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Object learning through active exploration
Serena Ivaldi, Sao Mai Nguyen, Natalia Lyubova, Alain Droniou, Vincent Padois, David Filliat, Pierre-Yves

Oudeyer, Olivier Sigaud

Abstract—This paper addresses the problem of active object
learning by a humanoid child-like robot, using a developmental
approach. We propose a cognitive architecture where the visual
representation of the objects is built incrementally through
active exploration. We present the design guidelines of the
cognitive architecture, its main functionalities, and we outline
the cognitive process of the robot by showing how it learns to
recognize objects in a human-robot interaction scenario inspired
by social parenting. The robot actively explores the objects
through manipulation, driven by a combination of social guidance
and intrinsic motivation. Besides the robotics and engineering
achievements, our experiments replicate some observations about
the coupling of vision and manipulation in infants, particularly
how they focus on the most informative objects. We discuss the
further benefits of our architecture, particularly how it can be
improved and used to ground concepts.

Index Terms—developmental robotics, active exploration,
human-robot interaction

I. INTRODUCTION

THE connection between motor exploration and learning

object properties is a central question investigated by

researchers both in human development and in developmental

robotics [1], [2]. The coupling between perception and ma-

nipulation is evident during infants’ development of motor

abilities. The quality of manipulation is related to the learning

process [3]: the information they acquire about objects guides

their manual activities, while these activities provide them

with additional information about the object properties [4],

[5]. Infants carefully select their exploratory actions [6], [7]

and social cues shape the way they learn about objects since

their first year [8].

Researchers leverage these insights to make robots learn

objects and concepts through active exploration and social

interaction. Several factors have to be considered: for example,

the representation of objects and sensorimotor couplings in

a robotic-centric perspective [9], [10], [11], [12], the learn-

ing and exploration strategy [13], [14], and the way social

guidance from a human teacher or caregiver can be blended

with the aforementioned [15], [16]. The combination of these

factors reflects in the robot’s cognitive architecture. Although

literature focusing on one or more aspects is rich and diverse
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(see [17] for a survey), integrated solutions are rare; even rarer

are those where the robot builds its knowledge incrementally

within a developmental approach. For example, in [18] the

architecture is focused on interaction and emotions, while in

[19] on cooperation and shared plans execution. In [20], [21]

the architectures are based on high-level ontologies. Overall,

those architectures are limited in two respects: first, they make

considerable assumptions on the prior knowledge of the robot;

second, they often segregate the development of the perceptual

levels from that of the cognitive levels.

Fig. 1. The humanoid iCub in the experimental contexts: autonomous and
socially-guided exploration.

In contrast, we believe that development plays an essential

role for the realization of the global cognitive process, and

that it should guide the design of the cognitive architecture

of robots at many levels, from elementary vision and motor

control to decision-making processes. The robot should ground

its knowledge on low level multi-modal sensory information

(visual, auditory and proprioceptive), and build it incremen-

tally through experience. This idea has been put forward by

the MACSi project1.

In this paper, we present the design guidelines of the

MACSi cognitive architecture, its main functionalities and

the synergy of perceptual, motor and learning abilities. More

focused descriptions of some parts of the architecture have

been previously published by the authors: [22], [23] introduced

the perceptual-motor coupling and the human-robot interaction

functions, [24] the engagement system, [12] the vision tracking

system, [25] the intrinsic motivation system. We describe

the cognitive process of the robot by showing how it learns

to recognize objects in a human-robot interaction scenario

inspired by social parenting.

We report experiments where the iCub platform interacts

with a human caregiver to learn to recognize objects. As

an infant would do, our child robot actively explores its

environment (Fig. 1), combining social guidance from a human

“teacher” and intrinsic motivation [26], [27]. This combined

strategy allows the robot to learn the properties of objects by

1http://macsi.isir.upmc.fr
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actively choosing the type of manipulation and concentrating

its efforts on the most difficult (or the most informative)

objects.

The paper is organized as follows. Section II outlines the

cognitive architecture, particularly the motor and perceptual

systems. Section III-A shows that manipulation has a direct

impact on the way objects are perceived by the robot, jus-

tifying why the robot needs to have an efficient exploration

strategy. Section III-B describes how social guidance and

intrinsic motivation are combined for the active exploration

for an object recognition task. In Section IV, we discuss the

implications of the experimental results. In Section V we

provide further insights on the perspectives of our work.

II. COGNITIVE ARCHITECTURE

Sensorimotor activities facilitate the emergence of intelli-

gence during the interaction of a cognitive agent with the

environment [28]. In robotics, the implementation of the

cognitive process requires the edification of several perceptual,

learning and motor modules that are typically integrated and

executed concurrently on the robotic platform. The orches-

tration of such modules is defined within the design of the

robot’s cognitive architecture. As anticipated, the design of our

architecture takes inspiration from developmental psychology

and particularly from studies on infants development, which

offers interesting lessons for developing embodied intelligent

agents. Not only should the robot be able to develop its

prospection and action space incrementally and autonomously,

but it should be capable of operating in a social environment,

profiting of humans to improve its knowledge.

A. “Six lessons from infant development”[29]

In [29], Smith & Gasser defined six fundamental properties

that embodied intelligent agents should have and develop: mul-

timodality, incremental development, physical interaction with

the environment, exploration, social guidance and symbolic

language acquisition. Our cognitive architecture meets the first

five requirements and paves the way for the sixth.

• Multimodality: We rely on multiple overlapping sensory

sources, e.g. auditory (microphone arrays), visual (cam-

eras in the robot’s eyes), somatosensory (proprioceptive,

kinesthetic - joints encoders, inertial and force/torque

sensors); as it is frequently done in robotics, we also

include extrinsic sensory sources, e.g. external RGB-

D cameras. The richness of perceptual information is

a hallmark of humans, and a distinctive feature of the

humanoid platform we use, iCub [30].

• Incremental development: Infants may have pre-wired

circuits [31] but they are very premature in terms of

knowledge and sensorimotor capabilities at their begin-

ning. These capabilities mature during their development

[32] as the result of a continuous and incremental learning

process. To replicate such skills in our robot, the design

of our cognitive architecture entails several autonomous

and incremental learning processes at different levels.

For example, we demonstrated how the robot can learn

autonomously its visuo-motor representations in simple

visual servoing tasks [23], and to recognize objects from

observation and interaction [12], [33].

• Physical interaction with the environment: Intelligence

requires the interplay between the human baby with his

surrounding, i.e. people and objects. Crucially, interaction

is essentially physical: babies exploit the physical support

of their environment, manipulate objects, use physical

contact as a means for learning from humans. Contact and

touch are also the primary form of communication that

a baby has with his mother and the dominant modality

of objects’ exploration (e.g. through mouthing) during

the first months of life [34]. To make the robot interact

physically with the environment and with people, in an

autonomous or very little supervised way, the compliance

of the platform must be suitably controlled. Put differ-

ently, the robot should be “safe”. This requirement is met

by the motor controllers developed in our architecture that

exploit the sensory feedback to control the robot’s forces

during both intentional and accidental interactions [35],

[36], [37].

• Exploration: Children explore their environment some-

times acting in a seemingly random and playful way. This

non goal-directed exploration gives them opportunities to

discover new problems and solutions. Open and inven-

tive exploration in robotics can also unveil new action

possibilities [27], [38], [39], [40]. In our architecture, we

provide several tools to drive exploration, to combine it

with intrinsic motivation and social guidance [22], [25].

Not only our motor primitives are safe so the robot

can explore on its own (or minimally supervised by the

human), but they are sufficiently numerous and assorted

so the robot can perform simple and complex objects

manipulations.

• Social guidance: Human babies can learn autonomously,

but they learn the most during social interactions. In

our system, the robot is able to follow and engage with

the active caregiver [24]; the human in the loop can

tutor the robot and influence the way it interacts with

its environment.

• Symbol and language acquisition: Language is a shared

and symbolic communication system, grounded on sen-

sorimotor and social processes. In our architecture, we

provide the base for grounding intermediate-level or

high(er)-level concepts [41], for example the vision sys-

tem categorizes and recognizes objects that the human

interacting with the robot can label with their name.

But we do not integrate or exploit language acquisition

mechanisms yet.

The cognitive architecture is shown in Fig. 2: it consists

of an integrated system orchestrating cognitive, perceptive,

learning and control modules. All modules are tightly inter-

twined, and their numerous and different couplings enable the

emergence of visuo-motor representations and cognitive loops.

From the perceptual point of view, different sensory sources

are used: external sensors and internal sensors embodied on

the robotic platform. In the first group, we have microphones

sound arrays, used to detect the direction of sound, and
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Fig. 2. The Cognitive Architecture of the MACSi Project: a functional description of its elementary modules. Human and robot are explicitly indicated as the
two main “actors” influencing the behavior of the system: human can provide guidance (more generally, give commands), while the robot can act autonomously
following its intrinsic motivation system. The pool of interconnected modules constitutes the learning and sensorimotor loops. A numeric legend is used to
indicate the modules which are used in the experiments discussed in this paper (number n means “used in the experiments of Section n). Some modules,
indicated by a colored background, are not used in the presented experiments, but have been used for the experiments of other publications. Precisely, the
caregiver tracking modules are described in [22], [24], while the imitation learning module is described in [42].

RGB-D sensors, placed over a table to segment and detect

objects or in front of the robot to detect interacting people

(see Section II-D). In the second group, we have all the

sensors embedded in the robotic platform, later described in

Section II-E..

B. Decision and intrinsic motivation

The decision-making system is an autonomous process

based on intrinsic motivation [13], [26], which combines social

guidance with active exploration. The robot can exploit social

guidance for bootstrapping or boosting its learning processes

while exploring playfully or cooperating with humans to

accomplish some tasks. This mechanism is crucial for the

robot’s cognitive system: given the huge space of visual and

motor possibilities, selection and guidance are necessary to

narrow down the exploration, and orient the robot towards

“interesting” objects and events.

The expression intrinsic motivation, closely related to the

concept of curiosity, was first used in psychology to de-

scribe the spontaneous attraction of humans toward different

activities for the pleasure that they experience [43]. These

mechanisms are crucial for humans to autonomously learn

and discover new capabilities [44]. In robotics, they inspired

the creation of meta-exploration mechanisms monitoring the

evolution of learning performances [14], [27], [45], with

heuristics defining the notion of interest used in an active

learning framework [46], [47], [48].

The implementation of the intrinsic curiosity mechanism is

done by the Socially Guided Intrinsic Motivation with Active

Choice of Teacher and Strategy (SGIM-ACTS) algorithm [25]

that combines interactive learning [49] and intrinsic motiva-

tion [50]. It achieves hierarchical active learning in a setting

where multiple tasks and multiple learning strategies are

available, thus instantiating Strategic Learning as formalized

in [51]. It learns to complete different types of tasks by

actively choosing which tasks/objects to focus on, and which

learning strategy to adopt to learn local inverse and forward

models between a task space and a state space. SGIM-ACTS

is separated into two levels:

• A Strategy and Task Space Exploration level which

decides actively which task/object to manipulate and

which strategy to perform (Select Task and Strategy). To

motivate its choice, it maps the task space in terms of

interest level for each strategy (Goal Interest Mapping).

• A State Space Exploration level that explores according

to the task-strategy couple chosen by the Strategy and

Task Space Exploration level. With each chosen strategy,

different samples state-task are generated to improve the

estimation of the model. It finally returns the measure of

error to the Strategy and Task Space Exploration level.
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Details of SGIM-ACTS are reported in Appendix A, but

more can be found in [25]. In Section III-B, we describe

how SGIM-ACTS is used for an object recognition task in

cooperation with a human teacher. Remarkably, the effective

implementation of such mechanisms to address elementary

challenges requires a tight coupling between the visual, cog-

nitive, motor and learning modules, which is a novel feature

of our architecture.

C. Action

Perceptive and cognitive modules are interfaced to the robot

through an action/motor interface, which controls speech,

facial expressions and upper-body movements. We define a

set of actions that can be evoked by specifying their type π,

e.g. take, grasp, and a variable list of parameters θ, e.g. the

object name, its location, the type of grasp, etc. The k-th action

πk is generally defined as:

πk(x, θk) , (1)

where x ∈ R
n is the initial state of the robot at the beginning

of the movement, and θ ∈ R
p is a vector defining the param-

eters characterizing the movement. The primitive definition

entails both actions/skills which are learnt by demonstra-

tions [42] or pre-defined parameterized motions. Interestingly,

π can be an elementary action, such as an open-loop gaze

reflex, a closed-loop reaching, but also a complex action (i.e.

a combination/chain of multiple elementary actions), such as

πk(x0, θk) = (πi(x0, θk,i) → πj(x1, θk,j) → . . .

. . . → πh(xN−1, θk,h)) ,
(2)

where πk is a chain of N actions, which are applied to the ini-

tial state x0, and make the system state evolve into x1, . . . , xN .

The elementary actions, with their basic parameters are:

• speak (θ: speech text)

• look (θ: (x, y, z), i.e. Cartesian coordinates of the point

to fixate)

• grasp (θ: selected hand, grasp type, i.e. fingers joints

intermediate and final configurations)

• reach (θ: selected arm, x, y, z, i.e. Cartesian coordinates

of the point to reach with the end-effector, o, i.e. orien-

tation of the end-effector when approaching the point)

More complex actions (without specifying their numerous

parameters, but just describing the sequence2) are:

• take (reach and grasp)

• lift (upward movement)

• rotate (take, lift, reach the table with a rotated orientation,

release - open the hand)

• push (reach the target from one side, push by moving the

hand horizontally, then withdraw the hand)

• put-on (take, lift, reach the target from the top and

release)

• throw (take, lift, release)

• observe (take, lift, move and rotate the hand several times,

to observe an in-hand object)

2More details can be found in the online documentation of the code:
http://chronos.isir.upmc.fr/∼ivaldi/macsi/doc/group actionsServer.html.

• give (take, lift, reach the partner and release)

If unpredictable events3 occur during the execution of an ac-

tion, for example an unsuccessful grasp or a potentially harm-

ful contact with the environment, one or more autonomous

reflexes are triggered. These reflexes are pre-coded sequences

of actions that may interrupt or change the execution of the

current action or task. Overall, our action interface is quite rich

in terms of repertoire of actions, because besides elementary

actions (such as in [19]) we provide the robot with more

complex actions for a wider exploration capability. It also

has coupling with the learning modules, so as to provide

reproduction of trajectories learnt by demonstration, such as

in [52]. Differently from [53], we do not integrate language

processing for letting the human define on-line new sequences

of actions, because this matter is outside the scope of our

project.

D. Visual perception

The perceptual system of the robot combines several sensory

sources in order to detect the caregivers and perceive its

environment. The primary source for object detection is a

RGB-D sensor placed over the area where the interaction with

objects and caregivers takes place.

The object learning and recognition module has been

designed with the constraints of developmental robotics in

mind. It uses minimal prior knowledge of the environment:

in particular it is able to incrementally learn robot, caregiver

hands and object appearance during interaction with caregivers

and objects without complementary supervision. The system

has been described in details in [12], [54]. A short overview

is given here to complement the architecture presentation.

All information about the visual scene is incrementally

acquired as illustrated in Fig. 3. The main processing steps

include the detection of physical entities in the visual space

as proto-objects, learning their appearance, and categorizing

them into objects, robot parts or human parts.

At the first stage of our system the visual scene is seg-

mented into proto-objects [55] that correspond to units of

visual attention defined from coherent motion and appearance.

Assuming that the visual attention of the robot is mostly

attracted by motion, proto-object detection starts from optical

flow estimation, while ignoring the regions of the scene

that are far away according to the constraints of the robot’s

workspace. Then, the Shi and Tomasi tracker [56] is used

to extract features inside moving regions and to group them

based on their relative motion and distance. Each cluster of

coherently moving points is associated with one proto-object

and its contour is defined according to the variation of depth.

Each proto-object is therefore tracked across frames and finally

identified as an already known or a new entity.

Each proto-object appearance is incrementally analyzed by

extracting low-level visual features and grouping them into a

hierarchical representation. As a basis of the feature hierarchy

3These events are usually captured by the sensors embedded in the robot.
For example, we threshold the external forces at the end-effectors, estimated
thanks to the proximal force/torque sensors [35], to detect potentially harmful
contacts with the table.
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we use SURF points [57] and color of superpixels [58] ob-

tained by segmenting the scene into regions of similar adjacent

pixels. These low-level features are grouped into pairs and

triples incorporating local geometry and called mid-features.

Both low- and mid-level features are quantized into dictio-

naries of visual words. The Bag of Visual Words approach

with incremental dictionaries [59] is used to characterize

the appearance of entities from different viewpoints that we

call views. Views are encoded by the occurrence frequency

of extracted mid-features. An overall entity appearance is

characterized by a multi-view model constructed by tracking

an entity across frames and collecting its views occurrence

frequency.

Besides tracking, the association of the current view to an

entity can also be based on appearance recognition when an

object appears in the field of view. In this case, appearance-

based view recognition is performed first, using all extracted

mid-features to participate in a voting procedure that uses

the TF-IDF (Term-Frequency - Inverse Document Frequency)

[60] and a maximum likelihood approach. If the recognition

likelihood is high, the view is identified as the most probable

among already known views; otherwise, a new view is created.

Then, appearance-based entity recognition is performed using

the same approach based on the occurrence statistics of views

among known entities.

During experiments on interactive object exploration, ob-

jects are often grasped and therefore move together with a

human or a robot hand. Thus, our approach performs a double-

check recognition [12] to identify simultaneously moving

connected entities, so that each segmented proto-object is

recognized either as a single view or several connected views,

where each view corresponds to one entity.

Finally, all physical entities are classified into the following

categories: robot parts, human parts or manipulable objects

(see Fig. 4). The categorization method is based on the mutual

information between the sensory data and proprioception [61]

and on statistics on the motion of physical entities. Among the

remaining entities, we assume that each object moves only

when it is connected to another entity, either a robot or a

human, and each object is static and independent of robot

actions when it is single. Thus, the object category is identified

from the statistics on its simultaneous motion with robot and

human parts.

Using the ability to categorize entities, the models of

objects previously constructed during their observation can be

improved during robot interactive actions (Fig. 4). Since the

manipulated object does not change during the robot action,

its corresponding model can be updated with recognized views

connected to the robot hand or with new views created from

the features that do not belong to the robot hand. The updates

with recognized views reduce noise in object models, while

the updates with new views allow the robot to accumulate

views corresponding to unseen perspectives of the objects.

Experiments in section III A illustrate this capacity. Remark-

ably, this approach is robust with respect to partial occlusions

of the entities (see Fig. 3) and particularly to the numerous

visual appearances that the hand can assume when it interacts

with the objects, because the continuous collection of views

identifiedLentity
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Fig. 3. The visual information is processed through a hierarchy of layers,
which elaborate the camera images to extract the entities in the scene. The
proprioceptive information from the robot is used for categorizing the entities -
see Fig. 4 and text. The bottom part of the image shows the entity identification
during human-object-robot interaction: (a) the camera image and (b) the depth
map are retrieved from the RGB-D sensor; (c) contour extraction and (d)
segmentation are fed to the processing system; (e) features are extracted and
combined with the prior information (e.g. features and information extracted
from the previous frames - see text) so as to determine (f) the entities in the
scene.

contributes to the creation of a better model for recognizing

it (see Fig. 4).4

Besides this unsupervised approach, a second RGB-D cam-

era and the robot cameras are also used to detect the presence

of people. In particular, the “active” caregiver, i.e. the human

partner who gives feedbacks and instructions to the robot,

is tracked through a multimodal approach, combining 3d

4To improve the performance of the visual system in correctly distinguish-
ing the hand from the objects when they are first introduced in the visual
field by the human, we start each experiment by showing the hand first to the
robot - so the robot can gather enough data to build a good model of it.
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Fig. 4. Procedure for categorizing the entities in the images. The visual
information is compared with the robot’s proprioceptive information. The
bottom part of the image shows the categorization of the entities identified
in the images during a sequence of human-object-robot interaction. (1) The
human shows an octopus toy to the robot: the human hand, moving during
the action, is recognized (label h). (2) The octopus is the only inactive entity
on the table, hence it is recognized as an object (label o). (3) The robot starts
moving its hand to approach the octopus: two entities are recognized, and
correctly identified as robot hand and object (labels r and o). (4) The robot
grasps the octopus, so the two entities corresponding to the robot hand and
the object are connected: the vision processing system is able to recognize
this particular situation (labels r+o).

human estimation (via skeleton recognition) and direction of

sound source. The robot gazes at the estimated pose of the

active partner, arousing a natural eye-to-eye contact. More

information about this engagement system can be found in

[24], [22].

Perceptive modules communicate to the current/episodic

knowledge of the robot. This module collects the processed

perceptual information, such as the objects in the scene and

their main features and properties retrieved by the vision mod-

ules (e.g. 3D position and orientation), the people interacting

with the robot and their location, the current task etc. In a

sense, it could be also seen as a sort of simplified “ego-

sphere”, more similar to the one of [62] (quoting the authors:

“a fast, dynamic, asynchronous storage of object positions and

orientations”) than the Sensory-Ego-Sphere [63], [64].

E. Implementation and robotics setup

Our experiments were carried out with iCub, a 53 Degrees

Of Freedom (DOF) humanoid robot shaped as a child [30],

using the upper body of the robot (head, torso, arms and hands

- totally 41 DOF). The proprioceptive sensors, the inertial and

the proximal force/torque sensors embedded on the platform,

combined with its kinematics and dynamics modeling, are

fed to numerous modules of the architecture: modules for

controlling gaze, posture and reaching movements [65], mod-

ules for controlling the whole-body dynamics [35], the robot

compliance and its contact forces [36], modules for learning

incrementally the visuo-motor models of the robot [23], the

vision modules recognizing the robot’s self-body in the visual

space [33], the basic modules for speech and gaze track-

ing [24], just to cite a few.5 The architecture is implemented as

a set of concurrent modules exchanging information with the

robot thanks to the YARP middleware [66]. Some modules, de-

veloped in ROS [67], communicate bidirectionally with YARP

thanks to a simple bridge between the two middlewares.6

Besides the basic modules necessary for starting the robot,

the experiments described in the following section involved a

number of modules developed within the MACSi Consortium,

dedicated to the visual processing, the action interfaces and

the curiosity system. Overall, each experiment required more

than 20 modules, executed concurrently on 4 standard desktop

computers (i5/i7 2.7GHz, 4/6GB RAM) connected through

YARP. Details about this cluster can be found in the wiki

pages of ISIR’s iCub, while software details can be found in

MACSi’s online software documentation.7 Each experiment

took a variable time between 1-2 hours (experiments in Sec-

tion III-B) to 6-7 hours (experiment in Section III-A). Fig. 5

shows the experimental setup: the human, the robot, the table

and the RGB-D sensor. The calibration procedure required to

match the RGB-D data within the robot reference frame is

detailed in [22].8

Fig. 5. The experimental setup.

III. EXPERIMENTS

In this section we discuss two sets of experiments performed

with iCub (see Figure 1) that tackle some questions related to

5We did not integrate yet speech recognition; for speech production we use
the standard iSpeak module from iCub’s main software, based on a simple
text-to-speech program called Festival.

6http://wiki.icub.org/wiki/UPMC iCub project/YARP ROS bridge
7Cluster: http://wiki.icub.org/wiki/UPMC iCub project/MACSi cluster.

Software: http://chronos.isir.upmc.fr/∼ivaldi/macsi/doc/
8For more details about the calibration procedure and the software, see

http://chronos.isir.upmc.fr/∼ivaldi/macsi/doc/perception table.html
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the coupling of learning, vision and manipulation.

In Section III-A we show that some objects are more

informative than others in terms of visual appearance, and that

the robot needs to manipulate actively the object to gather

all its views. Manipulation causes changes in the way the

objects appear to the robot. Fig. 6 shows the outcome of

two different sequences of actions applied to a yellow car

and a blue train: some in-hand rotations and a side-push. The

rotating action is more interesting and informative, since it

causes the object to unveil hidden parts: more views can be

then associated to this object, and this should help the robot to

build a better model of the object. This is quite obvious for a

human teacher providing the robot with new objects to learn,

and commanding the robot to manipulate the objects: to boost

the robot learning, a “good” teacher will always ask the robot

to perform the maximally informative actions (i.e. the actions

causing more changes in the objects’ appearance, unveiling the

objects’ physical properties or their affordances). Similarly,

the robot autonomous exploration should be guided by the

will to gather more information about the objects, just like

infants spend more time manipulating objects they are more

willing to learn [3], [68]. In the robot, this curiosity process

is implemented through the intrinsic motivation system [25].

In Section III-B we show how the intrinsic motivation

system can be used to explore objects in a human-robot

“parenting” scenario, to effectively choose how to manipulate

the objects and which objects need to be explored the most.

We also show how this exploratory mechanism can cope

with “good” and “bad” teachers (i.e. naive partners) in the

object recognition task. Incidentally, our approach has much

in common with experimental observations about the way

infants learn to recognize objects through feature tracking

across actions and social cues [8].

A. Exploring objects through manipulation

When the robot exploration is driven by its intrinsic moti-

vation, the curiosity mechanism should focus on the objects

that are the most informative and difficult to recognize. To

check this intuition, we performed a set of experiments where

the robot interacted repeatedly with several different objects

performing the very same actions. The goal was to highlight

the objects that frequently changed their visual representation

as a consequence of the action that was exerted on them.

We took 149 different objects, shown in Fig. 8. The objects

are either children toys, belonging to the set of “iCub’s toys”

(colorful objects that can be easily manipulated, grasped), or

arbitrary items of the laboratory. Every object was pushed

30 times across the robot’s workspace. Some examples of

pre/post images (i.e. images of the object before and after the

action occurs) are shown in Fig. 7. In some cases (7a), though

pushing the object produced a change in its pose on the table,

9It must be noted that the number of objects chosen for this study is not
a limitation per se. The vision processing system learns from scratch and
in an incremental fashion. It keeps recognizing previously shown entities,
identifying new ones, adding more views to the entities, etc. (see [12] for
more insights on the vocabulary growth and the vision performances). Since
its knowledge is built incrementally, more objects could be easily added to
the study.

it did not substantially change the object’s appearance to the

visual system (for example it simply slid on the table surface,

thus the main entity view attributed by the vision system did

not change). In others (7b), pushing made the objects fall

on their side, revealing a new or simply a different view

that was added to the object model. Between each pre/post

image, we measured the displacement of the object in a robot-

centered reference frame and the change in the main (i.e. the

most probable) view of the object. The results are shown in

Fig. 9. As the median displacement in the z−axis is negligible,

it is variable for the x− and y− axis. Intuitively, objects

that have a cylindrical or spherical shape are able to “roll”,

thus move longer than others on the y− axis (which is the

axis perpendicular to the pushing performed by the robot).

The emergence of the “rolling” property is discussed later in

Section IV. Right now, we focus on the view-change. From the

histograms (9b), we can see that the amount of views collected

for each object is variable, and basically depends on the object

physical and aesthetic properties. For example, the red bear

had few different views, and there was basically no change

in its appearance produced by the action (<5%). Conversely,

objects like the train, the chicken and the patchwork of plastic

cubes changed very much their appearance, and on average a

push provoked changes in their appearance (>60%). Objects

like the gray dog or the bottle had many views, but the push

did not frequently alter their visual features (20-30%).

Overall, these results confirm two important observations.

First, objects that are more complex and faceted require more

exploration than those uniform in shape and color. Second,

manipulation can change the visual appearance of the objects

to the vision system, and this exciting outcome depends on

the action and the object properties.

Consequently, an autonomous agent/robot that has no a

priori knowledge of the surrounding objects, must necessarily

interact with them to learn their properties. Intuitively the more

the objects are complex, the more time it will spend on them,

doing manipulation which can bring more information.

B. Exploration by social guidance and intrinsic motivation

As we discussed in Section II-A, the cognitive robot should

engage in active exploration, driven by both social guidance

[69], [70] and its own curiosity. Fig. 10 illustrates the human-

robot interaction scenario and introduces the active learning

strategy exploration. The robot’s task is to learn to recognize

different objects. At each decision step the exploration algo-

rithm determines the triple (object, action, actor), that is the

object to explore, the action to perform on it, and the actor

who is going to do the action. The robot can decide to do the

action by itself, or it can ask the human to do it.10 In the first

case, the robot can perform one of the action primitives in

its repertoire (Section II-C), for example a side push (which

consists in approaching the object on its side, pushing and

withdrawing the hand from the object) or a throwing (which

10In both cases, the robot communicates its intent to the human through
its speech synthesis system. For example it may say “Now I push the bear”
or “Show me the bear”. Some samples of communication can be found in
[22], whereas videos giving a taste of the experiments can be seen in http:
//youtu.be/cN9eBaUpqWE and http://youtu.be/J7qfdWNe4uk.
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(a) Observing a grasped object.

(b) Pushing an object that can roll, e.g. a car.

Fig. 6. Combining action and perception. (a) The robot grasps an object and rotates it in its hand to take more views of it, and unveil hidden or yet unexplored
parts. (b) The robot pushes an object to produce a change in its status. The vision system tracks the object: since the car rolls, the appearance of the object
does not essentially change, only its location on the table.

(a) Example of objects views which are not changed by a push-left action. From left to right: red bear, white bottle, chicken.

(b) Examples of object views which are changed by a push-left action. From left to right: green box, cubes, blue soda can.

Fig. 7. Some objects of Fig. 8 before (pre) and after (post) a push-left action. Though pushing an object produces a change in the object’s location on the
table, its global appearance may not necessarily change. In (a) the main view of the object does not change as an effect of the action for the red bear (id=2,
main view=12), the white bottle (3,19) and the chicken toy (1,4). In (b) the main view of the objects changes, because pushing makes them fall on another
side. In this case, the vision system adds a new view -or recognize a previously seen view- to the entity associated to the objects, respectively the green box
(1,3 → 1,1), the patchwork of plastic colored cubes (1,3 → 1,5) - the entity id for the green box and the colored cubes is the same because the images were
taken during two different experiments -, the blue soda can (2,18 → 2,11).

Fig. 8. The 14 objects used to study the effect of a push-left action. 1) gray
dog 2) green box 3) blue soda can 4) blue ball 5) red bear 6) blue octopus
7) white bottle 8) blue/violet sphere 9) chicken 10) red soda can 11) yellow
train 12) cow 13) yellow car 14) a patchwork of four plastic colored cubes.

consists in taking the object, lifting it and dropping it on the

table - a “controlled” throwing which avoids the object to fall

outside the visible space of the camera). In the second case,

the robot can either ask the human to present a new object, or

ask the human to manipulate the object, for example moving

it on the table.

The idea is that exploratory and social motives can maintain

the robot in a continuous state of “excitation” and acquisition

of new stimuli, which nourish its learning process. The effect

of the social drive however can be different. A “good” teacher

can help consistently the robot during its learning process, for

example showing different objects and presenting them in an

informative way (e.g. showing all its sides). A “bad” teacher

presenting objects the same way all times can be little helpful

for the robot. However, this is particularly true for naive

subjects, i.e. human partners that have no prior experience

with the robot or do not know what the goal of the interaction

process is. The intrinsic motivation system can counter-balance

the social drive, by making the robot choose at each time the

best exploration strategy for his task that can incorporate or

not the human input. This intuition is evident in the following
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(a) The first three plots (from the top) show the median value and the first
and third quartiles of the x-,y- and z-axis displacement of the objects after a
push-left. The fourth plot shows the changes of view.
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(b) Effect of the push-left action on the perception of objects.
Top: the view changes due to the action, i.e. the quota of
actions that produced a change in the main view of the object.
Bottom: the total number of views collected for each object.

Fig. 9. The effect of the push-left action on the 14 different objects ( Fig. 8).
We collected 30 samples (i.e. results of 30 different pushes) for each object.
We measured the displacement of the object before and after the action (pre

and post, cf. Fig. 7) in the x-, y- and z-axis in a robot referenced coordinates
frame. The median displacement in the z-axis is evidently negligible. The
histograms show the effect of the action in terms of changes in the perception
of the object.

experiment, where the intrinsic motivation system copes with

the two types of teachers in an object recognition task.

We hereby present experimental results showing how the

intrinsic motivation system incorporates social teaching to

autonomously learn to recognize different objects. The human-

robot scenario is presented in Fig. 10: the human cooperates

with the robot by showing and manipulating some objects to

learn, upon the robot request, while the robot manipulates

the objects autonomously. We chose five objects among the

human-robot scenario

actor   action   object

exploration strategy

pre                          post

take                           lift                      release   

reach                         push                  withdraw

pre                          post

autonomous
exploration

social 
exploration

robot lifts the objects, then makes it fall on the table

robot pushes the object

robot asks human to manipulate the object

robot asks human to show a new object

Fig. 10. The active exploration strategy in the human-robot interaction
scenario: at each decision step, the exploration algorithm determines the triple
(object, action, actor), that is the object to explore, the action to perform
on it, and the actor who is going to do the action (either robot or human).
The choice of the triple can be done by the human caregiver if the robot is
completely passive as in [71], or by the intrinsic motivation system if the robot
is active. Top: when the exploration is active, the robot decides to manipulate
the object, and can choose for example between two different actions: pushing
or throwing the object. A pushing sequence consists in reaching the object on
one side then pushing it in a direction parallel to the y-axis of the robot (e.g.
towards the left with the right arm). A throwing sequence consists in reaching
the object from the top, lifting it then opening the hand at once to release the
object. The object drop is assimilated to a throwing, but of course it is more
controlled and reasonably keeps the fallen object in the robot’s workspace.
As objects fall, their appearance changes quite unpredictably. Bottom: during
active exploration, the robot can decide to ask the human to show a new
object, or to manipulate the current one. In the first case, the human simply
intervenes to change the object on the table. In the second case, the human can
act on the object. If the human is a “good teacher”, he can change radically
the appearance of the object, for example by flipping it or putting it on one
side: this action is beneficial for the robot, because the robot can have a new
experience of the object, take more views, etc. If the human is a “bad teacher”,
he simply moves the object without caring to change its appearance to the
robot.

ones of Fig. 8, namely the gray dog-like toy, the blue/violet

ball, the red bear, the yellow car and the patchwork of

yellow-red-green plastic cubes. With this choice, we mixed

items that are easy and difficult to recognize because of their

color and shape properties. Fig. 16b shows different views

of the chosen objects. For example, the gray dog is easy

to recognize because its color and shape are quite different

from the others; the yellow car and the blue/violet ball are

easier to distinguish in term of colors, however depending

on their current orientation and pose on the table, their top

view from the RGB-D camera may appear different in terms

of color features or dimensions11; the patchwork of colored

plastic cubes is the trickiest object to recognize, because its

side views change the perceived dimension of the object (see

Fig. 16b), and because of the different colors of the four

cubes, the features of the global object can be confused with

the ones of the car and the bear. In summary, we expect

11From a top view the ball may appear as a blue or as a violet circle, or as
a mixed blue/violet circle. The yellow car appears as a big yellow rectangle,
but with different sizes depending on the way the object lies on the table.
In particular, it may be showing or not some characteristic features like the
wheels or the toy decorations. A sample of the possible views of the car is
shown in Fig. 16b.
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toys like car and plastic cubes to arouse the interest of the

cognitive agent: because of their rich “perceptive affordance”,

interaction can reveal their numerous views. An experiment

consists of a sequence of interactions with the human and

the objects: the number of interactions and their type change

depending on the exploration strategy, the learning progress

and the type of teacher.12 At each decision step, the curiosity

system determines the triple (object, action, actor), that is the

object to explore and one among the following action/actor

possibilities:

• the robot pushes or lift/throws the object

• the human manipulates/shows the object

The teacher first labels all the objects. 13 Since the robot asks

the teacher to switch the objects, it is aware at each step of

the object it is currently manipulating, so it can collect views

for the specified object label. Views are collected when the

objects are immobile on the table, hence before (pre) and after

(post) the actions: this is intentionally done to avoid collecting

views of the moving entity, which would be demanded to

future experiments. The vision processing system, of course,

is never interrupted or inactive, because it needs to keep

identifying entities and tracking their movement in the scene,

estimate their location, etc. At the action completion (post),

when the object is generally immobile on the table (notably,

in a different pose), the vision learning system is triggered

and views are collected again. The robot tests which object

label/category it associates with the new object image, com-

putes a confidence measure on its capability to recognize the

object, and sends the evaluation results to the curiosity system.

Depending on the progress, the curiosity system decides the

next action to trigger. The learning progress is evaluated on the

classification accuracy of the system on an image database (see

Appendix B), made up of 64 images of each object in different

positions and orientations, as shown in Fig. 16. Details of

the learning algorithm, called SGIM-ACTS, are reported in

Appendix A. Experiments were performed with two different

types of teacher: a “good” teacher that we call “unbiased”,

which manipulates the objects at each time the robot asks,

simply translating the object or showing a different side of

it; and a “bad” teacher that we call “biased”, which does not

manipulate the objects when asked (i.e. it does not alter their

appearance) and when asked to show a new object, always

shows the same side. To have a fair comparison about the

effectiveness of the curiosity system, we compared its learning

progress with the one produced by a random exploration

strategy, where the object and action to perform are picked

up randomly.

We present and compare one exemplifying experiment for

each of the four aforementioned conditions. Fig. 11 shows

12On average, one experiment takes between 60 and 90 minutes.
13Since speech recognition is not integrated in this experiment, we manually

enter the labels of the objects, i.e. their names, into the curiosity module. This
step is specific to this experiment, and is necessary to ensure that the robot
knows that during this session only those five objects will be available. We
remind that since the robot has limited mobility, it has to ask the human to
show and put the objects on the table each time. To ease the communication
with the human and simplify the experiment focusing on the exploration
strategy, we chose to give the objects’ names to the robot at the beginning of
the experiment.

the number of images of the evaluation database which are

correctly recognized over time. Fig. 12 detail the learning

progress and the decision of the exploration strategies over

time: each graph shows the progress in the f-measure (i.e.

the harmonic mean of precision and recall [72]) for the five

objects during time, while the bottom rows represent with a

color code the chosen object and action at each decision time.

The three actions are labeled push, lift, show.

As shown in Fig. 11, the progress in recognition is better

with the curiosity-driven exploration than with random explo-

ration, for both teachers. At the end of the experiments, the

SGIM-ACTS learner is able to correctly recognize the objects

in 57 over 64 images, against 50 in the case of the random

learner.

Not surprisingly, Fig. 12 shows that, when exploration is

random, the object is changed more frequently, whereas when

exploration is autonomous the robot focuses on objects for

longer periods. In the “random” case the robot does not focus

on any particular object: since it explores equally all objects,

the recognition performance at the end of the experiment

is worse, because the “difficult” objects (such as the cubes

- green line) are not sufficiently explored. Conversely, the

SGIM-ACTS learner focuses more on the difficult objects

such as the cubes, especially when its competence progress

increases. Fig. 12c and 12d clearly illustrate this mechanism:

the red bear (cyan line) is easily recognized, hence the robot

does not ask again to interact with the object once it is learnt;

conversely, the cubes (green line) are difficult to recognize,

since their appearance changes substantially depending on the

action (a frontal view consists of four cubes, while a lateral

view consists of two cubes only, and depending on the side it

could be yellow or red/green), hence the robot focuses more

on them. For both teachers, the robot spent 54% and 51% of

its time learning about cubes when exploration was curiosity-

driven. This proves that intrinsic motivation makes the robot

focus on the most difficult objects to learn.

The curiosity mechanism is also necessary to compensate

for good or bad teaching actions: this is a crucial point,

because it allows the robot to take advantage of the coaching

of experienced researchers but also collaborate with naive

subjects. With the “good” teacher (unbiased) the robot decided

to autonomously do 50.85% push, 23.73% take/lift/throw, and

asked the human to do 25.42% manipulate/show. With the

“bad” teacher (biased) the robot did autonomously 22.97%

push, 40.54% take/lift/throw, and asked the human to do

36.49% manipulate/show.

Notably, with the “bad” teacher the robot takes and throws

more the objects (41% vs 24%) to compensate with its active

manipulation the lack of informative input from the teacher.

A “good” teacher can thus have a catalyzing effect: the

learning process is 25% faster with an unbiased teacher than

with the biased one, and the robot can focus on manipulat-

ing more the complex objects. But, thanks to the curiosity

mechanism, the teaching component is not fundamental to

determine the final outcome of the learning process: as shown

in Fig. 11, the curiosity-driven exploration allows the robot to

learn efficiently all the objects with both teachers.
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Fig. 11. SGIM-ACTS vs Random: recognition performance, i.e. the number of
images of the evaluation database correctly recognized by the two exploration
strategies with two different behaviors of the teacher (see text).

IV. DISCUSSION

The experimental results of Section III highlight two im-

portant observations that we discuss hereinafter.

A. Learning relates to manipulation

The influence of motor activity in learning about object

representations and properties has been widely investigated in

psychology, especially since Gibson’s arguments that infants

discover the affordances of the objects through motor activity

[6], [73]. Oakes and Baumgartner [3] showed that the quality

of infants’ manipulation is related to the way they learn

about object properties. Particularly, they showed that the

more infants want to learn about an object, the more time

they manipulate and touch the object. These observations find

correspondences in our experiment: the more the robot wants

to learn about an object, the more the object is complex or

informative, the more time it decides to manipulate the object

(see Section III-B). Moreover, the robot chose privileged

“informative” actions yielding the more possible changes in

the appearance of the object, like pushing or throwing, to cope

with different types of social partners. This puts forward two

interesting points. First, the combination of social guidance

and intrinsic motivation is a promising approach for building

robots capable of learning from and in cooperation with

naive subjects (typically, non-researchers, non-roboticists who

have no idea about how to leverage their learning process).

Second, object’s properties and affordances can emerge from

the interaction of the robot with the object. The experiments

of Section III were focused on objects recognition, so we

looked at the object’s representation before and after an action

affects the status of the object. However, the observation

of effects is a necessary step towards the learning of more

complicated properties of the objects, such as affordances.

Fig. 13 reports the median displacement of the objects pushed

by the robot during the experiments of Section III-A. A simple

classification of the effect defined as the y−axis displacement

can provide information about the object’s structure. In this

case, the presence of a main axis in the object’s shape can

help the robot to generalize and transfer the acquired “rollable”

property to other objects of similar shape. These ideas are at

the base of research and experiments on the acquisition and

exploitation of objects’ affordances [74], [75], [76]; moreover,

they could be easily integrated with symbol and language

grounding [77]. Such experiments are out of the scope of this

paper, but they are one of the natural follow-up to our work.

B. The observation of effects due to action in a spatial context

Section III-B presented our approach for the observation of

the visual effect of actions performed on objects by a cognitive

agent. This approach is grounded on the way the robot

builds its perceptual representation of the objects, which was

described in Section II-D. As shown in Fig. 3, the processing

of perceptual information is based on a layered architecture,

which extracts visual features from low-level sensory data

(vision, proprioception) and elaborates them to determine the

objects in the scene. Objects are then represented in a robot-

centric reference frame, so that the robot can use their spatial

information for planning motions and interacting with the

objects. This robot-centric representation is convenient for

manipulating the objects, however it may not be the most

convenient to study the effect of the actions on the objects or

the objects’ affordances. As discussed in [78], when perception

relies on static images, spatial context information is necessary

to help the cognitive agents to observe and make inferences.

For example, if the context is the one depicted in Fig. 14, the

effect of the action is a relative displacement between the two

objects. This being the goal of the action, reasoning should

occur in a non-robot-centric reference frame but rather in a

frame related to the context of the problem. In that case, the

same cognitive process could be used not only to identify the

effect of robot’s action on the objects (which is easy because

the robot knows which action it is doing and to which object),

but also to infer which is the best action-object couple that

produce the desired effect (the relative displacement). For

analogous arguments about planning in the perceptual space

using affordances we refer to [79] for a survey.

C. Multimodal hierarchical representations for cognition

The cognitive elements described in Section II are grounded

on a multimodal hierarchical representation of the robot state

and environment through its sensors 14. As illustrated in Fig. 3,

our vision processing system has a hierarchical structure in

the way images are elaborated so as to provide the final

information about the object, its identity, its position in the

robot’s frame etc. The introduction of motor information

makes the spaces larger, but as shown in Section II-D, it

enables enriching the object’s representation with categories

(human body, manipulable object, robot body), which are in

this case the product of a sensorimotor coupling.

In literature, it is still debated which structures should be

used to represent sensorimotor couplings and promote the

14The concept evokes the sensory ego-sphere [63], however our represen-
tation is structurally different.
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Fig. 12. A comparison between random (left) and SGIM-ACTS-based, curiosity-driven (right) exploration with biased and unbiased teacher. The evolution
of the f-measure (see text) computed on the evaluation database is plotted with respect to time, during the course of one experiment per case. The bottom
rows of each plot indicate with a color code the manipulated object and the chosen action to perform at each time-step.
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Fig. 13. The median displacement of the objects of Fig. 8, due to the push-left

action (30 trials for each object). Two thresholds on the y-axis displacement,
at 0.3m and 0.15m, reveal a rough categorization of the objects’ “rolling”
property. Objects that moved more than 0.3m “rolled” because they have not
a preferred direction of movement: indeed, they are spherical. Objects that
moved in between the two thresholds had at least one axis that was favorable
for motion: indeed, these objects had either a cylindrical shape (hence they can
roll in the direction normal to their main axis) or wheels (the rolling direction
is perpendicular to the wheels). The other objects did not roll because their
shape was unfit for this motion.

emergence of a structure in the representation of the robot’s

body and environment [80]. Several approaches can be found.

In the variety of emergentist approaches, one can find a blend

of neural implementations, probabilistic structures and AI

planning algorithms, applied to learning low-level sensorimo-

tor functions [81], [82], causal relationships between objects

and actions [74], [75], [83], [84], [85], [86], etc. All these tech-

niques are valuable and capable of solving the problem at their

low, middle or high level of abstraction from the sensorimotor

interfaces of the robot. However, they often define a priori

the interconnections between each computation layer (as we

usually do between software modules or middlewares), which

reduces the dimensionality of the problem. This has been done

for example in [79] for the discovery of objects affordances,

proto-objects,
features,
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entities, ...
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pre

i=1,..,n-1

Fig. 14. The observation of the effects of actions in a spatial context. The
visual processing pipeline (Fig. 3) used for the push-left experiment eventually
represents entities in a robot-centric frame. In different contexts, where for
example one object moves with respect to another, it is more convenient to
represent the effect of an action in terms of relative spatial transformation
between two (or more) entities in the visual scene.

where the authors chose a set of variables for detecting the

effects of actions on objects (e.g. position, shape, visibility).

Quoting Montesano et al. in [74], “learning from scratch can

be overwhelming, as it involves relations between motor and

perceptual skills, resulting in an extremely large dimension

search problem.” This issue can be counteracted if perceptual

and learning processes are simplified and decoupled when

possible. However, by letting the structure define how the

development of each level influences the progress of the others,

the robot can develop its own representation of states and

transitions, in an intertwined way [87]. More importantly, the

cognitive process can learn to build semantic representations of

each of the robot’s perceptual modality and fuse them in higher

abstract levels of knowledge [29]. This opens the possibility

of efficient unsupervised learning, where modalities provide

“labels” to each other [88]. We believe our hierarchical and
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pi

p
i+1,k

perceptual

action
xi

x i+1,k

state

cognitive

space

spaces

spaces

emergence
of 

concepts
k

social guidance
and

language

Fig. 15. Emergence of cognitive representations in a hierarchical architecture.
In the picture, two pre and post states are identified by a perceptual represen-
tation p (i.e. the elaboration of the sensory inputs) and a state representation
x. The action ak acting on state pi (or xi) provokes an effect ei,k , which
can belong to a higher cognitive space. Navigating in the bottom-up direction
the hierarchy, information is processed and becomes more and more abstract:
perceptual data are elaborated (e.g. objects and their categories are extracted),
gradually categories and properties of the objects emerge. The more and more
abstracted concepts/symbols can be used to ground language. Indeed, social
drives and language can be used to navigate top-bottom the hierarchy, to guide
learning and exploration process, to trim the state spaces, etc.

multimodal representation can provide an interesting base for

the emergence of knowledge in that way. This particular point

is discussed in the paper’s perspectives.

V. CONCLUSION AND FUTURE WORK

In this paper we presented the cognitive architecture of

the MACSi project, which is designed to combine intrinsic

motivation and social guidance with perceptual and motor

learning. Our architecture brings a novel contribution in the

way multimodal perception and motor commands are com-

bined in a developmental fashion, where knowledge emerges

in a hierarchical multimodal structure. We presented the ar-

chitecture in Section II, describing its main functionalities.

We presented some experiments with the humanoid iCub,

where we exploit the hallmarks of our architecture to make the

robot learn autonomously about objects through active explo-

ration. Section III-A showed why manipulation is important to

comprehensively explore objects, while Section III-B showed

how curiosity and social guidance can guide this exploration.

Experimental results show the effectiveness of our approach:

the humanoid iCub is capable of deciding autonomously which

objects should be explored and which manipulating actions

should be performed in order to improve its knowledge,

requiring a minimal assistance from its caregiver. As discussed

in Section IV, our results relate to observations in infants

development.

While we demonstrated the efficiency of the architecture

for an object learning task, the architecture could be easily

used to tackle more complex cognitive tasks, for example

learning objects’ affordances and grounding symbols and

language through active exploration and social interaction. As

we discussed in Section IV-C, the multimodal hierarchical

processing enables enriching the object’s representation with

categories. That is, the cognitive process can build semantic

representations, where modalities provide “labels” to each

other, in an unsupervised way.

One promising solution to evolve our cognitive structure

is by means of deep hierarchical structures of multi-layer

neural networks, which encounter an increasing popularity in

the deep-learning community [89], [90], [91]. Their features

are very interesting for a developmental learning process:

intrinsic hierarchical structure and semantic abstractions [92],

intertwined learning of states and transitions [93], multimodal-

ity [94], [95], and they are very weakly supervised [96].

Moreover, from a developmental perspective, a parallel can

be found between the need for successive training of each

layer of deep neural networks [97] and the emergence of

refined outcomes at different timings in the development of

the child [5], [98].

Remarkably, the use of hierarchical representations favors

the grounding of symbols and language [41]. As explained

in [99], it is debated whether the ability of infants to acquire

language relies on their ability to build recursive structures

or on their progress in the knowledge of items and abstrac-

tions. For a cognitive agent, a combination of both is likely

necessary. As illustrated in Fig. 15, language can provide a

top-down signal in the hierarchy of perceptual and cognitive

states that can help refining the learned representations at the

lower levels and defining multimodal mappings. It naturally

provides a “label” to the unsupervised learning process: for

example, in [100], abstract symbols are used at the highest

level of a deep neural network to provide one shot learning of

new categories of objects. More generally, such representations

could be ideally integrated in high-level shared databases and

frameworks, such as RoboEarth [101], [102].

In summary, we envisage two main improvements. First,

the evolution of the architecture towards a more complex

hierarchical structure, which exploits the latest results in deep

learning community [89], to classify objects and binding

language with visuo-motor representations. Second, the com-

bination of physical and social guidance with language in a

developmental fashion [41] to reproduce what has been called

“parental scaffolding” [16].

VI. CODE, DOCUMENTATION AND VIDEOS

The software implementing the cognitive architecture and

all the experiments is open-source, available under GPL li-

cense at http://macsi.isir.upmc.fr. Instruction for running the

code and replicate the experiments can be found at http:

//chronos.isir.upmc.fr/∼ivaldi/macsi/doc/. Videos can be down-

loaded at http://www.youtube.com/user/iCubParis/videos.

APPENDIX A

SGIM-ACTS

We hereby describe how the intrinsic motivation system,

outlined in Section II-B, is used to find the exploration strategy

(object, action, actor) for the object learning experiment

described in Section III-B.

Let us consider images a ∈ A, objects b ∈ B, and the

mapping M : A 7→ B defining the correct labelling of all

images with the objects’ names. For each image perceived by
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the camera, the iCub computes the likelihood for each already

known views, and returns the two highest likelihood measures

p1, p2, as well as the labels b1, b2 of the objects associated with

the views, and the number n1, n2 of known views for each of

the labels. The label bg of the currently manipulated object is

known to robot, as it is tough by the teacher in a preliminary

phase. The robot estimates its competence at distinguishing

bg from other objects, with the dissimilarity of likelihood

measures between the 1st object associated and the 2nd object

associated, and by estimating its gain of information about the

object by collecting new views. The competence is defined as

γ(bg) =n1 × p1 + c1 if bg = b1 = b2

n1 × p1/(1 + p2) + c1 if bg = b1, bg 6= b2

n2 × p2/(1 + p1) + c1 if bg 6= b1, bg = b2

c1 if bg 6= b1, bg 6= b2

where c1 is a constant, set to -1 in our experiment.

Our learner improves the estimation L of M to maximize

I =
∑

a P (a)γ(a), both by self-exploring A and B spaces

by generating new perception samples through manipulation

of the objects and by asking for help to a caregiver, who

handles the objects to the robot. When an object is placed

on the table, an image a ∈ A of an object b ∈ B is

retrieved at each step. SGIM-ACTS learns by episodes during

which it actively chooses both an object b ∈ B to learn

to recognize and a learning strategy σ between: pushing the

object, taking and dropping the object or asking the caregiver

to manipulate the object. For each object b it has decided

to explore, it also decides the strategy σ which maximizes

its “competence progress” or “interest”, defined as the local

competence progress, over a sliding time window of δ for

an object b with strategy σ at cost κ(σ). If the competence

measured for object b with strategy σ constitute the list

R(b, σ) = {γ1, ...γN}:

interest(b, σ) =
1

κ(σ)

∣

∣

∣

∣

∣

∣





N−
δ

2
∑

j=N−δ

γj



−





N
∑

j=N−
δ
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∣

∣

∣

∣

∣

δ

This strategy enables the learner to generate new samples

a in subspaces of A. The SGIM-ACTS learner explores

preferentially objects where it makes progress the fastest. More

details of the algorithm and its implementation can be found

in [25].

APPENDIX B

DATABASE FOR EVALUATION OF CURIOSITY

PERFORMANCES

We evaluate the progress in objects’ recognition by com-

puting a performance measure over an evaluation database

(Fig. 16). It must be noticed that the evaluation of the

learning progress on the database is not used directly by the

curiosity system to guide the exploration (see details in [103]),

but is mostly used to visualize the learning curves of the

experiments. The database consists of 64 images acquired by

the RGB-D camera before the learning process takes place. In

this preparation phase, the human caregiver showed all the five

objects (multi-colored cubes, blue-violet sphere, red bear, gray

dog, yellow car) under several and different views (Fig. 16b).

It must be remarked that the whole image taken by the RGB-D

camera is retained for the evaluation (Fig. 16a).

(a) Evaluation database - (60 out of 64 images)

(b) Aggregation of the objects’ views in the evaluation database

Fig. 16. The database of objects’ views used by the intrinsic motivation
system to evaluate the progress in object recognition. It consists of 64 random
images of the objects from different points of view (a), which are conveniently
regrouped in (b).
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des Systèmes Intelligents et de Robotique (ISIR,
UMR CNRS 7222) at Université Pierre et Marie
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