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a b s t r a c t

Mass (or heat) transfer inside a spherical gas bubble rising through a stationary liquid is investigated by

direct numerical simulation. Simulations were carried out for bubble Reynolds number ranging from 0.1

to 100 and for Péclet numbers ranging from 1 to 2000. The study focuses on the effect of the bubble Rey-

nolds number on both the interfacial transfer and the saturation time of the concentration inside the bub-

ble. We show that the maximum velocity Umax at the bubble interface is the pertinent velocity to describe

both internal and external transfers. The corresponding Sherwood (or Nusselt) numbers and the satura-

tion time can be described by a sigmoid function depending on the Péclet number Pemax = Umaxdb/D (db
and D being the bubble diameter and the corresponding diffusion coefficient).

1. Introduction

In a great number of processes such as chemical engineering or

water treatment, bubbly flows are used for mass transfer. In some

situations the resistance of the transfer resides in the gas phase.

For physical absorption or desorption of very soluble gases, as pre-

dicted by the Lewis–Whitman two-film model [1], the mass trans-

fer liquid-phase resistance can be negligible and mass transfer is

then controlled by the gas phase resistance. A typical example is

ammonia removal from water where mass transfer is limited by

the solute concentration transport inside bubbles. For gas absorp-

tion followed by an extremely fast chemical reaction in the liquid

phase, mass transfer can also be controlled by gas-side transfer

resistance [2,3]. A typical example is sulfur dioxide absorption into

alkali solutions. In such cases, the estimation of the mass transfer

requires the knowledge of the gas-side transfer. A large amount

of studies have considered the external mass transfer [4–7] but less

attention has been paid to the internal mass transfer.

Newman [8] has derived the analytical solution of the mass

transfer controlled by pure diffusion inside a sphere. From the

instantaneous concentration profile, the time evolution of the in-

side Sherwood number Sh has been obtained for a fixed concentra-

tion cs at the surface and an initial uniform concentration c0 inside

the sphere. The corresponding Sherwood number tends to an

asymptotic constant value Sh1 = Sh(t?1):

Sh1ðRe ¼ 0; Pe ¼ 0Þ ¼ 2p2

3
� 6:58 ð1Þ

This solution can be used for a bubble fixed relative to the sur-

rounding liquid i.e. for a bubble Reynolds number Re = qLUbdb/

lL = 0 and a Péclet number Pe = Ubdb/D = 0 where db is the bubble

diameter, Ub is the bubble relative velocity, qL is the liquid density,

lL its dynamic viscosity and D is the diffusion coefficient. In prac-

tice, this solution is expected to be valid in the limits Re? 0 and

Pe? 0.

Using the Stokes (or creeping flow) solution for the description

of the flow inside the bubble [9,10], Kronig and Brink [11] obtained

numerically the instantaneous Sherwood number in the limit of

high Péclet number. The corresponding asymptotic value of the

Sherwood number Sh1, valid in the limits Re? 0 and Pe?1, is

also found to be constant:

Sh1ðRe ! 0; Pe ! 1Þ � 17:90 ð2Þ

As pointed out by Clift et al. [4], the solution (2) is very close to the

solution (1) when considering an effective diffusion coefficient

Deff = 2.5D. The experiments of Calderbank and Korchinski [12] on
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heat transfer inside bromobenzene circulating drops falling in

water–glycerol solutions also show an agreement with relation

(2) with a measured effective diffusion coefficient Deff = 2.25D.

Using the Hadamard–Rybczynski solution for the internal flow

and numerical simulations for the transport of the mass concentra-

tion, Clift et al. [4] have shown that the increase of the Péclet num-

ber produces a gradual increase of the asymptotic Sherwood

number Sh1, from the value Sh1 � 6.58 given by (1) up to a value

close to Sh1 � 17.90 given by (2).

Few studies have considered the internal transfer at moderate

Reynolds number [13,14]. The numerical simulations performed

by Oliver and De Witt [13] indicate that the Sherwood number

Sh1 at large Péclet number weakly increases with the bubble Rey-

nolds number Re. For intermediate Reynolds number, Sh1 is influ-

enced by both the Péclet and the Reynolds numbers. In order to

describe the corresponding evolution of Sh1, Oliver and De Witt

[13] introduced the following effective Péclet number Peeff ex-

pressed here for a spherical bubble:

Peeff ¼ ½1þ 0:4 logð0:3Reþ 1Þ�Pe ð3Þ

This effective Péclet number expresses the increase of the inner vor-

tex strength with the bubble Reynolds number. Considering this

effective Péclet number, Oliver and De Witt [13] show that their

numerical results almost collapse on a single curve. Note that the

increase of the asymptotic Sherwood number Sh1 with the Rey-

nolds number has also been reported by Paschedag et al. [15] for

the conjugate mass transfer problem inside droplets.

More recently, thanks to direct numerical simulations, Juncu

[14] investigated thoroughly unsteady heat/mass transfer inside

a circulating sphere for three fluid–fluid systems (gas-bubbles, li-

quid drops in an immiscible liquids, liquid drops in gases). For

the case of a bubble, this work has considered Re 6 100 and

Pe 6 104. The simulations confirm the increase of the Sherwood

number with the increase of the bubble Reynolds number. The

study also shows that the scaling proposed by Oliver and De Witt

[13] (Eq. (3)) is only adapted for the description of the transfer

for small to moderate effective Péclet number, i.e. Peeff 6 200.

In order to determine the transfer in the limit of high Reynolds

numbers, Zaritzky and Calvelo [16] have used the internal poten-

tial flow solution [17] for the flow inside the bubble in order to

solve by numerical simulation the concentration field. Surprisingly,

Sh1 is close to the value 17.90 given by (2) in the limit of small

Reynolds number [11] suggesting no effect of the Reynolds number

on the transfer at high Péclet number. Despite a good agreement

found between these numerical results and their experimental

measurements for the transfer of SO2 in water for Re > 800, this re-

sults is in contradiction with the numerical simulations [13,14]

indicating an effect of the Reynolds number on the inside transfer.

According to Oliver and DeWitt [13], this effect is linked to the non

uniform increase of the velocity around a fluid sphere when

increasing the Reynolds number. The main objective of this paper

is to clarify the effect of the bubble Reynolds number on the trans-

fer at intermediate Reynolds number. For this purpose direct

numerical simulations have been performed to calculate the inside

transfer for bubble Reynolds numbers ranging from 0.1 to 100 and

for Péclet numbers ranging from 1 to 2000.

The paper is organized as follows. Sections 2 and 3 present

the governing equations and the numerical procedure, respec-

tively. Section 4 is devoted to the validation of the numerical

procedure for both the fluid motion and the internal transfer.

Section 5 presents and discusses the numerical results in order

to improve the modeling of the internal transfer. The modeling

of the Sherwood number for external mass (or heat) transfer is

also discussed.

List of symbols

c mass concentration, kg m�3

cs saturation mass concentration, kg m�3

c0 initial mass concentration, kg m�3

c0 dimensionless mass concentration, c0 = (c � c0)/(cs � c0)
hci volume average concentration in the gas bubble, kg m�3

CD bubble drag coefficient
db bubble diameter, m
D molecular diffusion coefficient, m2 s�1

F dimensionless mass concentration, F = hci/(cs � c0)
J surface average mass flux, kg m�2 s�1

Jloc local mass flux, kg m�2 s�1

n unit vector normal to the surface under consideration
p pressure, Pa
Pe Péclet number, Pe = Ubdb/D
Peeff effective Péclet number
Pemax Péclet number based on Umax, Pemax = Umaxdb/D
r radial coordinate
r0 dimensionless radial coordinate, r0 = r/rb
rb bubble radius rb = db/2, m
R1 computational domain radius, m
Re bubble Reynolds number, Re = qLUbdb/lL

Sc Schmidt number, Sc = mG/D
Sh instantaneous Sherwood number
Sh1 asymptotic Sherwood number, Sh1 = Sh(t ?1)
Sh�1 normalized asymptotic Sherwood number
t time, s
t0 dimensionless time (Fourier number), t0 ¼ tD=r2b
t unit vector tangential to the bubble surface

tsat saturation time, s
t0sat dimensionless saturation time, t0sat ¼ tsatD=r2b
t�sat normalized saturation time
uk velocity of phase k, m s�1

Umax maximal velocity at the bubble interface, m s�1

Ub bubble rising velocity, m s�1

uh local liquid velocity at the bubble surface, m s�1

Greek symbols
dD concentration boundary layer thickness, m
Din internal grid size at the interface, m
Dout external grid size at the interface, m
lk dynamic viscosity of phase k, Pas
l⁄ dynamic viscosity ratio, l⁄ = lG/lL

mk kinematic viscosity of phase k, m 2 s�1

qk density of phase k, kg m�3

q⁄ density ratio, q⁄ = qG/qL

s viscous shear stress, Pa

Superscripts
ext external transfer

Subscripts
G gas phase
k phase k
L liquid phase



2. Governing equations

We consider a clean spherical gas bubble of diameter db = 2rb
moving at a constant relative velocity Ub in a liquid at rest. In terms

of a (Eulerian) frame of reference fixed with the bubble, the liquid

velocity field inside (k = G) and outside (k = L) the bubble is given

by the Navier–Stokes equations written for Newtonian incom-

pressible fluids:

r � uk ¼ 0 ð4Þ

qk

@uk

@t
þ uk �ruk

� �

¼ �rpk þr � sk ð5Þ

where sk = lk(ruk +rTuk) is the viscous part of the stress tensor, qk

and lk are the density and the dynamic viscosity of the fluid k,

respectively.

Far from the bubble, the external liquid satisfies the condition

uL ? �Ub. In the absence of any surface tension gradient and bub-

ble deformation, the two fluids satisfy the continuity of the normal

velocity, the tangential velocity and the tangential viscous stress at

the bubble surface:

uL � n ¼ uG � n ¼ 0

uL � t ¼ uG � t
n� sL � n ¼ n� sG � n

ð6Þ

where n and t are unity vectors normal and tangent to the bubble

surface.

The advection–diffusion equation for the concentration c inside

the bubble is

@c

@t
þr � ðcuGÞ ¼ Dr2c ð7Þ

where D is the diffusion coefficient of the considered species in the

gas filling the bubble. The initial concentration inside the bubble is

noted c0 and cs is the concentration set fixed at the bubble surface.

Some results will be presented using the normalized concentration

c0 = (c � c0)/(cs � c0) as a function of the Fourier number t0 ¼ Dt=r2b
and the normalized radial position r0 = r/rb. The transfer inside the

bubble is characterized using the instantaneous surface average

Sherwood number:

ShðtÞ ¼ Jdb

Dðcs � hciÞ with J ¼ 1

pd2
b

I

Jlocds; ð8Þ

where J is the surface average mass flux, Jloc = �D(@c/@n) is the local

mass flux at the interface and hci is the instantaneous volume aver-

age concentration inside the bubble. The average Sherwood number

defined by (8) is directly linked to the volume average dimension-

less concentration F = hci/(cs � c0) by the relation [4]:

Shðt0Þ ¼ 2

3ð1� FÞ
dF

dt
0 ð9Þ

In this work, the instantaneous Sherwood number has been calcu-

lated using this relation. We also introduce the asymptotic Sher-

wood Sh1 number as Sh1 = Sh(t?1). Note that the

instantaneous Sherwood number always reaches the asymptotic

value Sh1 for a time t0 smaller than 0.5 for all the values (Re,Pe) con-

sidered in this work.

The transfer is studied as a function of the bubble Reynolds

number Re

Re ¼ qLUbdb

lL

ð10Þ

and the Péclet number Pe

Pe ¼ Ubdb

D
ð11Þ

This Péclet number compares the characteristic time of diffusion

d
2
b=D to the characteristic time of advection at the interface db/Ub.

We also introduce the Schmidt number Sc = mG/D where mG = lG/qG

is the gas kinematic viscosity. The simulations reported in this

study were performed for the density and viscosity ratio q⁄ = qG/

qL = 0.0012 and l⁄ = lG/lL = 0.018, respectively.

3. Numerical procedure

The flow generated by a clean spherical bubble moving at a con-

stant velocity in a liquid at rest is steady and axisymmetric what-

ever the bubble Reynolds number [18]. As a consequence, the

system of Eq. (4)–(7) has been solved in an axisymmetric system

of coordinates. The equations have been written in dimensionless

primitive variables and solved with Comsol
�

3.5a using the Galerkin

type finite element method with a direct linear solver [19]. Finite

elements used in this work are second-order Lagrange elements.

The time integration is implicit using variable-order backward dif-

ferentiation formulas up to filth order according to the calculation

in situ accuracy requirements [20]. The convergence criteria for

each time step has been set with an absolute tolerance of 10�11,

the normalized concentration lying between 0 and 1. The axisym-

metric computational domain is presented in Fig. 1. The bubble is

located at the center of a domain of radius R1. On the external

boundary, inlet and outlet conditions have been imposed. On the

left of the domain, the inlet condition consists in imposing a uni-

form velocity

uL ¼ �Ub ð12Þ

Outlet boundary conditions are imposed at the right of the flow do-

main (Fig. 1): the viscous stress is imposed to zero and a zero pres-

sure reference is chosen

sL:n ¼ 0; pL ¼ 0 ð13Þ

where n is here the unit vector normal to the external boundary.

The boundary conditions imposed at the bubble surface are given

by (6). The concentration is set fixed to c = cs (c
0 = 1) at the bubble

surface and the initial concentration is imposed to c = c0 (c0 = 0) in-

side the bubble.

We first solve the Navier–Stokes equations (Eqs. (4)–(6)) to ob-

tain the steady velocity field outside and inside the bubble for a gi-

ven Reynolds number. Then, the transient diffusion–convection

equation (Eq. (7)) is solved inside the bubble for different Schmidt

numbers in order to vary the Péclet number.

An example of the grid is shown in Fig. 2. Outside the bubble a

polar mesh is used, whereas the mesh is triangular inside the bub-

ble. The grid is highly refined in the area near the interface in order

to capture the concentration boundary layers. The grid spacing at

the interface (both inside and outside) has been determined in or-

der to be much smaller than the concentration boundary layer

thickness dD estimated by dD � Pe�1/2db. For the maximum Péclet

number considered in this study (Pe = 2000), the concentration

boundary layer thickness dD is about 2 � 10�2db. Four different

outletinlet

rb R∞

mobile interface
r

z

Fig. 1. Computational domain.



meshes (A, B, C and D) have been considered in order to test the

confinement imposed by the external boundary located at r = R1
from the bubble center, the number of cells Nin and Nout, the grid

spacing at the interface Din and Dout inside and outside the bubble,

respectively. The corresponding mesh characteristics are reported

in Table 1.

Table 2 presents the values of asymptotic Sherwood number

Sh1 obtained with the four meshes A, B, C and D for

Pe = 1;20;50;100;1000;2000 and for Re = 0.1, 10 and 100. The re-

sults found for the different meshes are very close. The largest dif-

ference is found with the less refined mesh (mesh A) while no

effect is found when increasing the position of the external bound-

ary (mesh B). All the simulations presented in this paper have been

performed with the mesh C with Din/db = 1.31 � 10�2 and Dout/

db = 3.90 � 10�3. As shown in Table 2 a more refined mesh (mesh

D) does not change the results.

4. Preliminary validation

We first report some preliminary validations for the resolution

of both the Navier–Stokes equations and the concentration

equation.

4.1. Drag coefficient

The bubble drag coefficient CD is compared with reference re-

sults from the literature. The drag force exerted by the surrounding

fluid on the bubble is directly calculated from the integration of the

pressure and the viscous stress on the bubble surface. In Fig. 3, the

drag coefficient CD is compared with the empirical drag law [21] for

clean spherical bubbles:

CD ¼ 16

Re

16þ 3:315Re1=2 þ 3Re

16þ 3:315Re1=2 þ Re
ð14Þ

This correlation, that matches the asymptotic analytical solutions

for Re? 0 and Re?1, has been found in very good agreement

with various direct numerical simulations [21–23]. Fig. 3 clearly

shows that our numerical results are in good agreement with rela-

tion (14).

4.2. Velocity at the bubble interface

As it will be stressed in the following, the tangential velocity at

the bubble surface plays an important role in the transfer inside

and outside the bubble. Fig. 4.a reports the tangential velocity uh
versus the polar angle h for different bubble Reynolds numbers.

The velocity distribution is symmetric in the limit of small and

large Reynolds number as predicted by the Hadamard–Rybczynski

solution and the potential flow, the corresponding maximum

velocity located at h = p/2 being Umax = Ub/2 and Umax = 3Ub/2,

respectively. Fig. 4.b reports the normalized maximal velocity at

the interface Umax/Ub as a function of the bubble Reynolds number

Re. The evolution is compared to the following relation [24]

Umax ¼
1

2

16þ 3:315Re1=2 þ 3Re

16þ 3:315Re1=2 þ Re
Ub ð15Þ

Both, the local distribution and the maximum value of the tangen-

tial velocity at the bubble interface are in very good agreement with

previous works [24,25].

Fig. 2. Zoom around the bubble for the mesh A.

Table 1

Internal and external mesh characteristics. Nin and Nout are the number of cells inside

and outside the bubble, Dint and Dout are the inside and outside grid spacing at the

bubble surface.

R1/rb Nout Nin Dout/db Din/db

Mesh A 60 3600 645 3.25 � 10�3 2.38 � 10�2

Mesh B 120 5000 1201 4.00 � 10�3 1.50 � 10�2

Mesh C 60 5500 1327 3.90 � 10�3 1.31 � 10�2

Mesh D 60 6000 1498 3.90 � 10�3 1.25 � 10�2

Table 2

Sherwood number Sh1 for the meshes A, B, C and D for different Péclet and Reynolds numbers.

Pe Re = 0.1 Re = 10 Re = 100

A B C D A B C D A B C D

1 6.56 6.56 6.56 6.56 6.56 6.56 6.56 6.56 6.57 6.57 6.57 6.57

20 7.64 7.63 7.64 7.65 8.66 8.66 8.66 8.66 10.33 10.33 10.31 10.31

50 11.10 11.05 11.09 11.09 13.12 13.11 13.11 13.11 15.01 14.99 14.98 14.99

100 14.58 14.53 14.56 14.57 16.01 15.98 15.99 15.99 16.98 16.95 16.95 16.95

1000 17.68 17.66 17.67 17.67 17.89 17.87 17.87 17.87 17.97 18.02 18.03 18.03

2000 17.73 17.72 17.72 17.72 17.92 17.90 17.90 17.90 17.92 18.04 18.06 18.06

10
−1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

Fig. 3. Drag coefficient vs. bubble Reynolds number: 	 this work; — relation (14) for

a clean spherical bubble [21].



4.3. Mass transfer in the pure diffusion regime

We first validate the numerical solution of the transfer inside

the bubble for the pure diffusion regime (Re = 0 and Pe = 0). The re-

sults are compared to the corresponding analytical solution pro-

posed by Newman [8]. The instantaneous radial profile of the

normalized concentration is

c0ðr0; t0Þ ¼ 1þ 2

r0

X

þ1

n¼1

ð�1Þn
np

expð�½np�2t0Þsinðnpr0Þ for r0 > 0; ð16Þ

c0ðr0 ¼ 0; t0Þ ¼ 1þ 2
X

þ1

n¼1

ð�1Þnexpð�½np�2t0Þ for r0 ¼ 0; ð17Þ

The corresponding instantaneous Sherwood number is given as

Shðt0Þ ¼ 2p2

3

Pþ1
n¼1expð�½np�2t0Þ

Pþ1
n¼1

1
n2
expð�½np�2t0Þ

ð18Þ

In the limit t0 ?1, Eq. (18) gives the value of the asymptotic Sher-

wood number Sh1 = 2p2/3 � 6.58 (Eq. (1)). In Fig. 5, some radial

profiles are plotted for different dimensionless times. A perfect

agreement is obtained between our simulations reported using

symbols and the Newman’s solution. The corresponding asymptotic

Sherwood number estimated from our simulations is Sh1 = 6.56,

which differs only by 0.3% with the Newman’s result (1).

4.4. Mass transfer at low Reynolds number

We consider the transfer in the limit of low Reynolds number.

We compare our results with available solutions from the litera-

ture. The simulations reported in Fig. 6 are performed at Re = 0.1.

The instantaneous average Sherwood number (Eq. (9)) is plotted

against the normalized time t0 for different Péclet numbers. As

shown in this figure, an interesting agreement is obtained between

this work and Clift et al. [4]. The small discrepancy between the

(a) (b)

Fig. 4. (a) Velocity at the bubble interface versus the tangential angle h for different Reynolds number. (h = 0 is located at the front stagnation point). From bottom to top:

Re = 0:1;1;5;10;20;50;100. — this study, – – – Legendre et al. [25]. (b) Maximum velocity at the bubble interface vs. bubble Reynolds number: 	 this work, h Legendre et al.

[25], — Eq. (15) Legendre [24].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 5. Instantaneous concentration c0 = (c � c0)/(cs � c0) vs. radial position r0 = r/rb
for t0 ¼ Dt=r2b ¼ 0:0025; 0:01;0:025; 0:05;0:1; 0:15;0:25; 0:5 : 	 this work for Re = 0

and Pe = 0. — analytical solution of Newman [8] (Eqs. (16) and (17)).

0 0.02 0.04 0.06 0.08 0.1
5

10

15

20
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30

35
←Pe=∞

Pe = 0

80
160

400

1000

Fig. 6. Instantaneous Sherwood number versus t0 for different Péclet numbers at

low bubble Reynolds number: – – – Clift et al. [4] for creeping flow; — this work for

Re = 0.1; – � – analytical solution of Newman [8] for Pe = 0 (Eq. (18)); . . . relation of

Kronig and Brink [11] for Pe?1 and Re? 0 (Eq. (19)).



two curves may be explained by the fact that for Re = 0.1, the veloc-

ity field inside the bubble is not exactly given by the creeping flow

solution valid in the limit Re? 0 [9,10]. A significant difference is

observed between our simulations and the Newman’s solution (Eq.

(18)) due to the value of the Péclet number considered in our sim-

ulations. The solution derived by Kronig and Brink [11] is also re-

ported in the figure:

Shðt0Þ ¼ 32

3

P1
n¼1A

2
nknexpð�16knt

0Þ
P1

n¼1A
2
nexpð�16knt

0Þ
ð19Þ

with the first seven values for An and kn given by [26]

An ¼ ½1:33 0:60 0:36 0:35 0:28 0:22 0:16 � ð20Þ
kn ¼ ½1:678 8:48 21:10 38:5 63:0 89:8 123:8 � ð21Þ

The asymptotic behavior of our simulations (and those of Clift et al.

[4]) is correctly reproduced by this solution for Pe P 160. Indeed,

our simulations tend with a very good agreement to the corre-

sponding value of the Sherwood number given by relation (2):

Sh1(Re? 0,Pe ?1) = 32k1/3 � 17.90. However, the solution ob-

tained by [11] does not reproduce the time oscillations of the inside

transfer observed for the values of the Péclet number considered.

These time oscillations, characteristic of the mass transfer inside a

fluid sphere [27,4,13,14] results from the inside Hill’s vortex [28]

whose intensity is controlled by the continuity of the velocity and

the viscous shear stress at the interface. This inside convection

mechanism is enhanced when increasing the Péclet number. It gen-

erates a periodic renewal of the concentration at the interface with

fresh fluid particles coming from the bubble axis. Consequently, for

a given Reynolds number (Re = 0.1 in Fig. 6), the increase of the

Péclet number results in time oscillations of the Sherwood number.

Due to the enhancement of the inside convection, the asymptotic

Sherwood number Sh1 increases with the Péclet number as shown

in Fig. 6.

5. Results and discussion

We present in Sections 5.1 and 5.2 the results concerning the

asymptotic Sherwood number and the saturation time, respec-

tively. Useful simple correlations for the description of the internal

mass (or heat) transfer are proposed by introducing a relevant

Péclet number based on the maximum tangential velocity Umax. Fi-

nally, we show in Section 5.3 that this Péclet number is also perti-

nent for the description of the external mass transfer.

5.1. Sherwood number

The asymptotic Sherwood number Sh1 is reported in Fig. 7 ver-

sus the Péclet number for Re = 0.1,10,100. In this figure, the evolu-

tion of Sh1 with Pe is shown to increase from Newman’s solution

Sh1(Pe? 0) = 6.58 up to a finite value close to the Kroning and

Brink’s result Sh1(Pe?1) � 17.7 � 18.1. Therefore, the asymp-

totic Sherwood number is bounded. This result completely differs

from the external transfer where the Sherwood number grows as

Pe1/2. Moreover, as observed for the external mass transfer [29,5],

the increase of the Reynolds number for a given Péclet number, im-

proves the mass transfer resulting in higher values for Sh1. Our

numerical results are in very good agreement with Clift et al. [4]

for Re = 0.1 and with the simulations of Juncu [14] (filled symbols)

reported for the creeping flow, Re = 10 and Re = 100. Fig. 7 clearly

indicates two asymptotic limits at low and large Péclet number

reached for Pe 6 3 and PeP 1000, respectively. It is thus possible

to deduce from the figure the corresponding asymptotic Sherwood

numbers Sh1(Re,Pe? 0) and Sh1(Re,Pe?1). They are plotted

versus the bubble Reynolds number in Fig. 8(a) and (b), respec-

tively. At low Péclet number, Sh1(Re,Pe? 0) is found to be

independent on the Reynolds number and Sh(Re,Pe? 0) � 6.58.

This value is in very good agreement with the analytical solution

(1) of Newman [8] and with the numerical simulations of Juncu

[14], the difference being less than 0.15%. The numerical value

Sh1(Re = 0.1,Pe?1) � 17.71 is also in very good agreement with

the solution (2) obtained by Kronig and Brink [11], the difference

being around 1%. Fig. 8(b) reports the evolution of Sh1(Re,Pe?1)

normalized by Sh1(Re? 0,Pe?1). Sh1(Re,Pe?1) slightly in-

creases with the Reynolds number for Re > 1. The variation is about

2 � 3% between Re = 1 and Re = 100 and can be described using the

following simple relation:

Sh1ðRe; Pe ! 1Þ � Sh1ðRe ! 0; Pe ! 1Þð1þ ReÞ0:0044 ð22Þ

The numerical results obtained by Juncu [14] for Pe = 104 are shown

in Fig. 8b. The agreement is very good and reveals the same linear

increase with the Reynolds number.

Following Oliver and De Witt [13], Fig. 9 presents the evolution

of Sh1 against the effective Péclet number Peeff given by relation (3)

for different Reynolds numbers. The numerical results are found to

roughly collapse on the evolution obtained by Clift et al. [4] under

creeping flow condition. However the observed deviation can be

explained by the increase of the transfer with the Reynolds number

for a fixed Péclet number. The effective Péclet number Peeff as ex-

pressed by Oliver and De Witt [13] does not seem to be adapted

for Reynolds number larger than unity. This point will be discussed

in the last section.

In order to improve the modeling of the Sherwood number we

introduce the normalized asymptotic Sherwood number Sh
�
1

Sh
�
1 ¼ Sh1ðRe; PeÞ � Sh1ðRe; Pe ! 0Þ

Sh1ðRe; Pe ! 1Þ� Sh1ðRe; Pe ! 0Þ ð23Þ

with Sh1(Re,Pe? 0) and Sh1(Re,Pe?1) given by (1) and (22),

respectively. According to Oliver and De Witt [13], the definition

of an effective Péclet number was motivated by the following obser-

vation: ‘‘As the Reynolds number increases, the scaled velocities in

the droplet (or bubble) also increase. This increase in velocity is not

spatially uniform, thus it is not clear how to account for this

increasing velocity with increasing Reynolds numbers’’. Indeed, as

reported in Fig. 4a and b, the interfacial velocity distribution and

especially the maximal velocity Umax at the interface are strongly af-

fected by the bubble Reynolds number. Consequently, when Re in-

creases, the advection of the concentration at the bubble interface

is enhanced. The effective characteristic time scale of the concentra-

Fig. 7. Sherwood number Sh1 vs. Péclet number: – – Clift et al. [4] for creeping

flow. This work for Re = 0.1 (	), 10 (h), 100 (M). Juncu [14] creeping flow (
), Re=10
(j), 100 (N); — Eq. (25).



tion transport by advection is then sadv = db/Umax that leads to the

definition of the Péclet number Pemax defined using the maximal

velocity Umax at the bubble surface

Pemax ¼
Umaxdb

D
¼ Umax

Ub

Pe ð24Þ

Fig. 10 reports the evolution of Sh
�
1 as a function of Pemax. A per-

fect collapse of all the results is now observed for all the Reynolds

number considered (Re = 0.1,1,5,10,20,50,100). For a given Péclet

number, the enhancement of Sh1 with an increase of Re is directly

linked to the increase of the maximal velocity Umax at the bubble

interface. Noting that the Sh
�
1 evolution exhibits a ‘‘S’’ shape, we

propose to fit the numerical results by a sigmoid function, as

follows

Sh
�
1 ¼ 1

1þ exp �a1 lnðPemaxÞ � b1½ �ð Þ ð25Þ

The least squares method is used to estimate a1 and b1. As shown in

Figs. 7 and 10, Eq. (25) with a1 = 1.89 and b1 = 3.49 describes the

evolution of Sh
�
1. The results of Juncu [14] (filled symbols) are also

in perfect agreement.

5.2. Saturation time

The time tsat necessary to achieve the saturation of the bubble is

now considered. This parameter is of importance for the complete

modeling of the mass (or heat) transfer. We define here the satura-

tion time tsat as the time to reach 99% of the final concentration in-

side the bubble, i.e. F = 0.99. tsat is reported in Fig. 11 versus the

Péclet number for Re = 0.1,10,100. For a given Péclet number, the

improvement of mass transfer by increasing the Reynolds number

generates a lower saturation time. This behavior is clearly related

to the increase of the Sherwood number with the bubble Reynolds

number. tsat is found to decrease from the value deduced from the

analytical solution (16) and (17)

tsatðRe; Pe ! 0Þ ¼ 0:416
r2b
D

ð26Þ

The numerical value tsatðRe ¼ 0:1; Pe ! 1Þ ¼ 0:158r2b=D is in very

good agreement with the value tsatðRe ! 0; Pe ! 1Þ ¼ 0:155r2b=D
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obtained from the solution derived by Kronig and Brink [11].

tsat(Re,Pe?1) is found to vary in the range 0:154� 0:158r2b=D

for the Reynolds numbers considered. This evolution can be

described using the following relation valid for Re 6 100

tsatðRe; Pe ! 1Þ ¼ tsatðRe ! 0; Pe ! 1Þð1þ ReÞ�0:0054 ð27Þ

We now define the normalized saturation time t�sat as

t�sat ¼
tsatðRe; PeÞ � tsatðRe; Pe ! 1Þ

tsatðRe; Pe ! 0Þ � tsatðRe; Pe ! 1Þ ð28Þ

where tsat(Re,Pe ? 0) and tsat(Re,Pe?1) are given by (26) and (27),

respectively. Fig. 12 reports the evolution of t�sat as a function of

Pemax. As shown by the figure, all the evolutions collapse on the

same curve. The following relation based on a sigmoid function de-

scribes the corresponding evolution:

t�sat ¼ 1� 1

1þ exp �a2 lnðPemaxÞ � b2½ �ð Þ ð29Þ

with a2 � 1.81 and b2 � 3.30. Fig. 11 confirms that relation (29)

gives a good description of the saturation time for all the values

(Re,Pe) considered in this study.

5.3. External mass (or heat) transfer

We finally extend the previous analysis to the external mass

transfer. As shown in Figueroa and Legendre [7], the correlations

of Winnikow [29] and Takemura and Yabe [5] are very useful to de-

scribe the external Sherwood number Sh
ext
1 . These two relations are

able to predict the increase of the Sherwood number induced by an

increase of the Reynolds number. However, the relation derived by

Winnikow [29], based on the tangential velocity derived by Moore

[30], is only valid for Re > 50. Moreover, the relation of Takemura

and Yabe [5] is also not able to reproduce the pure diffusion limit

Sh
ext
1 ¼ 2, when both the Reynolds and the Péclet numbers tend to

zero. Consequently, there is not a general relation equivalent to

relation (25) available for the description of the external transfer

whatever the Reynolds and Péclet numbers considered.

For the discussion reported in this section, no additional simu-

lation for the external transfer has been performed because of the

large amount of results available in the literature. The external

Sherwood number Sh
ext
1 values have been collected from several

numerical studies [31–33,7]. Fig. 13 reports Sh
ext
1 as a function of

the external Péclet number Peext = Ubdb/DL where DL is the diffusion

coefficient in the liquid surrounding the bubble. The plot clearly

outlines the effect of the Reynolds number on the transfer for a gi-

ven Péclet number. The numerical values of Sh
ext
1 are compared in

Fig. 13 with several relations from the literature. Based on avail-

able numerical data, Clift et al. [4] proposed the following correla-

tion valid under creeping flow conditions:

Sh
ext
1 ðRe ! 0; PeextÞ ¼ 1þ 1þ 0:564 ðPeextÞ2=3

h i3=4

ð30Þ

As shown in Fig. 13, the results of Saboni et al. [33] for creeping flow

(+) and the results of Legendre and Magnaudet [31] for low Péclet

number at Sc = 1 (
) are in good agreement with relation (30). Note

that, relation (30) is consistent with both the analytical asymptotic

solution in the limit of low Péclet number [34]

Sh
ext
1 ðRe ! 0; Peext ! 0Þ ¼ 2þ 1

2
Peext ð31Þ

and the solution obtained in the limit of high Péclet number [35]:
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Sh
ext
1 ðRe ! 0; Peext ! 1Þ ¼ 2

ffiffiffiffiffiffiffi

3p
p Peext

� �1=2 ð32Þ

The objective is now to consider the Péclet number

Peextmax ¼ Umaxdb=DL based on the maximum tangential velocity Umax

for the description of the external mass (or heat) transfer. The exter-

nal Sherwood number Sh
ext
1 is reported as a function of Peextmax in

Fig. 14. As shown for the internal transfer, all the numerical results

are found to collapse on a single curve. The Péclet number Peextmax

based on the maximal velocity at the bubble surface is also the per-

tinent parameter for the description of the external transfer. Fig. 14

also reveals that the following relation based on relation (30) de-

scribes the evolution of Sh
ext
1

Sh
ext
1 ¼ 1þ 1þ 4

3p

� �2=3

ð2PeextmaxÞ
2=3

" #3=4

ð33Þ

where the approximate value 0.564 in relation (30) has been re-

placed by the exact one (4/3p)2/3 deduced from the analytical solu-

tion (32). In the limit of both large Reynolds number and large

Péclet number Peextmax ! 3=2Peext , relation (33) tends to the Bous-

sinesq solution [36]:

Sh
ext
1 ðRe ! 1; Peext ! 1Þ ! 2

ffiffiffiffi

p
p Peext

� �1=2 ð34Þ

Consequently, relation (33) provides an accurate description of the

external mass (or heat) transfer for a complete range of both the

bubble Reynolds number and the Péclet number.

5.4. On the effective Péclet number

The results presented above indicate that the relevant parame-

ter for the description of both the internal (resp. external) mass (or

heat) transfer is the Péclet number Pemax (resp. Pe
ext
max) based on the

maximum velocity at the bubble surface. Fig. 14 shows that rela-

tion (33) deduced from relation (30) describes the evolution of

the Sherwood number for all the values (Re,Pe) considered. As a

consequence the so-called effective Péclet number [13] is Peeff = 2-

Pemax. Thus, the effective Péclet number can be described for all the

values of both the Reynolds number and the Péclet number as

Peeff ¼
16þ 3:315Re1=2 þ 3Re

16þ 3:315Re1=2 þ Re
Pe ð35Þ

The evolution of Peeff/Pe is reported in Fig. 15 as a function of the

Reynolds number. Due to the variation of the maximum velocity

at the bubble surface with the Reynolds number, the value of the

effective Péclet number is tripled between the limit at low Reynolds

number and the limit at high Reynolds number. The effective Péclet

number proposed by Oliver and De Witt [13] (relation (3)) is also

shown in Fig. 15. The two relations are in agreement at very low

Reynolds number. This is consistent with Fig. 9 where the agree-

ment with relation (30) is shown for Re = 0.1.

Finally, the results presented in this study indicate that both the

internal and external mass (or heat) transfer can be described

using the same effective Péclet number given by relation (35).

6. Conclusions

The mass (or heat) transfer inside a spherical clean bubble in a

uniform flow has been considered by means of numerical simula-

tion. Simulations were performed for Péclet number up to

Pe = 2000 for a large range of the bubble Reynolds number

(0.1 6 Re 6 100). The effects of both the Reynolds number and

the Péclet number have been discussed by considering the evolu-

tion of the Sherwood number and the saturation time. For a fixed

Péclet number, the transfer is increased when increasing the Rey-

nolds number because the strength of the internal recirculation

is enhanced. This study has revealed that the Péclet number Pemax

based on the maximum tangential velocity at the bubble surface is

the relevant parameter for the description of the transfer. The anal-

ysis has been extended to the external mass (or heat) transfer. Con-

sidering results from the literature we have shown that Pemax is

also the pertinent parameter. Future works could confirm that

Pemax is still relevant for the description of the transfer for larger

Péclet and Reynolds numbers. It should be also very interesting

to extend a similar analysis to partially contaminated bubbles,

deformable bubbles and fluid spheres with higher viscosity ratio.

In this study we have considered the transfer inside a clean,

spherical bubble with a fixed radius in a uniform steady flow.

The objective was to improve the knowledge of the inside transfer

since most of the previous studies have considered the external

transfer for the same configuration. Such results for the transfer

can then be used for the modeling of complex bubbly flows and

are more or less valid depending on the case under consideration.

Typically, it is supposed to give a good description of the transfer

for dilute bubbly flows (less than 1or 2 percent) and if the flow

seen by the bubble is uniform at the bubble scale (i.e. if the bubbles
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Fig. 14. Sherwood number Sh
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Péclet number Peextmax . symbols: same legend as in Fig. 13; — relation (33).

Fig. 15. Effective Péclet number Peeff as a function of the Reynolds number. – – –

relation (3), relation (35).



are much smaller than the smallest scale of the flow). In addition,

the results are obtained considering a fixed radius. Such quasi-

steady evolution is in practice reasonable if the characteristic time

scales of the transfer (diffusion and advection) are much smaller

than the characteristic time of the radius evolution. However, the

recent experiments of [37] have shown that the corresponding de-

duced models for the external transfer can be used for a good pre-

diction of the transfer in a dense bubble swarm up to void fraction

of about 16.5%. Such experimental results make us confident that

the results obtained under academic configuration are very useful

for the modeling of complex bubbly flows.
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