-
tween biomass production and intercepted radiation is quadratic and not linear. More-
over, among the several modules available in STICS, some of them are dedicated to the
management of environmental stresses, so that these processes can be easily implemented
in the model. As a consequence, a complementary study was carried out on STICS to
evaluate the effect of these different modelling assumptions, and four versions of STICS
were compared (see section 3.2.1):

1. the initial version of STICS, with a varying radiation use efficiency and a quadratic

relationship between biomass production and intercepted radiation, but no stresses

2. a linear version, with a varying radiation use efficiency but a linear relationship

between production and radiation

3. alinear version with a constant radiation use efficiency (this version is the standard

one used in the comparison with the other models)

4. the linear and constant RUE version, with the addition of thermal stress

The thermal stress was added in the modified version of the model because, as it will

be shown latter in the paper, this modified version performed better than the initial one.

2.1.4. Pilote

Pilote is a crop-soil interaction model, which was first built for sorghum and sunflower
(Mailhol et al., 1996, 1997), but that can be applied to a large variety of crops. It has
been developped for sugar beet by Taky (2008). It is designed to predict the actual
evapotranspiration and the yield of crops, through the modelling of the leaf area index.
In this paper, we considered the version of Pilote without hydric stress. In such case, the

biomass production per square meter at day ¢ is given by (1), with:

I(t) = 1 — exp(—kg - LAI(t))

LAI(t) = LAT (T(Qn;%)ﬁexp {fé (1 - (T(ZQ_T)&”
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with kg the Beer-Lambert law extinction coefficient, LAl ., the potential maximum
value of LAI in non-limiting conditions, Timax the thermal time (in *Cday) necessary to
reach this maximal LAI, 7. the thermal time (in *Cday) of emergence, and « and 8 two
parameters. It is also possible to model growth and senescence separately, using two
different values oy and oy depending on whether we are before or after 7,,4x. Then, the

biomass repartition to root and leaves is done with an empirical harvest index.

2.1.5. CERES

CERES (Crop Environment REsource Synthesis) was originally built on maize by
Jones and Kiniry (1986), but a sugar beet version was developed by Leviel (2000). Ef-
fects of irrigation or nitrogen uptake can also be integrated in the model. In CERES,
the biomass production is done at the square meter level from equation (1), from the

individual foliar surfaces of the plant:

I(t)=1—exp <—k3 -d-ZSMt)) ,
k

with kp the Beer-Lambert law extinction coefficient, d the plant density (in pl/m?), and
S}, the foliar surface of leaf k at time ¢ (in m?).

The foliar surface of leaf k, Sy is supposed to grow linearly from the thermal time
of appearance of leaf k to the end of its expansion, then stay at its maximum surface

Sk,max until the end of its lifetime:

0 if 7(t) € [0, [
gy o) O el
L (1) =
Sk.max if 7(t) € [T,Sﬂ',i + 7
0 otherwise

with 7(¢) the thermal time at time ¢, and T,i, 7 and 77 respectively the thermal time
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of initiation, the thermal time of end of expansion and the lifespan in thermal time of
leaf k. The maximum foliar surfaces Si max, as well as the thermal times of initiation,
expansion and senescence, are thus needed to calibrate the model.

The biomass is then distributed to root and leaves thanks to an empirical harvest
index, corresponding to the ratio between the dry matter of root and the total dry

matter at harvest.

2.2. Data

We used a first dataset from 2010 experiments to calibrate the models. Field ex-
periments took place at La Selve, France, N49°34’22”, £3°59°24”, on a sandy loam soil.
A commercial variety, Python, was sown on April 15, with 45 cm between rows and
18 cm between seed-plots, and fertilized with 136 kg N ha=!. The final plant density
was estimated at 11.82 plants per square meter (pl/m?). Dry matter of root and leaves
(blades and petioles separately or altogether) were collected on 50 plants at fifteen dif-
ferent dates, and dry matter of individual blades and petioles, as well as blade surface
areas, were measured on 10 plants at five different dates. Mean values were then used
for the calibration process. The LAI was not measured directly on the field, but could
be computed from the blade mass (Q,, the mass per unit area e, and the plant density d:

Qv

LAlewy, = o d. The mass per unit area of blade e; was obtained from a linear regression
between leaf areas and blade masses on the five dates of individual measurements. The
observed maximum surfaces of leaves were used for CERES model.

At first, the predictive capacity of the models was supposed to be tested on 2011
experiments, conducted on the same genotype near the 2010 site, at Bourgogne, France,
N49°21'18”, E4°4’12” on a calcareous loam soil. However, a hail episode occurred this year
around day 100, and caused a lot of damages on leaves, with partial or total destruction
of blades and petioles, and thus a much lower biomass production than in 2010, leading
to over-estimated predictions for this variable. As a consequence, a second dataset was

used to evaluate the predictive capacity of the models in the absence of any perturbing

event. The field experiments in 2008 were conducted around 200km away from the 2010
11
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site, in the Beauce plain near Bazainville, France, N48°11’'15”, E2°5’50” on a clay loam
soil. A commercial variety, very similar to the Python genotype, Radar, was sown on
March 11, with 50 cm between rows and 20 cm between seed-plots. The final measured
density was 10.9 pl/m?. Dry matter of root and leaves were measured at fifteen different
dates on 30 plants.

Daily mean values of air temperature (°C) and solar radiation (MJ.m~2) were ob-
tained from French meteorological advisory services (Météo France) near the experimen-
tal site. Thermal time was computed using a base temperature of 0°C (Lemaire et al.,

2008). All the experiments were conducted in non-limiting water conditions.

2.8. Calibration
2.3.1. Reduction of the variability

A very important part of this work consisted in the calibration of the five models.
Indeed, parametric estimation is a crucial and yet tricky task, especially when the number
of parameters is high compared to the amount of data available for the estimation. It
can also be impossible to estimate simultaneously all the parameters of a model, due
for example to numerical issues or high correlations between parameters (Wallach et al.,
2006, Chapter 4). Moreover, estimating too many parameters can have an obnoxious
effect on the predictive capacity of the model, due to overparametrization. If it is true
that the estimation of a parameter can enhance the goodness of fit of the model, especially
when the estimated value is far from the one given in the literature, or when no reliable
information is available, the estimation process is also marred with errors, leading to
a higher variance of the model. A good compromise has therefore to be made on the
number of parameters to estimate.

A classical two-step approach to this issue is first to rank the parameters according
to their importance, and then, to select the number of parameters to estimate. In the
first step, parameters can be ordered for example according to their influence on the
model outputs, or their ability to enhance the goodness of fit measured by a given

criterion (Campolongo et al., 2007). In the second step, the final number of parameters to
12
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estimate is determined using another appropriate criterion like the mean squared error
of prediction (Wallach et al., 2001, 2006). In this paper, we adopted a very similar
approach, with the use of sensitivity analysis (SA) to rank the parameters and model
selection criteria such as AIC and BIC to choose the number of parameters that would be
estimated, the others being set to recommended values given in the literature. A similar
study has already been carried out for STICS, on wheat and maize, based on response
surface method (Ruget et al., 2002).

A review on the role of sensitivity analysis can be found in Cariboni et al. (2007) or
Saltelli et al. (2008). A first prerequisite to the use of SA is the definition of appropriate
distributions for the parameters. Such information can be found in the literature, but
may also not be easily available, in particular when a model is used for a species on
which it has rarely or never been tested, or when a new model is considered. Uniform
distributions were used in this study, and the corresponding variation intervals were
defined according to the information available for each model as follow: (i) for STICS,
we took a 10% variation around the recommended values given in the literature (Brisson
et al., 2008), (ii) for Greenlab, we defined the variation intervals from a combination of the
reference values given by Lemaire et al. (2008) for the discrete version of the model and
results from previous fittings with the continuous version, (iii) for PILOTE, we defined
variation intervals taking into account the different values of the parameters for different
crops, including sugar beet (Mailhol et al., 1996, 1997; Taky, 2008), (iv) for LNAS, we
built variation intervals using the similarities between LNAS and SUCROS (Guérif and
Duke, 1998) or Greenlab, and the relationship between some of the parameters and well-
known biological processes. Sensitivity analysis was not used on CERES, as there is only
one parameter to calibrate in this model.

Sobol’s method was used to compute the sensitivity indices for each parameter, each
output, and each time of observation, with the estimator proposed by Wu et al. (2011).
Then, sensitivity indices (SI) for each parameter and each output were obtained with a

weighted sum over each time of observation using the variance of the outputs at each
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time of observation, and finally, a global SI for each parameter was computed, taking into
account all the model outputs. Parameters were ranked according to their global SI, and
then, the models were calibrated with a growing number of parameters, introduced in the
calibration process in the order determined by SA. AICc and BIC were then computed for
each calibrated models. We used the corrected version of AIC, as it lessen the probability
of overfitting when the sample size is too small, and as it converges towards AIC when
the sample size gets large (Burnham and Anderson, 2002). These two criteria are defined
as: AICc = —2logL + 2kn/(n — k — 1) and BIC = —2log L + klogn, where L is the
estimated log-likelihood of the model, &k is the number of parameters and n the sample
size. It is worth noting that, if these criteria are not relevant to assess the predictive
capacity of a model, leading to the use of appropriate criteria as defined in section 2.4,
there are nonetheless suitable for goodness-of-fit evaluations and can therefore be used
in this calibration step.

A summary of the variation intervals adopted for each parameter can be found in
Table A.2. To lighten the table, intervals are not shown for STICS, we thus refer the
reader to Brisson et al. (2008) for a list of recommended values for the parameters on

sugar beet.

[Table 2 about here.]

2.8.2. Fized parameters

A first set of fixed parameters was identified, corresponding to those than can be
measured directly or for which well documented values are given in the literature. These
parameters included: the extinction coefficient of the Beer-Lambert law (kg = 0.7 ac-
cording to Andrieu et al. (1997), except for STICS when the relationship between biomass
production and intercepted radiation was nonlinear, in which case kg = 0.58), the mass
per unit area in Greenlab (deduced from our field experiments, e; = 83 g.m~2), and the
maximum leaf surfaces for CERES (deduced from the individual measurements). The
harvest index for Pilote and CERES was computed as the ratio between dry matter of
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root (including crown) and total dry matter at harvest, and was estimated at 70% on
2010 data. This value is lower than the one found by Leviel (2000) for sugar beet (root
+ crown: 85%).

A very important parameter of the five models was the thermal time of initiation
(or emergence, depending on the model). Indeed, as these models (except STICS) are
not designed to predict the initiation time, this parameter must be given as an input.
We used a nonlinear mixed model (Baey et al., 2013) to estimate it, along with the
two phyllochrons and the rupture thermal time (Milford et al., 1985; Lemaire et al.,
2008), to describe the rythm of leaf appearance. They were estimated using two datasets
to ensure a more robust estimation (2010 and 2011 experiments, driven on the same
genotype), as the data available for the estimation of these parameters in 2010 were
not satisfying (small number of plants, and few measures before the rupture point).
Indeed, as noticed by Lemaire et al. (2008) and Lemaire (2010), the phyllochrons and
the duration of the first phase of development in sugar beet remain stable for a given
genotype, and only the thermal time of initiation is subject to change, due for example
to environmental conditions. A shift was thus progressively introduced between the two
datasets, corresponding to the difference between the thermal times of initiation in the
two different years, until the same values were obtained for the two phyllochrons and the
rupture thermal time. The smallest AIC was obtained with a shift of 140°Cday.

The other parameters were included in the sensitivity analysis.

2.4. Criteria for evaluating the predictive capacity

The mean squared error of prediction (MSEP) is the standard criterion for evaluating
the predictive capacity of a model (Wallach and Goffinet, 1987; Wallach et al., 2006). It
measures the distance between observations and predictions, and its square root is used
to obtain the same units as the observed and predicted values.

A first dataset is used for the model calibration, and a second one is used to compute
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the criterion:

RMSEP (6) =

SRS

> ()

where Y; are the observed values, Y; are the predicted values and n is the number of
observations in the second dataset.

The modelling efficiency (EF), as defined by Mayer and Butler (1993), is a dimen-
sionless quantity which measures the overall goodness of fit between predictions and

observations. It is similar to the coefficient of determination in linear regression.

S (Vi = Y5)?

EF=1- &2 =
21:1( T Yi)

l~<

where Y; is the mean of observed values. The modelling efficiency ranges from —oo to 1.
In case of a perfect fit, i.e. when predicted and observed values are equal, the modelling
efficiency is equal to 1. A value of 0 corresponds to the case where the model predictions
are not better than the mean of the observed values, and a negative value is obtained
when the predictions perform worse than the mean.

The two criteria defined above give a ranking of the models, the best model being the
one with the smallest RMSEP and a modelling efficiency EF as close to 1 as possible.
However, as the RMSEP share the same units as the observations, it can be difficult to
compare the predictive capacity of a model on variables with different units, whereas the
use of EF makes these comparisons easier.

The models were compared on two variables: the dry matter of root and the total
dry matter. This allowed for a comparison of biomass production, and a comparison of
the biomass allocation to the root. However, for the two models that rely on a constant
harvest index for the biomass repartition (Pilote and CERES), the computation of the
criteria for the whole time period for the dry matter of root did not make sense, as the
harvest index is not supposed to be valid throughout the plant development, but only

at harvest. Thus, a third criterion was introduced for the dry matter of root: the yield
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prediction error. It is defined as follows:

D/r,n - )/T',’IL

YPE =
Yr,n

where Y, ,, is the observed root biomass and ?T,n the predicted root biomass at harvest.
The criteria were calculated using the vectors of parameters found at the calibration
stage for each model. Only the plant density and the thermal time of crop initiation were

adapted to 2008 data.

2.5. Modelling platform

The five models presented above were programmed on the C++ modelling platform
PyGMAlion (Cournéde et al., 2013) developed in the team. It contains all the necessary

tools for parametric estimation, sensitivity analysis, and model selection.

3. Results

3.1. Sensitivity analysis and parameter selection

Table A.3 gives the results of the parameter selection procedure. AICc and BIC
are provided for the four models included in the analysis. They both selected the same
number of parameters, except for Greenlab, where AICc included more parameters than
BIC. We finally chose to include 7 parameters in the calibration process, as the fitted
values were closer from the corresponding biological values found in the literature. In
particular, the RUE was estimated at 5.93 g/M J when only 4 parameters were included
in the calibration process, which is higher than all reference values of RUE for sugar beet

reported in the literature.
[Table 3 about here.]

The list of parameters finally estimated for each model is given in Table A.4. The
remaining parameters were fixed to the mean value of their corresponding variation

interval in the sensitivity analysis (see Table A.2). Expectedly, the radiation use efficiency
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had the biggest influence on the model outputs, and was top-ranked by the sensitivity
analyses for all models. For LNAS and STICS, calibrating only this parameter was
enough to ensure a satisfying goodness of fit, and the calibration of more parameters
did not allow for a sufficient decrease of the likelihood. For Greenlab and Pilote, more
parameters were necessary to calibrate the models, but we were able to reduce the total

number of parameters from 10 to 7 for Greenlab.

[Table 4 about here.]
3.2. Predictive capacity

As stated previously, different versions of a given model can be available, correspond-
ing to different modelling assumptions and their corresponding biological interpretations.
It is the case of the STICS model, in our study, where we are using a modified version of
the original published STICS model. It is therefore necessary to compare these different
models to check whether the simplifications adopted in the paper lessen the predictive

capacity of the model.

3.2.1. Comparaison of different versions of STICS

As detailed in section 2.1.3, we adopted in this paper a version of STICS, where the
relationship between intercepted radiation and biomass production is linear instead of
quadratic, and with a constant efficiency coefficient. We provide here a comparison of

the predictive capacity of the different versions of STICS listed in section 2.1.3 (see Table
A5).

[Table 5 about here.]

Interestingly, the modified versions of STICS performed better than the original one,
suggesting that the linear formulation of biomass production and the use of a constant
efficiency coefficient is more appropriate for prediction in the case of sugar beet. The
introduction of thermal stress in the model slightly improved the performances for the

dry matter of root prediction, but not for the total dry matter. These results supported
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our use of the STICS version with a linear biomass production, a constant efficiency and

no consideration of thermal stress for the comparison with the other models.

3.2.2. Comparison on 2008 data

In this section, we present the results for the comparison of the predictive capacity of
the five models on 2008 data. We used for STICS the modified version defined in section
2.1.3. A comparison of the different versions of STICS is available in 3.2.1.

The best predictions for the total dry matter were given by LNAS (see Table A.6),
followed by CERES. The five models provided good overall predictions, as indicated by
the high values of modelling efficiency (above 0.95 for each of them). However, predictions
were less accurate at the end of the growth period, as it can be seen on Figure A.1. In
the two empirical models Pilote and CERES, the initiation began earlier than in the
other models, or more specifically, the produced biomass grew faster, leading to better
predictions during the first growth period (until 1000°Cday approximately), compared
with other models. However, due to a higher RUE value than in LNAS for example
(see Table A.4), they tended to produce overestimated predictions from approximately
1000°Cday. In LNAS, STICS and Greenlab, the initiation was slower, especially for
Greenlab, which resulted in underestimated predictions, at least at the beginning of the
plant growth. For STICS though, this effect was partly compensated by a very high
RUE, and the model provided overestimated predictions from approximately 1500°Cday.
LNAS, for its part, was able to better predict the total biomass all along the growth
thanks to a lower RUE, even if we observed a decreasing trend at the end. For Greenlab,
the underestimations provided by the model seemed to be partly due to a slower initiation
that delayed the growth of the simulated plant.

The models performed well also for the root biomass prediction, with high modelling
efficiency values. We recall that for Pilote and CERES, the comparison of observed
and simulated data throughout the plant development did not make sense as there are
no dynamic allocation processes in these models. The empirical harvest index which

is used is only supposed to be valid at harvest. However, for the sake of illustration,
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we plotted the simulations of these two models according to thermal time, to have an
idea of their behaviours. STICS performed outstandingly well on this variable, which
means, given its performance on the total dry matter, that the dry matter of leaves was
highly underestimated by the model. For LNAS and Greenlab, the dry matter of leaves
is certainly over-estimated by these models, given the fact that root biomass was largely
under-estimated while total dry matter was only slightly under-estimated. These two

models provided highly biased yield predictions, around 15%.
[Table 6 about here.]
[Figure 1 about here.]
[Figure 2 about here.]

4. Discussion

This study is a first attempt to develop a benchmarking approach in a research domain
were a lot of models coexist. In this paper, we compared five plant growth models for
sugar beet on their capacities to predict the total dry matter and the dry matter of root.
The five models shared a comparable energetic production of biomass, but differed in
complexity level, modelling scale and handling of biomass repartition.

More generally, the approach developed in this paper can be used not only for the
comparison of different models, but also for the comparison of different versions of the
same model as presented for STICS, and help to choose between different formulations.

The use of sensitivity analysis allowed us to reduce the variability and to enhance
the predictive capacity of the models. They all provided good overall predictions for the
total dry matter and the root biomass, with high modelling efficiency values. For Pilote
and CERES, a relatively good handling of the plant initiation, coupled with a slightly
too high RUE (for Pilote and CERES) resulted in good also overestimated predictions on
this data set. For LNAS and Greenlab, a later initiation and a slower RUE also resulted

in good but overestimated predictions for the total biomass. In STICS the initiation was
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also delayed, even if in a less obvious way than LNAS and Greenlab, but it was partly
compensated by a very high RUE value.

Models that relied on a harvest index for the repartition of biomass to root and leaves
provided good yield predictions, and total dry matter predictions in the same range as
the allocation models. However, the harvest index was deduced from 2010 measurements
and estimated around 70%, which is lower than the recommended values found in the
literature for these models, around 85%, and slightly lower than the value measured in
2011 of 75%, suggesting that this index might not be very robust. It should also be noted
that for Pilote, the LAT curve used for model calibration in 2010 was constructed from
mass measurements, while it is normally based on Licor LAI-2000 measurements. This
could have probably improved its performance regarding total dry matter production.
For CERES, the maximal surfaces Sj max were computed from individual blade masses
and mass per unit area, and may therefore be very variable from one year to another.
Moreover, these data are not always available, which can prevent from using this model.

From a practical point of view, if one is only interested in yield and root biomass
prediction (which is coherent in the case of sugar beet), STICS can be seen as a good
candidate. Only one parameter needs to be estimated after a sensitivity analysis, and
moreover, reliable recommended values are available in the literature (Brisson et al.,
2008). Environmental stresses can also be easily introduced in the model. Current
work on a modified version of STICS based on source-sink relationships suggests that
this model is indeed very robust. However, if STICS provided good results for the root
biomass in our study, its performance was less good on the total dry matter, due to a
high underestimation of leaf biomass.

Results on the total dry matter also suggested that the initiation is a very crucial phase
of the plant growth, as a too early or a too fast initiation could lead to overestimated
predictions, whereas a too late or a too slow initiation could produce underestimated
predictions. More accurate estimations of this parameter can be found using models

designed to predict seed germination and seedling emergence (Forcella et al., 2000), or
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by introducing the corresponding processes directly in the plant growth models. In any
case, a careful attention must be paid to the simulation of this delicate growth phase, both
by estimating precisely the thermal time of initiation or emergence, and by modelling
adequately the dynamics of the plant during its early phase of growth.

This study is only a first attempt to evaluate the predictive capacities of plant growth
models for sugar beet, and these results should be confirmed on other datasets, corre-
sponding for example to more various situations (different genotypes, stressed environ-
mental conditions, ... ). Intuitively, we could imagine that the parameters of more mech-
anistic models would be more genotype-dependent than that of more empirical models
(Tardieu, 2003; Letort, 2008; Yin et al., 2004).

Moreover, the biological validity of our results must be further explored. Indeed, the
fitted RUE are quite different from one model to another, and slightly higher that the
ones that can be found in the literature and that rarely exceed 4 g.M.J~! : Damay and
Le Gouis (1993), between 2.96 and 3.76 g.M.J !, Milford and Riley (1980), between 3.16
and 4.12 g.M J~!, Biscoe and Gallagher (1977), 3.5 g.MJ~!, ... even if in their book on
STICS, Brisson et al. (2008) provided a value of 4.8 g. M J~! for sugar beet, which is closer
from the values that we obtained. This ‘overestimation’ of the RUE parameters can be
due to the fact that not all of the models parameters were estimated in the end, thanks
to the sensitivity analysis that allowed us to reduce the dimension of the parameter
space, but that also lead to some compensations between the parameter values. This
compensation can also arise when the initiation time is not properly estimated, as it can
lead to a too high RUE value, as detailed above. In our study, the calibration of more
parameters in the Greenlab model allowed us to obtain a more biologically sound value
for this parameter. More generally, one should bear in mind that results from sensitivity
analysis and model selection as proposed in the first part of our paper are only a guide
for the modeller, and the biological interpretation of the fitted models should be checked
for carefully.

Finally, the proposed approach is an illustration of “the good modelling practice” (Vos
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et al., 2007) that should be implemented in plant growth modelling. When modelling
complex systems like plants, it is important to rely on a rigorous methodology and par-
ticularly, to define quantitative or qualitative objectives to the models, to find the proper
balance between model complexity and robustness, and to rely on objective criteria to

evaluate (and compare) the models.
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AppendixA. Parameters

The models presented in this paper involve a lot of different parameters, that are

presented in the table below.

[Table 7 about here.]
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Figure A.1: Models’ predictions for the total dry matter in 2008
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Figure A.2: Models’ predictions for the dry matter of root in 2008
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Table A.1: Classification of the five models according to the modelling scale and the presence or absence
of allocation processes.

Modelling Modelling
scale (per m?) scale (per
plant)
No allocation Pilote CERES
. STICS
Allocation LNAS Greenlab
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Greenlab Pilote LNAS

W [556] RUE : [3;4] RUE : [3;4]
Sp 1 10.05;0.10] o [1;2] eq : [50;70]
P’ [0.3;0.45] B : [0.5;3.5] Lo : [400;800]

p” 1 [1.35;1.65]  Timas ¢ [800;1200] o4 : [200;2000]
ap : [3.38;3.55] LALna. : [4;6]  ws : [2000;3000]

By : [5;5.45] oy : [3000;6000]
ap : [3.7:3.8] Yo i [0.7;1]
Bp : [5.25;5.40] vr + [050.3]

oy [4;4.6]

Br ¢ [2.1;2.8]

Table A.2: Variation intervals for the model parameters. We refer to Brisson et al. (2008) for recom-
mended values for STICS. The variation intervals were then defined with a 10% variation around these
reference values.
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Number of

1 2 3 4 5 6 7 8 9 10
parameters
STICS AICc 4.63 6.77 829 10.82 13.55 16.48 19.63 23.02 26.68 30.65
BIC 6.06 9.50 12.18 15.70 19.26 22.81 26.37 29.92 33.48 37.03
Greenlah AICc 166.91 74.40 74.10 59.46 60.77 62.54 50.83 51.20 53.25 55.31
reenda BIC 171.46 83.48 87.71 77.59 83.42 89.71 82.51 87.37 93.92 100.47
LNAS AICc 5.05 7.12 944 1177 1434 1705 19.92 2295 )
BIC 6.71 10.35 14.11 17.76 21.52 25.29 29.05 32.81
AICc 47.08 45.50 16.15 17.63 15.19
PILOTE BIC 4826 47.68 19.14 21.22 19.13 ) ) )

Table A.3: AICc and BIC according to the number of parameters in the model. Results for STICS
for more than 10 parameters are not shown as the log-likelihood is constant, and the two criteria are

increasing.
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Model Data used for the calibration Estimated parameters
RUE =4.03 g/MJ
oar = 3.16

Dry matter of root, blades and petioles 5, = 1.04

Greenlab 1 Jividual masses of blades and petioles  p, = 0.0039
ap = 3.08
gp =1.70

Dry matter of root
LNAS Dry matter of green leaves RUE = 3.53 g/MJ
Dry matter of senescent leaves

RUE = 4.12 g/M.J

a=1.54
PILOTE e e p=192
Tmae = 1830 *Cday
LAL ez = 3.99
CERES Total dry matter RUE =4.37 g/MJ
Dry matter of root
STICS Dry matter of green blades RUE = 4.76 g/M J

Total dry matter

Table A.4: Data used in the calibration step for the five models, and list of the parameters finally
estimated.
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Total dry matter Dry matter of root

STICS version
RMSEP EF RMSEP EF

Initial 271.24 0.9217 59.26 0.9945
Linear 192.3 0.9606 39.05 0.9976
Linear and cst RUE 168.87 0.9696 39.49 0.9976
Thermal stress 171.73 0.9686 38.61 0.9977

Table A.5: Evaluation criteria for the different versions of STICS on 2008 data
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Table A.6: Evaluation criteria for the five models on 2008 data.

Total dry matter

Dry matter of root

Model
RMSEP EF RMSEP EF YPE
Greenlab 166.61 0.970 169.34 0.955 14.91%
LNAS 110.85 0.987 180.5 0.949 17.66%
CERES 127.02 0.983 - - 5.70%
PILOTE 170.51 0.969 - - 5.02%
STICS 168.87 0.970 39.5 0.998 1.92%
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Model Parameter Unit Meaning
All RUE g.MJ ! Radiation use efficiency
PAR MJm™?2 Photosynthetically active radiation
kp - Extinction coefficient of the Beer-Lambert law
Greenlab I g.MJ~1.pl~' Efficiency coefficient per plant related to the RUE in
the following way : RUE = - S, - d
Sp m? Parameter related to the 2-D projection of the space
occupied by the plant on the floor
ep g.m™2 Mass of blade per unit area of blade
P’ - Sink strength of petioles
! - Correction of p’ according to a competition index
between blades and petioles
o, Bo - Parameters of beta law for the sink function of organ
o (o = b for blades, o = p for petioles and o = r for
root)
LNAS g g.m~2 Mass of leaf per unit area of leaf
L - Median of the lognormal law assumed for the alloca-
tion process
Oa - Standard error of the lognormal law assumed for the
allocation process
s - Median of the lognormal law assumed for the senes-
cence process
Os - Standard error of the lognormal law assumed for the
senescence process
Yo - Initial proportion of biomass allocated to leaves
vf - Final proportion of biomass allocated to leaves
PILOTE a, B - Empirical parameters for the LAI curve
Trmaz *Cday Thermal time at which the LAI is maximal
LAL 0z - Maximal value of the LAI
Te *Cday Thermal time of emergence
STICS a, B - Parameters of the logistic curve for the LAI growth
Umat - Leaf development unit at the inflexion point of the

logistic curve
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